1
|
Terunuma N, Ikegami K, Kitamura H, Ando H, Kurosaki S, Masuda M, Kochi T, Yanagi N, Fujino Y, Ogami A, Higashi T. Effects of toner-handling work on respiratory function, chest X-ray findings, and biomarkers of inflammation, allergy, and oxidative stress: a 10-year prospective Japanese cohort study. BMC Pulm Med 2020; 20:280. [PMID: 33109132 PMCID: PMC7590607 DOI: 10.1186/s12890-020-01320-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Background Exposure to toner, a substance used in photocopiers and printers, has been associated with siderosilicosis and other adverse effects. However, these findings are limited, and there is insufficient evidence on the long-term effects of toner exposure. Using longitudinal analysis, this study aimed to examine the effects of work involving toner exposure on the respiratory system over time. Methods We conducted a prospective cohort study in a Japanese toner and copier manufacturing enterprise between 2003 and 2013. The cohort included a total of 1468 workers, which comprised 887 toner-handling workers and 581 non-toner-handling workers. We subdivided the toner-handling workers into two groups according to the toner exposure concentration, based on the baseline survey in 2003. We compared the chest X-ray results, respiratory function indicators, and serum and urinary biomarkers of inflammation, allergy, and oxidative stress among the three groups: high-concentration toner exposure group, low-concentration toner exposure group, and non-toner-handling group. To consider the effects of individual differences on the longitudinal data, we used a linear mixed model. Results Similar chest X-ray results, the biomarkers, and most of the respiratory function indicators were found in the non-toner-handling and toner-handling groups. There were no significant yearly changes in the percentage of vital capacity (%VC) in the high-concentration toner exposure group, while there was a significant yearly increase in %VC in the low-concentration toner exposure group and non-toner-handling group. The yearly change in each group was as follows: high-concentration toner exposure group, − 0.11% (95% confidence interval [CI], − 0.29 to 0.08; P = 0.250); low-concentration toner exposure group, 0.13% (95% CI, 0.09–0.17; P < 0.001); and non-toner-handling group, 0.15% (95% CI, 0.01–0.20; P < 0.001). Conclusions In our 10-year prospective study, toner-handling work was not associated with the deterioration of respiratory function and an increase in biomarker values for inflammation, allergy, and oxidative stress. This finding suggests that toner-handling work is irrelevant to the onset of respiratory disease and has minimal adverse effects on the respiratory system under a well-managed work environment. Supplementary Information Supplementary information accompanies this paper at10.1186/s12890-020-01320-6.
Collapse
Affiliation(s)
- Niina Terunuma
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| | - Kazunori Ikegami
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hiroko Kitamura
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hajime Ando
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Shizuka Kurosaki
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masashi Masuda
- Human Resources Department, AEON Co. Ltd., Chiba, 261-8515, Japan
| | - Takeshi Kochi
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Nobuaki Yanagi
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Akira Ogami
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiaki Higashi
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| |
Collapse
|
2
|
Okada T, Lee BW, Ogami A, Oyabu T, Myojo T. Inhalation of titanium dioxide (P25) nanoparticles to rats and changes in surfactant protein (SP-D) levels in bronchoalveolar lavage fluid and serum. Nanotoxicology 2019; 13:1396-1408. [PMID: 31512956 DOI: 10.1080/17435390.2019.1661042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles are typical and widely used nanomaterials, and there are many studies on the inflammatory responses induced by their inhalation. In this study, we conducted a 4-week inhalation exposure study of aerosolized TiO2> nanoparticles (P25) to male Wistar rats. The mean aerosol concentration measured at each day was 4.1 mg/m3 by dry powder dispersion of TiO2 nanoparticles. Control and exposure groups of rats were killed at 3 and 30 days after the termination of exposure, and bronchoalveolar lavage fluid (BALF) and serum were collected for analysis of total cell count, neutrophil count, and surfactant protein (SP-D) in BALF and SP-D in serum, as well as other serum biomarkers. SP-D is a component of lung surfactants produced in type II alveolar epithelial cells and Clara cells and secreted into the alveolar space and blood. The neutrophil count in the BALF was significantly elevated at 3 and 30 days. The levels of SP-D in the BALF were also elevated at 3 and 30 days, while the serum SP-D levels were elevated at 3 days only. We determined the amounts of TiO2 in the rat lungs in the exposure group at 3, 30, and 73 days to analyze the lung deposition fraction (10.2%) and the biological half-life time (72.4 days) of inhaled TiO2 nanoparticles. Histopathological analysis revealed mild pulmonary inflammation in lung tissue at 3 days. Serum SP-D was found to be a potential biomarker for exposure to TiO2 nanoparticles in this study.
Collapse
Affiliation(s)
- Takami Okada
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Byeong Woo Lee
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Akira Ogami
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Takako Oyabu
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Toshihiko Myojo
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| |
Collapse
|