1
|
Yan Y, Dai T, Guo M, Zhao X, Chen C, Zhou Y, Qin M, Xu L, Zhao J. A review of non-classical MAPK family member, MAPK4: A pivotal player in cancer development and therapeutic intervention. Int J Biol Macromol 2024; 271:132686. [PMID: 38801852 DOI: 10.1016/j.ijbiomac.2024.132686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-Activated Protein Kinases (MAPKs) are serine/threonine protein kinases that play a crucial role in transmitting extracellular signals to the intracellular environment, influencing a wide range of cellular processes including proliferation, differentiation, apoptosis, metabolic activities, immune function and stress response. MAPK4, a non-classical MAPK, is frequently overexpressed in various malignancies, including prostate, breast, cervix, thyroid, and gliomas. It orchestrates cell proliferation, migration, and apoptosis via the AKT/mTOR and/or PDK1 signaling pathways, thus facilitating tumor cell growth. Furthermore, MAPK4 expression is closely associated with the effectiveness of specific inhibitors like PI3K and PARP1, and also correlate with the survival rates of cancer patients. Increasing evidence highlights MAPK4's involvement in the tumor microenvironment, modulating immune response and inflammation-related diseases. This review comprehensively explores the structure, function, and oncogenic role of MAPK4, providing a deeper understanding of its activation and mechanisms of action in tumorigenesis, which might be helpful for the development of innovative therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Yaping Yan
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Tengkun Dai
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Xu Zhao
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China; School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chao Chen
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China; School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ya Zhou
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China; Department of Medical physics, Zunyi Medical University, Guizhou 563000, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China.
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China.
| |
Collapse
|
2
|
Kalfon L, Paz R, Raveh-Barak H, Salama A, Samra N, Kaplun A, Chasnyk N, Kfir NC, Mousa NK, Biton ES, Tanus M, Aharon-Peretz J, Falik Zaccai TC. Familial Early-Onset Alzheimer's Caused by Novel Genetic Variant and APP Duplication: A Cross-Sectional Study. Curr Alzheimer Res 2022; 19:694-707. [PMID: 36278440 DOI: 10.2174/1567205020666221020095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.
Collapse
Affiliation(s)
- Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Rotem Paz
- Rappaport Faculty of Medicine, Technion Medicine, Haifa, Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Hadas Raveh-Barak
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Areef Salama
- Department of Family Medicine, Sherutei Briut Clalit, Haifa and Western Galilee District, Tel Aviv, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Nehama Cohen Kfir
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Efrat Shuster Biton
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Mary Tanus
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Judith Aharon-Peretz
- Rappaport Faculty of Medicine, Technion, Haifa Israel.,Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tzipora C Falik Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| |
Collapse
|
3
|
Zeng X, Jiang S, Ruan S, Guo Z, Guo J, Liu M, Ye C, Dong J. MAPK4 silencing together with a PARP1 inhibitor as a combination therapy in triple‑negative breast cancer cells. Mol Med Rep 2021; 24:548. [PMID: 34080025 PMCID: PMC8185508 DOI: 10.3892/mmr.2021.12187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) is the most common type of cancer among females worldwide and is associated with poor prognosis. Poly ADP‑ribose polymerase‑1 (PARP1) inhibitors are effective against TNBC with mutations in the breast cancer type 1 susceptibility protein (BRCA1) and/or BRCA2 genes; however, the development of resistance to PARP1 inhibitors limits their use. Thus, identifying strategies to overcome this resistance is urgently required. The aim of the present study was to investigate the potential function and mechanism of small interfering (si)RNA‑MAPK4 (siMAPK4) in enhancing the efficacy of a PARP1 inhibitor and reducing the resistance. In the present study, data on the mRNA expression level of MAPK4 in normal breast tissues and TNBC tissues were obtained from The Cancer Genome Atlas database. The mRNA and protein expression levels of MAPK4 in normal breast cells and TNBC cells were analyzed using reverse transcription‑quantitative PCR and western blotting, respectively. The phosphorylated (p) histone H2AX (γH2AX) protein expression was assessed via immunofluorescence. Cell Counting Kit‑8, wound healing and TUNEL assays were used to determine the proliferative, migratory and apoptotic abilities of HCC1937 cells. MAPK4 was highly expressed in TNBC patient tissues and cell lines. Moreover, overexpression of MAPK4 could promote HCC1937 cell proliferation. Treatment of HCC1937 cells with the combination of siMAPK4 and a PARP1 inhibitor olaparib decreased their proliferation and migration and increased their apoptosis. The protein expression levels of the DNA repair‑related proteins p‑DNA‑dependent protein kinase catalytic subunit (DNA‑PK) and RAD51 recombinase (RAD51) were inhibited in the siMAPK4 and siMAPK4 + olaparib groups. However, the marker of a double‑stranded break γH2AX showed increased protein expression in the siMAPK4 + olaparib group. As MAPK4 could phosphorylate AKT at threonine 308 (AKTT308), the current study restored p‑AKTT308 using a constitutively active AKT plasmid (AKT‑CA). p‑DNA‑PK and RAD51 showed high expression and γH2AX exhibited lower protein expression in the AKT‑CA group. The present findings suggested that siMAPK4 can enhance the sensitivity of TNBC cells to PARP1 inhibitors.
Collapse
Affiliation(s)
- Xiaoqi Zeng
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Simin Ruan
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Minfeng Liu
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Changsheng Ye
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianyu Dong
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
4
|
Minică CC, Dolan CV, Hottenga JJ, Pool R, Fedko IO, Mbarek H, Huppertz C, Bartels M, Boomsma DI, Vink JM. Heritability, SNP- and Gene-Based Analyses of Cannabis Use Initiation and Age at Onset. Behav Genet 2015; 45:503-13. [PMID: 25987507 PMCID: PMC4561059 DOI: 10.1007/s10519-015-9723-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/27/2015] [Indexed: 11/27/2022]
Abstract
Prior searches for genetic variants (GVs) implicated in initiation of cannabis use have been limited to common single nucleotide polymorphisms (SNPs) typed in HapMap samples. Denser SNPs are now available with the completion of the 1000 Genomes and the Genome of the Netherlands projects. More densely distributed SNPs are expected to track the causal variants better. Therefore we extend the search for variants implicated in early stages of cannabis use to previously untagged common and low-frequency variants. We run heritability, SNP and gene-based analyses of initiation and age at onset. This is the first genome-wide study of age at onset to date. Using GCTA and a sample of distantly related individuals from the Netherlands Twin Register, we estimated that the currently measured (and tagged) SNPs collectively explain 25 % of the variance in initiation (SE = 0.088; P = 0.0016). Chromosomes 4 and 18, previously linked with cannabis use and other addiction phenotypes, account for the largest amount of variance in initiation (6.8 %, SE = 0.025, P = 0.002 and 3.6 %, SE = 0.01, P = 0.012, respectively). No individual SNP- or gene-based test reached genomewide significance in the initiation or age at onset analyses. Our study detected association signal in the currently measured SNPs. A comparison with prior SNP-heritability estimates suggests that at least part of the signal is likely coming from previously untyped common and low frequency variants. Our results do not rule out the contribution of rare variants of larger effect—a plausible source of the difference between the twin-based heritability estimate and that from GCTA. The causal variants are likely of very small effect (i.e., <1 % explained variance) and are uniformly distributed over the genome in proportion to chromosomes’ length. Similar to other complex traits and diseases, detecting such small effects is to be expected in sufficiently large samples.
Collapse
Affiliation(s)
- Camelia C Minică
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|