1
|
Milasauskiene E, Burkauskas J, Jesmanas S, Gleizniene R, Borutaite V, Skemiene K, Vaitkiene P, Adomaitiene V, Lukosevicius S, Gradauskiene B, Brown G, Steibliene V. The links between neuroinflammation, brain structure and depressive disorder: A cross-sectional study protocol. PLoS One 2024; 19:e0311218. [PMID: 39565757 PMCID: PMC11578540 DOI: 10.1371/journal.pone.0311218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION It is known that symptoms of major depressive disorder (MDD) are associated with neurodegeneration, that lipopolysaccharide (LPS) can induce symptoms of MDD, and that blood LPS levels are elevated in neurodegeneration. However, it is not known whether blood LPS and cytokine levels correlate with MDD, cognition and brain structure, and this is tested in this study. METHODS AND ANALYSIS This cross-sectional study includes individuals with MDD (n = 100) and a control group of individuals with no one-year history of a mental disorder (n = 50). A comprehensive evaluation is performed, including the collection of basic sociodemographic information, data on smoking status, body mass index, course of MDD, past treatment, comorbid diseases, and current use of medications. Diagnosis of MDD is performed according to the WHO's [2019] International Classification of Diseases and related health problems by psychiatrist and severity of MDD is evaluated using the Montgomery-Åsberg Depression Scale. The Cambridge Neuropsychological Test Automated Battery is used to evaluate cognitive functioning. Venous blood samples are taken to measure genetic and inflammatory markers, and multiparametric brain magnetic resonance imaging is performed to evaluate for blood-brain barrier permeability, structural and neurometabolic brain changes. Descriptive and inferential statistics, including linear and logistic regression, will be used to analyse relationships between blood plasma LPS and inflammatory cytokine concentrations in MDD patients and controls. The proposed sample sizes are suitable for identifying significant differences between the groups, according to a power analysis. ADMINISTRATIVE INFORMATION Trial registration: Clinicaltrials.gov NCT06203015.
Collapse
Affiliation(s)
- Egle Milasauskiene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Burkauskas
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Simonas Jesmanas
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rymante Gleizniene
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Vaitkiene
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Saulius Lukosevicius
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Guy Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vesta Steibliene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Psychiatry Clinic, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
Funatsuki T, Ogata H, Tahara H, Shimamoto A, Takekita Y, Koshikawa Y, Nonen S, Higasa K, Kinoshita T, Kato M. Changes in Multiple microRNA Levels with Antidepressant Treatment Are Associated with Remission and Interact with Key Pathways: A Comprehensive microRNA Analysis. Int J Mol Sci 2023; 24:12199. [PMID: 37569574 PMCID: PMC10418406 DOI: 10.3390/ijms241512199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Individual treatment outcomes to antidepressants varies widely, yet the determinants to this difference remain elusive. MicroRNA (miRNA) gene expression regulation in major depressive disorder (MDD) has attracted interest as a biomarker. This 4-week randomized controlled trial examined changes in the plasma miRNAs that correlated with the treatment outcomes of mirtazapine (MIR) and selective serotonin reuptake inhibitor (SSRI) monotherapy. Pre- and post- treatment, we comprehensively analyzed the miRNA levels in MDD patients, and identified the gene pathways linked to these miRNAs in 46 patients. Overall, 141 miRNA levels significantly demonstrated correlations with treatment remission after 4 weeks of MIR, with miR-1237-5p showing the most robust and significant correlation after Bonferroni correction. These 141 miRNAs displayed a negative correlation with remission, indicating a decreasing trend. These miRNAs were associated with 15 pathways, including TGF-β and MAPK. Through database searches, the genes targeted by these miRNAs with the identified pathways were compared, and it was found that MAPK1, IGF1, IGF1R, and BRAF matched. Alterations in specific miRNAs levels before and after MIR treatment correlated with remission. The miRNAs mentioned in this study have not been previously reported. No other studies have investigated treatment with MIR. The identified miRNAs also correlated with depression-related genes and pathways.
Collapse
Affiliation(s)
- Toshiya Funatsuki
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Haruhiko Ogata
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Hidetoshi Tahara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan;
| | - Yoshiteru Takekita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo Medical University, Nishinomiya 650-8530, Japan;
| | - Koichiro Higasa
- Institute of Biomedical Science, Department of Genome Analysis, Kansai Medical University, Osaka 573-1191, Japan;
| | - Toshihiko Kinoshita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| |
Collapse
|
3
|
Ran LY, Kong YT, Xiang JJ, Zeng Q, Zhang CY, Shi L, Qiu HT, Liu C, Wu LL, Li YL, Chen JM, Ai M, Wang W, Kuang L. Serum extracellular vesicle microRNA dysregulation and childhood trauma in adolescents with major depressive disorder. Bosn J Basic Med Sci 2022; 22:959-971. [PMID: 35659238 PMCID: PMC9589301 DOI: 10.17305/bjbms.2022.7110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 07/20/2023] Open
Abstract
Major depressive disorder (MDD) seriously endangers adolescent mental and physical health. Extracellular vesicles (EVs) are mediators of cellular communication and are involved in many physiological brain processes. Although EV miRNAshave been implicated in adults with major psychiatric disorders, investigation into their effects in adolescent MDDremains scarce. In discovery set, we conducted a genome-wide miRNA sequencing of serum EVs from 9 untreated adolescents with MDD and 8 matched healthy controls (HCs), identifying 32 differentially expressed miRNAs (18 upregulated and 14 downregulated). In the validation set, 8 differentially expressed and highly enriched miRNAs were verified in independent samples using RT-PCR, with 4 (miR-450a-2-3p, miR-3691-5p, miR-556-3p, and miR-2115-3p) of the 8 miRNAs found to be significantly elevated in 34 untreated adolescents with MDD compared with 38 HCs and consistent with the sequencing results. After the Bonferroni correction, we found that three miRNAs (miR-450a-2-3p, miR-556-3p, and miR-2115-3p) were still significantly different. Among them, miR-450a-2-3p showed the most markeddifferential expression and was able to diagnose disease with 67.6% sensitivity and 84.2% specificity. Furthermore, miR-450a-2-3p partially mediated the associations between total childhood trauma, emotional abuse, and physical neglect and adolescent MDD. We also found that the combination of miR-450a-2-3p and emotional abuse could effectively diagnose MDD in adolescents with 82.4% sensitivity and 81.6% specificity. Our data demonstrate the association of serum EV miRNA dysregulation with MDD pathophysiology and, furthermore, show that miRNAs may mediate the relationship between early stress and MDD susceptibility. We also provide a valid integrated model for the diagnosis of adolescent MDD.
Collapse
Affiliation(s)
- Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Ting Kong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao-Jiao Xiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zeng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Chen-Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Tang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Li Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Lan Li
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Mei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Spironolactone alleviates schizophrenia-related reversal learning in Tcf4 transgenic mice subjected to social defeat. SCHIZOPHRENIA 2022; 8:77. [PMID: 36171421 PMCID: PMC9519974 DOI: 10.1038/s41537-022-00290-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/17/2022] [Indexed: 11/08/2022]
Abstract
AbstractCognitive deficits are a hallmark of schizophrenia, for which no convincing pharmacological treatment option is currently available. Here, we tested spironolactone as a repurposed compound in Tcf4 transgenic mice subjected to psychosocial stress. In this ‘2-hit’ gene by environment mouse (GxE) model, the animals showed schizophrenia-related cognitive deficits. We had previously shown that spironolactone ameliorates working memory deficits and hyperactivity in a mouse model of cortical excitatory/inhibitory (E/I) dysbalance caused by an overactive NRG1-ERBB4 signaling pathway. In an add-on clinical study design, we used spironolactone as adjuvant medication to the standard antipsychotic drug aripiprazole. We characterized the compound effects using our previously established Platform for Systematic Semi-Automated Behavioral and Cognitive Profiling (PsyCoP). PsyCoP is a widely applicable analysis pipeline based on the Research Domain Criteria (RDoC) framework aiming at facilitating translation into the clinic. In addition, we use dimensional reduction to analyze and visualize overall treatment effect profiles. We found that spironolactone and aripiprazole improve deficits of several cognitive domains in Tcf4tg x SD mice but partially interfere with each other’s effect in the combination therapy. A similar interaction was detected for the modulation of novelty-induced activity. In addition to its strong activity-dampening effects, we found an increase in negative valence measures as a side effect of aripiprazole treatment in mice. We suggest that repurposed drug candidates should first be tested in an adequate preclinical setting before initiating clinical trials. In addition, a more specific and effective NRG1-ERBB4 pathway inhibitor or more potent E/I balancing drug might enhance the ameliorating effect on cognition even further.
Collapse
|
5
|
Dam H, Buch JOD, Nielsen AB, Weikop P, Jørgensen MB. The association of anxiety and other clinical features with CACNA1C rs1006737 in patients with depression. Transl Neurosci 2022; 13:320-326. [PMID: 36238190 PMCID: PMC9510822 DOI: 10.1515/tnsci-2022-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background The CACNA1C protein is a L-type calcium channel, which influence affective disorders. Purpose The purpose of the present study was to examine the possible association between the different genotypes of rs100677 CACNA1C gene and anxiety and other clinical symptoms in patients with unipolar depression. Patients and controls A total of 754 patients and 708 controls from the Danish Psychiatric Biobank participated. Results A significant correlation was found between anxiety and the A allele. It was further found that patients with the A allele more often were treated with electroconvulsive therapy and patients with the AA phenotype had the highest age. Limitations The only information about controls was their sex and that they were recruited from the blood bank. Two types of inclusion criteria were used. The clinical data were not complete for all patients.
Collapse
Affiliation(s)
- Henrik Dam
- Mental Health Center Copenhagen, University Hospital of Copenhagen, Edel Sauntes Alle 10 , 2100 Copenhagen O , Denmark
| | - Jens O. D. Buch
- Mental Health Center Copenhagen, University Hospital of Copenhagen, Edel Sauntes Alle 10 , 2100 Copenhagen O , Denmark
| | - Annelaura B. Nielsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen , Copenhagen , Denmark
| | - Pia Weikop
- Center for Translational Neuroscience, University of Copenhagen , Copenhagen , Denmark
| | - Martin B. Jørgensen
- Mental Health Center Copenhagen, University Hospital of Copenhagen, Edel Sauntes Alle 10 , 2100 Copenhagen O , Denmark
| |
Collapse
|
6
|
Learning Ability and Hippocampal Transcriptome Responses to Early and Later Life Environmental Complexities in Dual-Purpose Chicks. Animals (Basel) 2022; 12:ani12050668. [PMID: 35268235 PMCID: PMC8909157 DOI: 10.3390/ani12050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we hypothesized that complex early-life environments enhance the learning ability and the hippocampal plasticity when the individual is faced with future life challenges. Chicks were divided into a barren environment group (BG), a litter materials group (LG), and a perches and litter materials group (PLG) until 31 days of age, and then their learning abilities were tested following further rearing in barren environments for 22 days. In response to the future life challenge, the learning ability showed no differences among the three groups. In the hippocampal KEGG pathways, the LG chicks showed the downregulation of neural-related genes neuronal growth regulator 1 (NEGR1) and neurexins (NRXN1) in the cell adhesion molecules pathway compared to the BG (p < 0.05). Immune-related genes TLR2 in Malaria and Legionellosis and IL-18 and IL18R1 in the TNF signaling pathway were upregulated in the LG compared to in the BG (p < 0.05). Compared to the BG, the PLG displayed upregulated TLR2A in Malaria (p < 0.05). The PLG showed upregulated neural-related gene, i.e., neuronal acetylcholine receptor subunit alpha-7-like (CHRNA8) in the nicotine addiction pathway and secretagogin (SCGN) gene expression, as compared to the LG (p < 0.05). In conclusion, early-life environmental complexities had limited effects on the learning ability in response to a future life challenge. Early-life perches and litter materials can improve neural- and immune-related gene expression and functional pathways in the hippocampus of chicks.
Collapse
|
7
|
Shi Y, Chen M, Zhao Z, Pan J, Huang S. Network Pharmacology and Molecular Docking Analyses of Mechanisms Underlying Effects of the Cyperi Rhizoma- Chuanxiong Rhizoma Herb Pair on Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5704578. [PMID: 34976096 PMCID: PMC8716227 DOI: 10.1155/2021/5704578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. METHODS A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. RESULTS Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. CONCLUSIONS The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingqi Chen
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zehua Zhao
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
8
|
Li Q, Cai D, Huang H, Zhang H, Bai R, Zhao X, Sun H, Qin P. Phosphoproteomic profiling of the hippocampus of offspring rats exposed to prenatal stress. Brain Behav 2021; 11:e2233. [PMID: 34520625 PMCID: PMC8553319 DOI: 10.1002/brb3.2233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Prenatal stress (PS) can cause depression in offspring. However, the underlying biological mechanism of these influences is still unclear. This work was implemented to investigate the molecular mechanisms of depressive-like behavior of offspring rats insulted with PS. METHODS Relative quantitative phosphoproteomics of the hippocampus of PS susceptibility (PS-S) and control (CON) rat offspring was performed using liquid chromatography-tandem mass spectrometry to confirm known pathways and to identify new mechanisms involved in depression. RESULTS A total of 6790 phosphopeptides, 9817 phosphorylation sites, and 2978 phosphoproteins were detected. Among the 2978 phosphoproteins, 1760 (59.09%) had more than two phosphorylated sites, the ENSRNOP00000023460 protein had more than 117 phosphorylated sites, and the average distribution of modification sites per 100 amino acids was 2.97. There were 197 different phosphopeptides, including 140 increased phosphopeptides and 57 decreased phosphopeptides in the PS-S offspring rats, compared to the CON offspring rats. These differential phosphopeptides corresponded to 100 upregulated and 44 downregulated phosphoproteins, respectively. Gene ontology enrichment analysis revealed that these different phosphoproteins in the top five enriched terms in the cellular component, molecular function, and biological proces categories were involved in a total of 35 different phosphoproteins, and these phosphoproteins were mainly related to myelin-, microtubule- and synapse-associated proteins. The enrichment of Kyoto Encyclopedia of Genes and Genome pathways was found to be involved in many essential biological pathways, and the top five pathways included amphetamine addiction, insulin secretion, Cushing syndrome, and the circadian entrainment signaling pathway. These first five pathways were related to nine phosphoproteins, including Adcy9, Apc, Cacna1c, Camk2a, Camk2b, Camk2g, Ctnnd2, Grin2a, and Stx1a. The full data are available via ProteomeXchange with identifier PXD019117. CONCLUSION We preliminarily identified 144 different phosphoproteins involved in myelin, microtubule, and synapse formation and plasticity in the hippocampus of susceptible offspring rats exposed to PS.
Collapse
Affiliation(s)
- Qinghong Li
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Dongge Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Huiping Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Ruimiao Bai
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Xiaolin Zhao
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Hongli Sun
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Pei Qin
- Department of Anaesthesiology, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| |
Collapse
|
9
|
Chang J, Zhang Y, Shen N, Zhou J, Zhang H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp Brain Res 2021; 239:3359-3370. [PMID: 34482419 DOI: 10.1007/s00221-021-06203-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Depression is a complex etiological disease with limited effective treatments. Previous studies have indicated the involvement of miRNAs in the pathophysiology of mood disorders. In this study, we focused on the role and mechanisms of miR-129-5p in depression by successfully constructing mice models of depressive-like behavior via chronic unpredictable mild stress (CUMS) exposure. Herein, miR-129-5p expression was decreased in the hippocampus of CUMS mice model. Upregulation of miR-129-5p reduced depressive-like behaviors of CUMS mice, as revealed in sucrose preference test, novelty suppressed feeding test, forced swim test, tail suspension test, social interaction test. MiR-129-5p upregulation decreased the concentrations and protein levels of proinflammatory cytokines (IL-6, IL-1β and TNF-α), indicating the inhibitory role of miR-129-5p in inflammation. Furthermore, miR-129-5p was identified to target MAPK1. MAPK1 was negatively regulated by miR-129-5p, and silencing of MAPK1 attenuated depressive-like behaviors in CUMS mice. Moreover, MAPK1 downregulation decreased inflammation in the hippocampus of CUMS mice. Upregulation of MAPK1 reversed the suppressive effects of miR-129-5p upregulation on depressive-like behaviors and inflammation in CUMS mice. In conclusion, the current study identified that miR-129-5p reduces depressive-like behaviors and suppresses inflammation by targeting MAPK1 in CUMS mice, offering a novel molecular interpretation for depression prevention.
Collapse
Affiliation(s)
- Jie Chang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Yanhong Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Nianhong Shen
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Jingquan Zhou
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Huan Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| |
Collapse
|
10
|
Li LD, Naveed M, Du ZW, Ding H, Gu K, Wei LL, Zhou YP, Meng F, Wang C, Han F, Zhou QG, Zhang J. Abnormal expression profile of plasma-derived exosomal microRNAs in patients with treatment-resistant depression. Hum Genomics 2021; 15:55. [PMID: 34419170 PMCID: PMC8379796 DOI: 10.1186/s40246-021-00354-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Whether microRNAs (miRNAs) from plasma exosomes might be dysregulated in patients with depression, especially treatment-resistant depression (TRD), remains unclear, based on study of which novel biomarkers and therapeutic targets could be discovered. To this end, a small sample study was performed by isolation of plasma exosomes from patients with TRD diagnosed by Hamilton scale. In this study, 4 peripheral plasma samples from patients with TRD and 4 healthy controls were collected for extraction of plasma exosomes. Exosomal miRNAs were analyzed by miRNA sequencing, followed by image collection, expression difference analysis, target gene GO enrichment analysis, and KEGG pathway enrichment analysis. Compared with the healthy controls, 2 miRNAs in the plasma exosomes of patients with TRD showed significant differences in expression, among which has-miR-335-5p were significantly upregulated and has-miR-1292-3p were significantly downregulated. Go and KEGG analysis showed that dysregulated miRNAs affect postsynaptic density and axonogenesis as well as the signaling pathway of axon formation and cell growths. The identification of these miRNAs and their target genes may provide novel biomarkers for improving diagnosis accuracy and treatment effectiveness of TRD.
Collapse
Affiliation(s)
- Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Kai Gu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China
| | - Lu-Lu Wei
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China. .,Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China.
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
11
|
Crisafulli C, Calabrò M, Mandelli L, Wang SM, Lee SJ, Han C, Patkar A, Masand P, Pae CU, Souery D, Mendlewicz J, Serretti A. Possible Modulatory Role of ARC Gene Variants in Mood Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:46-52. [PMID: 33508787 PMCID: PMC7851469 DOI: 10.9758/cpn.2021.19.1.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The genetic background of mood disorders is gradually emerging through the use of large multicenter samples but a detailed phenotyping is complementary in elucidating the role of modulating variants. METHODS In the present paper we focused on the possible modulatory effects of ARC gene variants on two independent mood disorder samples of European (n = 246 bipolar disorder) and Korean (n = 132 bipolar disorder; n = 242 major depressive disorder [MDD]) ancestry. RESULTS No result survived Bonferroni correction, however we evidenced promising trend toward possible association between ARC gene variants and mood disorder phenotypes. In particular, we evidenced weak correlations of ARC single nucleotide polymorphisms with depressive symptoms severity (evaluated through Hamilton depression rating scale scores) in the MDD Korean (rs7465272) and European (rs11167152) samples. Additionally rs10110456 was found to be related to Family History, while rs7465272 was related to suicide risk in the Korean sample. Finally, rs7465272 was associated with body mass index in the European sample. CONCLUSION Overall, ARC gene variants may have a partial role in modulatory effect on treatment efficacy or phenotypes of mood disorders. Further studies, on larger samples may provide a better understanding on the role of ARC gene variants in the symptom severity and treatment outcomes in patients with mood disorders.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | - Laura Mandelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo-Jung Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Changsu Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Ashwin Patkar
- Department of Psychiatry and Behavioural Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | - Chi-Un Pae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Daniel Souery
- Centre Européen de Psychologie Medicale, Laboratoire de Psychologie Medicale, Universitè Libre de Bruxelles and Psy Pluriel, Brussels, Belgium
| | - Julien Mendlewicz
- Department of Psychiatry, Universitè Libre de Bruxelles, Brussels, Belgium
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Volkmann P, Stephan M, Krackow S, Jensen N, Rossner MJ. PsyCoP - A Platform for Systematic Semi-Automated Behavioral and Cognitive Profiling Reveals Gene and Environment Dependent Impairments of Tcf4 Transgenic Mice Subjected to Social Defeat. Front Behav Neurosci 2021; 14:618180. [PMID: 33519394 PMCID: PMC7841301 DOI: 10.3389/fnbeh.2020.618180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, hundreds of risk genes associated with psychiatric disorders have been identified. These are thought to interact with environmental stress factors in precipitating pathological behaviors. However, the individual phenotypes resulting from specific genotype by environment (G×E) interactions remain to be determined. Toward a more systematic approach, we developed a novel standardized and partially automatized platform for systematic behavioral and cognitive profiling (PsyCoP). Here, we assessed the behavioral and cognitive disturbances in Tcf4 transgenic mice (Tcf4tg) exposed to psychosocial stress by social defeat during adolescence using a "two-hit" G×E mouse model. Notably, TCF4 has been repeatedly identified as a candidate risk gene for different psychiatric diseases and Tcf4tg mice display behavioral endophenotypes such as fear memory impairment and hyperactivity. We use the Research Domain Criteria (RDoC) concept as framework to categorize phenotyping results in a translational approach. We propose two methods of dimension reduction, clustering, and visualization of behavioral phenotypes to retain statistical power and clarity of the overview. Taken together, our results reveal that sensorimotor gating is disturbed by Tcf4 overexpression whereas both negative and positive valence systems are primarily influenced by psychosocial stress. Moreover, we confirm previous reports showing that deficits in the cognitive domain are largely dependent on the interaction between Tcf4 and psychosocial stress. We recommend that the standardized analysis and visualization strategies described here should be applied to other two-hit mouse models of psychiatric diseases and anticipate that this will help directing future preclinical treatment trials.
Collapse
Affiliation(s)
- Paul Volkmann
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Niels Jensen
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|