1
|
Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A. Biosensing Strategy for Simultaneous and Accurate Quantitative Analysis of Mycotoxins in Food Samples Using Unmodified Graphene Micromotors. Anal Chem 2017; 89:10850-10857. [PMID: 28889736 DOI: 10.1021/acs.analchem.7b02440] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A high-performance graphene-based micromotor strategy for simultaneous, fast, and reliable assessment of two highly concerning mycotoxins (fumonisin B1 (FB1) and ocratoxin A (OTA)) has successfully been developed. The assay principle is based on the selective recognition from aptamers to the target mycotoxins and further "on-the-move" fluorescence quenching of the free aptamer in the outer layer of unmodified reduced graphene (rGO; sensing layer) micromotors. Template-prepared rGO/platinum nanoparticles (PtNPs) tubular micromotors were synthesized rapidly and inexpensively by the direct electrodeposition within the conical pores of a polycarbonate template membrane. The new wash-free approach offers using just 1 μL of sample, a simultaneous and rapid "on-the-fly" detection (2 min) with high sensitivity (limits of detection of 7 and 0.4 ng/mL for OTA and FB1, respectively), and high selectivity. Remarkable accuracy (Er < 5%) during the mycotoxin determination in certified reference material as well as excellent quantitative recoveries (96-98%) during the analysis of food samples were also obtained. The excellent results obtained allow envisioning an exciting future for the development of novel applications of catalytic micromotors in unexplored fields such as food safety diagnosis.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
45 |
2
|
Molinero-Fernández Á, Arruza L, López MÁ, Escarpa A. On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens Bioelectron 2020; 158:112156. [PMID: 32275206 DOI: 10.1016/j.bios.2020.112156] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 01/19/2023]
Abstract
Based on the exceptional and new opened biosensing possibilities of self-propelled micromotors, a micromotor-based immunoassay (MIm) has smartly been designed for C-reactive protein (CRP) determination in plasma of preterm infants with sepsis suspicion. The design of the micromotors involved the electrosynthesis of a carbon-based outer layer (for antibody functionalization), an intermediate Ni layer (for magnetic guidance and stopped flow operations) and PtNPs inner catalytic layer (for catalytic bubble propulsion). Micromotors biofunctionalization on the outer layer (using carbon black (CB), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), and biocompatible propulsion capabilities, were carefully studied. Magnetic rGO/Ni/PtNPs micromotors exhibited the most efficient and reproducible (CV = 9%) anti-CRP functionalization, controlled stopped-flow operations as well as efficient bubble propulsion (1% H2O2, 1,5% NaCh, speed 140 μm s-1). Analytical performance of MIm was excellent, allowing the direct (without dilution), sensitive (LOD = 0.80 μg/mL), and accurate CRP determination (Er = 1%) in hardly available preterm babies' plasma samples with suspected sepsis using very low volumes (<10 μL) and in just 5 min of on-the-fly bioassay. Overall, the results obtained allowed the fast and reliable sepsis diagnostics in preterm babies' individuals with suspected sepsis, not only proving the usefulness of the approach as its potential utilization as point-of-care device for clinical analysis but drawing new horizons in extremely low sample volumes-based diagnostics.
Collapse
|
Journal Article |
5 |
39 |
3
|
Molinero-Fernández Á, Jodra A, Moreno-Guzmán M, López MÁ, Escarpa A. Magnetic Reduced Graphene Oxide/Nickel/Platinum Nanoparticles Micromotors for Mycotoxin Analysis. Chemistry 2018; 24:7172-7176. [DOI: 10.1002/chem.201706095] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/31/2022]
|
|
7 |
38 |
4
|
Molinero-Fernández Á, Moreno-Guzmán M, Arruza L, López MÁ, Escarpa A. Polymer-Based Micromotor Fluorescence Immunoassay for On-the-Move Sensitive Procalcitonin Determination in Very Low Birth Weight Infants' Plasma. ACS Sens 2020; 5:1336-1344. [PMID: 32204587 DOI: 10.1021/acssensors.9b02515] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new fluorescence micromotor-based immunoassay (FMIm) has been developed for procalcitonin (PCT) determination as an early sepsis diagnostic analytical tool. The micromotors combine the high binding capacity of the specific antibodies onto their polymeric polypyrrole outer layer (PPy layer), with their magnetic guidance (Ni layer) and self-propulsion by catalytic generation of oxygen bubbles (PtNP inner layer) to actively recognize the PCT antigen. This FMIm allowed a sensitive (LOD = 0.07 ng mL-1) and direct PCT determination in clinical samples from very low-birth-weight infants (VLBWI) with sepsis suspicion, using small volumes of sample (25 μL) in a clinically relevant range of concentrations (0.5-150 ng mL-1). The good agreement between PCT levels obtained by our micromotor-based method and routine immunofluorescence hospital determination demonstrates the feasibility for the analysis in VLBWI samples and its potential as a point-of-care diagnostic tool for sepsis.
Collapse
|
|
5 |
34 |
5
|
Molinero-Fernández Á, López MÁ, Escarpa A. Electrochemical Microfluidic Micromotors-Based Immunoassay for C-Reactive Protein Determination in Preterm Neonatal Samples with Sepsis Suspicion. Anal Chem 2020; 92:5048-5054. [DOI: 10.1021/acs.analchem.9b05384] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
|
5 |
31 |
6
|
Molinero-Fernández Á, Moreno-Guzmán M, Arruza L, López MÁ, Escarpa A. Toward Early Diagnosis of Late-Onset Sepsis in Preterm Neonates: Dual Magnetoimmunosensor for Simultaneous Procalcitonin and C-Reactive Protein Determination in Diagnosed Clinical Samples. ACS Sens 2019; 4:2117-2123. [PMID: 31305070 DOI: 10.1021/acssensors.9b00890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early diagnosis of sepsis, combining blood cultures and inflammation biomarkers, continues to be a challenge, especially in very low birth weight (VLBW) infants because of limited availability of blood samples. Traditional diagnostic procedures are cumbersome, not fast enough, and require relatively large volumes of sample. Empiric use of antibiotics, before diagnostic confirmation, is required to decrease mortality, leading to potential antibiotic resistance and side effects in VLBW infants. To solve such a serious problem, a dual magnetoimmunosensor is proposed for simultaneous assessment of two of the most important sepsis biomarkers: procalcitonin (PCT for early phase) and C-reactive protein (CRP for late phase). This "sample-to-result" approach exhibited excellent sensitivity, selectivity, precision, and stability using low sample volumes (<30 μL) and under 20 min of total assay. The analytical usefulness of the approach was demonstrated by analyzing clinically relevant samples of preterm neonates with suspicion of sepsis.
Collapse
|
|
6 |
30 |
7
|
Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A. Magnetic Bead-Based Electrochemical Immunoassays On-Drop and On-Chip for Procalcitonin Determination: Disposable Tools for Clinical Sepsis Diagnosis. BIOSENSORS-BASEL 2020; 10:bios10060066. [PMID: 32560303 PMCID: PMC7344519 DOI: 10.3390/bios10060066] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
Abstract
Procalcitonin (PCT) is a known protein biomarker clinically used for the early stages of sepsis diagnosis and therapy guidance. For its reliable determination, sandwich format magnetic bead-based immunoassays with two different electrochemical detection approaches are described: (i) disposable screen-printed carbon electrodes (SPE-C, on-drop detection); (ii) electro-kinetically driven microfluidic chips with integrated Au electrodes (EMC-Au, on-chip detection). Both approaches exhibited enough sensitivity (limit of detection (LOD) of 0.1 and 0.04 ng mL−1 for SPE-C and EMC-Au, respectively; cutoff 0.5 ng mL−1), an adequate working range for the clinically relevant concentrations (0.5–1000 and 0.1–20 ng mL−1 for SPE-C and EMC-Au, respectively), and good precision (RSD < 9%), using low sample volumes (25 µL) with total assay times less than 20 min. The suitability of both approaches was successfully demonstrated by the analysis of human serum and plasma samples, for which good recoveries were obtained (89–120%). Furthermore, the EMC-Au approach enabled the easy automation of the process, constituting a reliable alternative diagnostic tool for on-site/bed-site clinical analysis.
Collapse
|
Journal Article |
5 |
23 |
8
|
Molinero-Fernández Á, Casanova A, Wang Q, Cuartero M, Crespo GA. In Vivo Transdermal Multi-Ion Monitoring with a Potentiometric Microneedle-Based Sensor Patch. ACS Sens 2022; 8:158-166. [PMID: 36475628 PMCID: PMC9887649 DOI: 10.1021/acssensors.2c01907] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microneedle sensor technology offers exciting opportunities for decentralized clinical analyses. A novel issue puts forward herein is to demonstrate the uniqueness of membrane-based microneedles to accomplish real-time, on-body monitoring of multiple ions simultaneously. The use of multi-ion detection is clinically relevant since it is expected to provide a more complete and reliable assessment of the clinical status of a subject concerning electrolyte disorders and others. We present a microneedle system for transdermal multiplexed tracing of pH, Na+, K+, Ca2+, Li+, and Cl-. The device consists of an array of seven solid microneedles externally modified to provide six indicator electrodes, each selective for a different ion, and a common reference electrode, all integrated into a wearable patch read in a potentiometric mode. We show in vitro measurements at the expected clinical levels, resulting in a fast response time, excellent reversibility and repeatability, and adequate selectivity. Close-to-Nernstian sensitivity, sufficient stability and resiliency to skin penetration guarantee the sensor's success in transdermal measurements, which we demonstrate through ex vivo (with pieces of rat skin) and in vivo (on-body measurements in rats) tests. Accuracy is evaluated by comparison with gold standard techniques to characterize collected dermal fluid, blood, and serum. In the past, interstitial fluid (ISF) analysis has been challenging due to difficult sample collection and analysis. For ions, this has resulted in extrapolations from blood concentrations (invasive tests) rather than pure measurements in ISF. The developed microneedle patch is a relevant analytical tool to address this information gap.
Collapse
|
research-article |
3 |
18 |
9
|
María-Hormigos R, Molinero-Fernández Á, López MÁ, Jurado-Sánchez B, Escarpa A. Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-like Activity for (bio)-Sensing Assays. Anal Chem 2022; 94:5575-5582. [PMID: 35362949 PMCID: PMC9008696 DOI: 10.1021/acs.analchem.1c05173] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prussian Blue (PB)/chitosan enzyme mimetic tubular micromotors are used here for on-the-fly (bio)-sensing assays. The micromotors are easily prepared by direct deposition of chitosan into the pores of a membrane template and in situ PB synthesis during hydrogel deposition. Under judicious pH control, PB micromotors display enzyme mimetic capabilities with three key functions on board: the autonomous oxygen bubble propulsion (with PB acting as a catalase mimic for hydrogen peroxide decomposition), 3,3',5,5'-tetramethylbenzidine (TMB) oxidation (with PB acting as a peroxidase mimic for analyte detection), and as a magnetic material (to simplify the (bio)-sensing steps). In connection with chitosan capabilities, these unique enzyme mimetic micromotors are further functionalized with acetylthiocholinesterase enzyme (ATChE) to be explored in fast inhibition assays (20 min) for the colorimetric determination of the nerve agent neostigmine, with excellent analytical performance in terms of quantification limit (0.30 μM) and concentration linear range (up to 500 μM), without compromising efficient micromotor propulsion. The new concept illustrated holds considerable potential for a myriad of (bio)-sensing applications, including forensics, where this conceptual approach remains to be explored. Micromotor-based tests to be used in crime scenes are also envisioned due to the reliable neostigmine determination in unpretreated samples.
Collapse
|
|
3 |
14 |
10
|
Molinero-Fernández Á, López MÁ, Escarpa A. An on-chip microfluidic-based electrochemical magneto-immunoassay for the determination of procalcitonin in plasma obtained from sepsis diagnosed preterm neonates. Analyst 2021; 145:5004-5010. [PMID: 32520017 DOI: 10.1039/d0an00624f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel on-chip electrochemical magneto-immunoassay for the determination of procalcitonin (PCT) has been proposed. The strategy involved the on-line performing of the biorecognition event and detection on the thin-film microfluidic gold electrode chamber operating at E = -0.20 V (vs. Au). The complete assay was performed in less than 15 minutes using only 25 μL of the sample, covering the entire range of clinically relevant PCT concentrations in sepsis diagnosis with a limit of detection and quantification of 0.02 ng mL-1 and 0.05 ng mL-1, respectively (the sepsis diagnosis threshold: 0.5 ng mL-1). The on-chip electrochemical magneto-immunoassay provided excellent results in the analysis of very unique samples obtained from preterm neonates admitted with suspected sepsis, in which the sample volume is hardly available. These characteristics fulfill the POCT requirements for PCT determination in the whole clinically relevant concentration range. Because of the high clinical relevance and the important role of PCT in sepsis, this approach opens new perspectives for sepsis diagnosis and therapy guidance using low volume samples.
Collapse
|
Journal Article |
4 |
12 |
11
|
Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A. An array-based electrochemical magneto-immunosensor for early neonatal sepsis diagnostic: Fast and accurate determination of C-reactive protein in whole blood and plasma samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
|
5 |
2 |
12
|
Molinero-Fernández Á, Jodra A, Moreno-Guzmán M, López MÁ, Escarpa A. Cover Feature: Magnetic Reduced Graphene Oxide/Nickel/Platinum Nanoparticles Micromotors for Mycotoxin Analysis (Chem. Eur. J. 28/2018). Chemistry 2018. [DOI: 10.1002/chem.201801524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
7 |
|
13
|
Wang Q, Molinero-Fernández Á, Acosta-Motos JR, Crespo GA, Cuartero M. Unveiling Potassium and Sodium Ion Dynamics in Living Plants with an In-Planta Potentiometric Microneedle Sensor. ACS Sens 2024; 9:5214-5223. [PMID: 39449605 PMCID: PMC11519921 DOI: 10.1021/acssensors.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Potassium and sodium ions (K+ and Na+) play crucial roles in influencing plant growth and health status. Unfortunately, current strategies to determine the concentrations of such ions are destructive for the plants because it is necessary to collect/extract the sap for further analysis and produce either scattered or delayed results. Here, we introduce a new potentiometric dual microneedle sensor for nondestructive, real-time, and continuous monitoring of K+ and Na+ concentrations in living plants. The developed sensors show a response time <5 s, close-to-Nernstian slope (∼55 mV dec-1), resiliency to five insertions on the stem, good repeatability (max. %RSD = 0.3%) and reversibility (max. %RSD = 3%), appropriate continuous operation for 24 h, and linear range of responses that cover expected plant physiological levels (5-50 mM for Na+ and 50-120 mM for K+). Moreover, the accuracy was successfully investigated by comparing the results provided by the microneedle sensors to those obtained by a standard reference method (e.g., ion chromatography). Finally, we demonstrate that the developed analytical device is capable of tracking K+ and Na+ transportation from the hydroponic solution to the stem within 5-10 min. This research will contribute to establishing a new generation of analytical platforms for smart agriculture offering real-time information.
Collapse
|
research-article |
1 |
|