Viana R, Rubio T, Campos-Rodríguez Á, Sanz P. Glial Alterations in the Glutamatergic and GABAergic Signalling Pathways in a Mouse Model of Lafora Disease, a Severe Form of Progressive Myoclonus Epilepsy.
Neuropathol Appl Neurobiol 2025;
51:e70009. [PMID:
40035482 DOI:
10.1111/nan.70009]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
AIMS
Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy characterised by the accumulation of insoluble deposits of glycogen in the brain and peripheral tissues. In mouse models of LD, we have identified neuroinflammation as a secondary hallmark of the disease, characterised by increased levels of reactive astrocytes and activated microglia. Our previous work demonstrated that the TNF and IL-6 inflammatory signalling pathways are the primary drivers of this neuroinflammatory phenotype. In this work, we aimed to investigate whether TNF and IL-6 pathway activation contributes to alterations in the glutamatergic and GABAergic signalling pathways.
METHODS
We performed immunofluorescence and western blot analyses on the hippocampus of a mouse model of LD to evaluate potential changes in proteins associated with glutamatergic and GABAergic signalling pathways.
RESULTS
Our findings reveal dysregulation in the expression of subunits of excitatory glutamatergic receptors (phospho-GluN2B and GluK2), as well as an increase in the levels of the GABA transporter GAT1. In addition, we detected activated forms of the Src and Lyn protein kinases in the hippocampus. More importantly, these alterations predominantly occur in nonneuronal cells, such as reactive astrocytes and microglia, underscoring the critical involvement of glial cells in the pathophysiology of LD.
CONCLUSIONS
The observed upregulation of glutamatergic receptor subunits likely amplifies excitatory glutamatergic signalling, whereas the increased expression of GAT1 may reduce the inhibitory GABAergic tone. These changes contribute to the characteristic hyperexcitability of LD.
Collapse