1
|
Dogan J, Mu X, Engström Å, Jemth P. The transition state structure for coupled binding and folding of disordered protein domains. Sci Rep 2013; 3:2076. [PMID: 23799450 PMCID: PMC3691887 DOI: 10.1038/srep02076] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
Intrinsically disordered proteins are abundant in the eukaryotic proteome, and they are implicated in a range of different diseases. However, there is a paucity of experimental data on molecular details of the coupled binding and folding of such proteins. Two interacting and relatively well studied disordered protein domains are the activation domain from the p160 transcriptional co-activator ACTR and the nuclear co-activator binding domain (NCBD) of CREB binding protein. We have analyzed the transition state for their coupled binding and folding by protein engineering and kinetic experiments (Φ-value analysis) and found that it involves weak native interactions between the N-terminal helices of ACTR and NCBD, but is otherwise "disordered-like". Most native hydrophobic interactions in the interface between the two domains form later, after the rate-limiting barrier for association. Linear free energy relationships suggest a cooperative formation of native interactions, reminiscent of the nucleation-condensation mechanism in protein folding.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
85 |
2
|
Chi CN, Elfström L, Shi Y, Snäll T, Engström Å, Jemth P. Reassessing a sparse energetic network within a single protein domain. Proc Natl Acad Sci U S A 2008; 105:4679-84. [PMID: 18339805 PMCID: PMC2290805 DOI: 10.1073/pnas.0711732105] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Indexed: 11/18/2022] Open
Abstract
Understanding the molecular principles that govern allosteric communication is an important goal in protein science. One way allostery could be transmitted is via sparse energetic networks of residues, and one such evolutionary conserved network was identified in the PDZ domain family of proteins by multiple sequence alignment [Lockless SW, Ranganathan R (1999) Science 286:295-299]. We have reassessed the energetic coupling of these residues by double mutant cycles together with ligand binding and stability experiments and found that coupling is not a special property of the coevolved network of residues in PDZ domains. The observed coupling for ligand binding is better explained by a distance relationship, where residues close in space are more likely to couple than distal residues. Our study demonstrates that statistical coupling from sequence analysis is not necessarily a reporter of energetic coupling and allostery.
Collapse
|
research-article |
17 |
80 |
3
|
Zetterberg MM, Reijmar K, Pränting M, Engström Å, Andersson DI, Edwards K. PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides. J Control Release 2011; 156:323-8. [DOI: 10.1016/j.jconrel.2011.08.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/05/2011] [Accepted: 08/23/2011] [Indexed: 11/28/2022]
|
|
14 |
79 |
4
|
Dogan J, Schmidt T, Mu X, Engström Å, Jemth P. Fast association and slow transitions in the interaction between two intrinsically disordered protein domains. J Biol Chem 2012; 287:34316-24. [PMID: 22915588 DOI: 10.1074/jbc.m112.399436] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins that contain long disordered regions are prevalent in the proteome and frequently associated with diseases. However, the mechanisms by which such intrinsically disordered proteins (IDPs) recognize their targets are not well understood. Here, we report the first experimental investigation of the interaction kinetics of the nuclear co-activator binding domain of CREB-binding protein and the activation domain from the p160 transcriptional co-activator for thyroid hormone and retinoid receptors. Both protein domains are intrinsically disordered in the free state and synergistically fold upon binding each other. Using the stopped-flow technique, we found that the binding reaction is fast, with an association rate constant of 3 × 10(7) m(-1) s(-1) at 277 K. Mutation of a conserved buried intermolecular salt bridge showed that electrostatics govern the rapid association. Furthermore, upon mutation of the salt bridge or at high salt concentration, an additional kinetic phase was detected (∼20 and ∼40 s(-1), respectively, at 277 K), suggesting that the salt bridge may steer formation of the productive bimolecular complex in an intramolecular step. Finally, we directly measured slow kinetics for the IDP domains (∼1 s(-1) at 277 K) related to conformational transitions upon binding. Together, the experiments demonstrate that the interaction involves several steps and accumulation of intermediate states. Our data are consistent with an induced fit mechanism, in agreement with previous simulations. We propose that the slow transitions may be a consequence of the multipartner interactions of IDPs.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
76 |
5
|
Johansson G, Ståhlberg J, Lindeberg G, Engström Å, Pettersson G. Isolated fungal cellulose terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett 2001. [DOI: 10.1016/0014-5793(89)80168-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
24 |
69 |
6
|
Bajtner E, Nandakumar KS, Engström Å, Holmdahl R. Chronic development of collagen-induced arthritis is associated with arthritogenic antibodies against specific epitopes on type II collagen. Arthritis Res Ther 2005; 7:R1148-57. [PMID: 16207332 PMCID: PMC1257444 DOI: 10.1186/ar1800] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 11/29/2022] Open
Abstract
Antibodies against type II collagen (CII) are important in the development of collagen-induced arthritis (CIA) and possibly also in rheumatoid arthritis. We have determined the fine specificity and arthritogenicity of the antibody response to CII in chronic relapsing variants of CIA. Immunization with rat CII in B10.Q or B10.Q(BALB/c×B10.Q)F2 mice induces a chronic relapsing CIA. The antibody response to CII was determined by using triple-helical peptides of the major B cell epitopes. Each individual mouse had a unique epitope-specific response and this epitope predominance shifted distinctly during the course of the disease. In the B10.Q mice the antibodies specific for C1 and U1, and in the B10.Q(BALB/c×B10.Q)F2 mice the antibodies specific for C1, U1 and J1, correlated with the development of chronic arthritis. Injection of monoclonal antibodies against these epitopes induced relapses in chronic arthritic mice. The development of chronic relapsing arthritis, initially induced by CII immunization, is associated with an arthritogenic antibody response to certain CII epitopes.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
62 |
7
|
Gianni S, Haq SR, Montemiglio LC, Jürgens MC, Engström Å, Chi CN, Brunori M, Jemth P. Sequence-specific long range networks in PSD-95/discs large/ZO-1 (PDZ) domains tune their binding selectivity. J Biol Chem 2011; 286:27167-75. [PMID: 21653701 DOI: 10.1074/jbc.m111.239541] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions mediated by modular protein domains are critical for cell scaffolding, differentiation, signaling, and ultimately, evolution. Given the vast number of ligands competing for binding to a limited number of domain families, it is often puzzling how specificity can be achieved. Selectivity may be modulated by intradomain allostery, whereby a remote residue is energetically connected to the functional binding site via side chain or backbone interactions. Whereas several energetic pathways, which could mediate intradomain allostery, have been predicted in modular protein domains, there is a paucity of experimental data to validate their existence and roles. Here, we have identified such functional energetic networks in one of the most common protein-protein interaction modules, the PDZ domain. We used double mutant cycles involving site-directed mutagenesis of both the PDZ domain and the peptide ligand, in conjunction with kinetics to capture the fine energetic details of the networks involved in peptide recognition. We performed the analysis on two homologous PDZ-ligand complexes and found that the energetically coupled residues differ for these two complexes. This result demonstrates that amino acid sequence rather than topology dictates the allosteric pathways. Furthermore, our data support a mechanism whereby the whole domain and not only the binding pocket is optimized for a specific ligand. Such cross-talk between binding sites and remote residues may be used to fine tune target selectivity.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
59 |
8
|
Momeni MH, Payne CM, Hansson H, Mikkelsen NE, Svedberg J, Engström Å, Sandgren M, Beckham GT, Ståhlberg J. Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare. J Biol Chem 2013; 288:5861-72. [PMID: 23303184 DOI: 10.1074/jbc.m112.440891] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
57 |
9
|
Haq SR, Chi CN, Bach A, Dogan J, Engström Å, Hultqvist G, Karlsson OA, Lundström P, Montemiglio LC, Strømgaard K, Gianni S, Jemth P. Side-chain interactions form late and cooperatively in the binding reaction between disordered peptides and PDZ domains. J Am Chem Soc 2011; 134:599-605. [PMID: 22129097 DOI: 10.1021/ja209341w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrinsically disordered proteins are very common and mediate numerous protein-protein and protein-DNA interactions. While it is clear that these interactions are instrumental for the life of the mammalian cell, there is a paucity of data regarding their molecular binding mechanisms. Here we have used short peptides as a model system for intrinsically disordered proteins. Linear free energy relationships based on rate and equilibrium constants for the binding of these peptides to ordered target proteins, PDZ domains, demonstrate that native side-chain interactions form mainly after the rate-limiting barrier for binding and in a cooperative fashion. This finding suggests that these disordered peptides first form a weak encounter complex with non-native interactions. The data do not support the recent notion that the affinities of intrinsically disordered proteins toward their targets are generally governed by their association rate constants. Instead, we observed the opposite for peptide-PDZ interactions, namely, that changes in K(d) correlate with changes in k(off).
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
36 |
10
|
Hultqvist G, Haq SR, Punekar AS, Chi CN, Engström Å, Bach A, Strømgaard K, Selmer M, Gianni S, Jemth P. Energetic pathway sampling in a protein interaction domain. Structure 2014; 21:1193-1202. [PMID: 23810696 DOI: 10.1016/j.str.2013.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 01/10/2023]
Abstract
The affinity and specificity of protein-ligand interactions are influenced by energetic crosstalk within the protein domain. However, the molecular details of such intradomain allostery are still unclear. Here, we have experimentally detected and computationally predicted interaction pathways in the postsynaptic density 95/discs large/zonula occludens 1 (PDZ)-peptide ligand model system using wild-type and circularly permuted PDZ proteins. The circular permutant introduced small perturbations in the tertiary structure and a concomitant rewiring of allosteric pathways, allowing us to describe how subtle changes may reshape energetic signaling. The results were analyzed in the context of other members of the PDZ family, which were found to contain distinct interaction pathways for different peptide ligands. The data reveal a fascinating scenario whereby several energetic pathways are sampled within one single domain and distinct pathways are activated by specific protein ligands.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
35 |
11
|
Jemth P, Mu X, Engström Å, Dogan J. A frustrated binding interface for intrinsically disordered proteins. J Biol Chem 2014; 289:5528-33. [PMID: 24421312 DOI: 10.1074/jbc.m113.537068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrinsically disordered proteins are very common in the eukaryotic proteome, and many of them are associated with diseases. Disordered proteins usually undergo a coupled binding and folding reaction and often interact with many different binding partners. Using double mutant cycles, we mapped the energy landscape of the binding interface for two interacting disordered domains and found it to be largely suboptimal in terms of interaction free energies, despite relatively high affinity. These data depict a frustrated energy landscape for interactions involving intrinsically disordered proteins, which is likely a result of their functional promiscuity.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
34 |
12
|
Vasur J, Kawai R, Jonsson KHM, Widmalm G, Engström Å, Frank M, Andersson E, Hansson H, Forsberg Z, Igarashi K, Samejima M, Sandgren M, Ståhlberg J. Synthesis of Cyclic β-Glucan Using Laminarinase 16A Glycosynthase Mutant from the Basidiomycete Phanerochaete chrysosporium. J Am Chem Soc 2010; 132:1724-30. [DOI: 10.1021/ja909129b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
15 |
21 |
13
|
Chen Y, Wennman A, Karkehabadi S, Engström Å, Oliw EH. Crystal structure of linoleate 13R-manganese lipoxygenase in complex with an adhesion protein. J Lipid Res 2016; 57:1574-88. [PMID: 27313058 DOI: 10.1194/jlr.m069617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of 13R-manganese lipoxygenase (MnLOX) of Gaeumannomyces graminis (Gg) in complex with zonadhesin of Pichia pastoris was solved by molecular replacement. Zonadhesin contains β-strands in two subdomains. A comparison of Gg-MnLOX with the 9S-MnLOX of Magnaporthe oryzae (Mo) shows that the protein fold and the geometry of the metal ligands are conserved. The U-shaped active sites differ mainly due to hydrophobic residues of the substrate channel. The volumes and two hydrophobic side pockets near the catalytic base may sanction oxygenation at C-13 and C-9, respectively. Gly-332 of Gg-MnLOX is positioned in the substrate channel between the entrance and the metal center. Replacements with larger residues could restrict oxygen and substrate to reach the active site. C18 fatty acids are likely positioned with C-11 between Mn(2+)OH2 and Leu-336 for hydrogen abstraction and with one side of the 12Z double bond shielded by Phe-337 to prevent antarafacial oxygenation at C-13 and C-11. Phe-347 is positioned at the end of the substrate channel and replacement with smaller residues can position C18 fatty acids for oxygenation at C-9. Gg-MnLOX does not catalyze the sequential lipoxygenation of n-3 fatty acids in contrast to Mo-MnLOX, which illustrates the different configurations of their substrate channels.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |
14
|
Chi CN, Haq SR, Rinaldo S, Dogan J, Cutruzzolà F, Engström Å, Gianni S, Lundström P, Jemth P. Interactions outside the boundaries of the canonical binding groove of a PDZ domain influence ligand binding. Biochemistry 2012; 51:8971-9. [PMID: 23046383 DOI: 10.1021/bi300792h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The postsynaptic density protein-95/discs large/zonula occludens-1 (PDZ) domain is a protein-protein interaction module with a shallow binding groove where protein ligands bind. However, interactions that are not part of this canonical binding groove are likely to modulate peptide binding. We have investigated such interactions beyond the binding groove for PDZ3 from PSD-95 and a peptide derived from the C-terminus of the natural ligand CRIPT. We found via nuclear magnetic resonance experiments that up to eight residues of the peptide ligand interact with the PDZ domain, showing that the interaction surface extends far outside of the binding groove as defined by the crystal structure. PDZ3 contains an extra structural element, a C-terminal helix (α3), which is known to affect affinity. Deletion of this helix resulted in the loss of several intermolecular nuclear Overhauser enhancements from peptide residues outside of the binding pocket, suggesting that α3 forms part of the extra binding surface in wild-type PDZ3. Site-directed mutagenesis, isothermal titration calorimetry, and fluorescence intensity experiments confirmed the importance of both α3 and the N-terminal part of the peptide for the affinity. Our data suggest a general mechanism in which different binding surfaces outside of the PDZ binding groove could provide sites for specific interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
18 |
15
|
Chi CN, Bach A, Engström Å, Strømgaard K, Lundström P, Ferguson N, Jemth P. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97. J Biol Chem 2010; 286:3597-606. [PMID: 21113079 DOI: 10.1074/jbc.m110.190264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E6 protein of human papillomavirus (HPV) exhibits complex interaction patterns with several host proteins, and their roles in HPV-mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor suppressor protein synapse-associated protein 97 (SAP97). All of the potential binding sites in SAP97 bind E6 with micromolar affinity. The dissociation rate constants govern the different affinities of HPV16 and HPV18 E6 for SAP97. Unexpectedly, binding is not mutually exclusive, and all three PDZ domains can simultaneously bind E6. Intriguingly, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues distal to the canonical binding pocket in the PDZ(2) domain exhibited noncanonical interactions with the E6 protein. This is consistent with a larger proportion of the protein surface defining binding specificity, as compared with that reported previously.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
17 |
16
|
Boman HG, Faye I, Hofsten PV, Kockum K, Lee JY, Xanthopoulos KG, Bennich H, Engström Å, Merrifield BR, Andreu D. Antibacterial Immune Proteins in Insects — A Review of Some Current Perspectives. PROCEEDINGS IN LIFE SCIENCES 1986. [DOI: 10.1007/978-3-642-70768-1_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
|
39 |
16 |
17
|
Karlsson OA, Ramirez J, Öberg D, Malmqvist T, Engström Å, Friberg M, Chi CN, Widersten M, Travé G, Nilsson MTI, Jemth P. Design of a PDZbody, a bivalent binder of the E6 protein from human papillomavirus. Sci Rep 2015; 5:9382. [PMID: 25797137 PMCID: PMC4369733 DOI: 10.1038/srep09382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/20/2015] [Indexed: 01/04/2023] Open
Abstract
Chronic infection by high risk human papillomavirus (HPV) strains may lead to cancer. Expression of the two viral oncoproteins E6 and E7 is largely responsible for immortalization of infected cells. The HPV E6 is a small (approximately 150 residues) two domain protein that interacts with a number of cellular proteins including the ubiquitin ligase E6-associated protein (E6AP) and several PDZ-domain containing proteins. Our aim was to design a high-affinity binder for HPV E6 by linking two of its cellular targets. First, we improved the affinity of the second PDZ domain from SAP97 for the C-terminus of HPV E6 from the high-risk strain HPV18 using phage display. Second, we added a helix from E6AP to the N-terminus of the optimized PDZ variant, creating a chimeric bivalent binder, denoted PDZbody. Full-length HPV E6 proteins are difficult to express and purify. Nevertheless, we could measure the affinity of the PDZbody for E6 from another high-risk strain, HPV16 (Kd = 65 nM). Finally, the PDZbody was used to co-immunoprecipitate E6 protein from HPV18-immortalized HeLa cells, confirming the interaction between PDZbody and HPV18 E6 in a cellular context.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
15 |
18
|
Fransson K, Af Ugglas M, Engström Å. An isotope separator on-line system at a cyclotron for heavy ions (pingis). ACTA ACUST UNITED AC 1973. [DOI: 10.1016/0029-554x(73)90826-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
52 |
11 |
19
|
Sun W, Grassi P, Engström Å, Sooriyaarachchi S, Ubhayasekera W, Hreinsson J, Wånggren K, Clark GF, Dell A, Schedin-Weiss S. N-glycans of human protein C inhibitor: tissue-specific expression and function. PLoS One 2011; 6:e29011. [PMID: 22205989 PMCID: PMC3242763 DOI: 10.1371/journal.pone.0029011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/18/2011] [Indexed: 02/01/2023] Open
Abstract
Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
8 |
20
|
van Wieringen T, Kimani SG, Hultgård-Ekwall AK, Forsberg J, Reyhani V, Engström Å, Rubin K. Opposite effects of PDGF-BB and prostaglandin E1 on cell-motility related processes are paralleled by modifications of distinct actin-binding proteins. Exp Cell Res 2009; 315:1745-58. [DOI: 10.1016/j.yexcr.2009.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/30/2009] [Accepted: 02/04/2009] [Indexed: 01/27/2023]
|
|
16 |
7 |
21
|
Woschnagg C, Forsberg J, Engström Å, Odreman F, Venge P, Garcia RC. The Human Eosinophil Proteome. Changes Induced by Birch Pollen Allergy. J Proteome Res 2009; 8:2720-32. [DOI: 10.1021/pr800984e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
|
16 |
6 |
22
|
Liu Y, Zhang D, Engström Å, Merényi G, Hagner M, Yang H, Kuwae A, Wan Y, Sjölinder M, Sjölinder H. Dynamic niche-specific adaptations in Neisseria meningitidis during infection. Microbes Infect 2015; 18:109-17. [PMID: 26482500 DOI: 10.1016/j.micinf.2015.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/30/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Neisseria meningitidis is an opportunistic human pathogen that usually colonizes the nasopharyngeal mucosa asymptomatically. Upon invasion into the blood and central nervous system, this bacterium triggers a fulminant inflammatory reaction with the manifestations of septicemia and meningitis, causing high morbidity and mortality. To reveal the bacterial adaptations to specific and dynamic host environments, we performed a comprehensive proteomic survey of N. meningitidis isolated from the nasal mucosa, CSF and blood of a mouse disease model. We could identify 51 proteins whose expression pattern has been changed during infection, many of which have not yet been characterized. The abundance of proteins was markedly lower in the bacteria isolated from the nasal mucosa compared to the bacteria from the blood and CSF, indicating that initiating adhesion is the harshest challenge for meningococci. The high abundance of the glutamate dehydrogenase (GdhA) and Opa1800 proteins in all bacterial isolates suggests their essential role in bacterial survival in vivo. To evaluate the biological relevance of our proteomic findings, four candidate proteins from representative functional groups, such as the bacterial chaperone GroEL, IMP dehydrogenase GuaB, and membrane proteins PilQ and NMC0101, were selected and their impact on bacterial fitness was investigated by mutagenesis assays. This study provides an integrated picture of bacterial niche-specific adaptations during consecutive infection processes.
Collapse
|
Journal Article |
10 |
6 |
23
|
Kruse J, Lehto N, Riklund K, Tegner Y, Engström Å. Scrutinized with inadequate control and support: Interns' experiences communicating with and writing referrals to hospital radiology departments – A qualitative study. Radiography (Lond) 2016. [DOI: 10.1016/j.radi.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
|
9 |
3 |
24
|
Öhlén J, Berg L, Björk Brämberg E, Engström Å, German Millberg L, Höglund I, Jacobsson C, Lepp M, Lidén E, Lindström I, Petzäll K, Söderberg S, Wijk H. Students' learning as the focus for shared involvement between universities and clinical practice: a didactic model for postgraduate degree projects. ADVANCES IN HEALTH SCIENCES EDUCATION : THEORY AND PRACTICE 2012; 17:471-487. [PMID: 21879390 DOI: 10.1007/s10459-011-9323-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/21/2011] [Indexed: 05/31/2023]
Abstract
In an academic programme, completion of a postgraduate degree project could be a significant means of promoting student learning in evidence- and experience-based practice. In specialist nursing education, which through the European Bologna process would be raised to the master's level, there is no tradition of including a postgraduate degree project. The aim was to develop a didactic model for specialist nursing students' postgraduate degree projects within the second cycle of higher education (master's level) and with a specific focus on nurturing shared involvement between universities and healthcare settings. This study embodies a participatory action research and theory-generating design founded on empirically practical try-outs. The 3-year project included five Swedish universities and related healthcare settings. A series of activities was performed and a number of data sources secured. Constant comparative analysis was applied. A didactic model is proposed for postgraduate degree projects in specialist nursing education aimed at nurturing shared involvement between universities and healthcare settings. The focus of the model is student learning in order to prepare the students for participation as specialist nurses in clinical knowledge development. The model is developed for the specialist nursing education, but it is general and could be applicable to various education programmes.
Collapse
|
|
13 |
3 |
25
|
Järv J, Sak K, Eller M, Ek P, Engström Å, Engström L. Quantitative Structure–Activity Relationships in the Protein Kinase C Reaction with Synthetic Peptides Derived from Myelin Basic Protein. Bioorg Chem 1996; 24:159-168. [DOI: 10.1006/bioo.1996.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
|
29 |
2 |