1
|
Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434:214-7. [PMID: 15759000 PMCID: PMC3128492 DOI: 10.1038/nature03342] [Citation(s) in RCA: 1794] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 12/30/2004] [Indexed: 01/28/2023]
Abstract
Interest in mapping the global distribution of malaria is motivated by a need to define populations at risk for appropriate resource allocation and to provide a robust framework for evaluating its global economic impact. Comparison of older and more recent malaria maps shows how the disease has been geographically restricted, but it remains entrenched in poor areas of the world with climates suitable for transmission. Here we provide an empirical approach to estimating the number of clinical events caused by Plasmodium falciparum worldwide, by using a combination of epidemiological, geographical and demographic data. We estimate that there were 515 (range 300-660) million episodes of clinical P. falciparum malaria in 2002. These global estimates are up to 50% higher than those reported by the World Health Organization (WHO) and 200% higher for areas outside Africa, reflecting the WHO's reliance upon passive national reporting for these countries. Without an informed understanding of the cartography of malaria risk, the global extent of clinical disease caused by P. falciparum will continue to be underestimated.
Collapse
|
research-article |
20 |
1794 |
2
|
Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. THE LANCET. INFECTIOUS DISEASES 2004; 4:327-36. [PMID: 15172341 PMCID: PMC3145123 DOI: 10.1016/s1473-3099(04)01043-6] [Citation(s) in RCA: 544] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this review was to use geographic information systems in combination with historical maps to quantify the anthropogenic impact on the distribution of malaria in the 20th century. The nature of the cartographic record enabled global and regional patterns in the spatial limits of malaria to be investigated at six intervals between 1900 and 2002. Contemporaneous population surfaces also allowed changes in the numbers of people living in areas of malaria risk to be quantified. These data showed that during the past century, despite human activities reducing by half the land area supporting malaria, demographic changes resulted in a 2 billion increase in the total population exposed to malaria risk. Furthermore, stratifying the present day malaria extent by endemicity class and examining regional differences highlighted that nearly 1 billion people are exposed to hypoendemic and mesoendemic malaria in southeast Asia. We further concluded that some distortion in estimates of the regional distribution of malaria burden could have resulted from different methods used to calculate burden in Africa. Crude estimates of the national prevalence of Plasmodium falciparum infection based on endemicity maps corroborate these assertions. Finally, population projections for 2010 were used to investigate the potential effect of future demographic changes. These indicated that although population growth will not substantially change the regional distribution of people at malaria risk, around 400 million births will occur within the boundary of current distribution of malaria by 2010: the date by which the Roll Back Malaria initiative is challenged to halve the world's malaria burden.
Collapse
|
Review |
21 |
544 |
3
|
Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO. Quantifying the impact of human mobility on malaria. Science 2012; 338:267-70. [PMID: 23066082 PMCID: PMC3675794 DOI: 10.1126/science.1223467] [Citation(s) in RCA: 469] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here, we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies importation routes that contribute to malaria epidemiology on regional spatial scales.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
469 |
4
|
Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, Kabaria CW, Manh BH, Elyazar IRF, Brooker S, Smith DL, Moyeed RA, Snow RW. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 2009; 6:e1000048. [PMID: 19323591 PMCID: PMC2659708 DOI: 10.1371/journal.pmed.1000048] [Citation(s) in RCA: 450] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/02/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. METHODS AND FINDINGS A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 < or = 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2-10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2-10 > or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. CONCLUSIONS High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process.
Collapse
|
research-article |
16 |
450 |
5
|
Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI, Snow RW. The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 2008; 5:e38. [PMID: 18303939 PMCID: PMC2253602 DOI: 10.1371/journal.pmed.0050038] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The efficient allocation of financial resources for malaria control using appropriate combinations of interventions requires accurate information on the geographic distribution of malaria risk. An evidence-based description of the global range of Plasmodium falciparum malaria and its endemicity has not been assembled in almost 40 y. This paper aims to define the global geographic distribution of P. falciparum malaria in 2007 and to provide a preliminary description of its transmission intensity within this range. METHODS AND FINDINGS The global spatial distribution of P. falciparum malaria was generated using nationally reported case-incidence data, medical intelligence, and biological rules of transmission exclusion, using temperature and aridity limits informed by the bionomics of dominant Anopheles vector species. A total of 4,278 spatially unique cross-sectional survey estimates of P. falciparum parasite rates were assembled. Extractions from a population surface showed that 2.37 billion people lived in areas at any risk of P. falciparum transmission in 2007. Globally, almost 1 billion people lived under unstable, or extremely low, malaria risk. Almost all P. falciparum parasite rates above 50% were reported in Africa in a latitude band consistent with the distribution of Anopheles gambiae s.s. Conditions of low parasite prevalence were also common in Africa, however. Outside of Africa, P. falciparum malaria prevalence is largely hypoendemic (less than 10%), with the median below 5% in the areas surveyed. CONCLUSIONS This new map is a plausible representation of the current extent of P. falciparum risk and the most contemporary summary of the population at risk of P. falciparum malaria within these limits. For 1 billion people at risk of unstable malaria transmission, elimination is epidemiologically feasible, and large areas of Africa are more amenable to control than appreciated previously. The release of this information in the public domain will help focus future resources for P. falciparum malaria control and elimination.
Collapse
|
Comparative Study |
17 |
283 |
6
|
Linard C, Gilbert M, Snow RW, Noor AM, Tatem AJ. Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One 2012; 7:e31743. [PMID: 22363717 PMCID: PMC3283664 DOI: 10.1371/journal.pone.0031743] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
The spatial distribution of populations and settlements across a country and their interconnectivity and accessibility from urban areas are important for delivering healthcare, distributing resources and economic development. However, existing spatially explicit population data across Africa are generally based on outdated, low resolution input demographic data, and provide insufficient detail to quantify rural settlement patterns and, thus, accurately measure population concentration and accessibility. Here we outline approaches to developing a new high resolution population distribution dataset for Africa and analyse rural accessibility to population centers. Contemporary population count data were combined with detailed satellite-derived settlement extents to map population distributions across Africa at a finer spatial resolution than ever before. Substantial heterogeneity in settlement patterns, population concentration and spatial accessibility to major population centres is exhibited across the continent. In Africa, 90% of the population is concentrated in less than 21% of the land surface and the average per-person travel time to settlements of more than 50,000 inhabitants is around 3.5 hours, with Central and East Africa displaying the longest average travel times. The analyses highlight large inequities in access, the isolation of many rural populations and the challenges that exist between countries and regions in providing access to services. The datasets presented are freely available as part of the AfriPop project, providing an evidence base for guiding strategic decisions.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
246 |
7
|
Noor AM, Amin AA, Akhwale WS, Snow RW. Increasing coverage and decreasing inequity in insecticide-treated bed net use among rural Kenyan children. PLoS Med 2007; 4:e255. [PMID: 17713981 PMCID: PMC1949846 DOI: 10.1371/journal.pmed.0040255] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/11/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inexpensive and efficacious interventions that avert childhood deaths in sub-Saharan Africa have failed to reach effective coverage, especially among the poorest rural sectors. One particular example is insecticide-treated bed nets (ITNs). In this study, we present repeat observations of ITN coverage among rural Kenyan homesteads exposed at different times to a range of delivery models, and assess changes in coverage across socioeconomic groups. METHODS AND FINDINGS We undertook a study of annual changes in ITN coverage among a cohort of 3,700 children aged 0-4 y in four districts of Kenya (Bondo, Greater Kisii, Kwale, and Makueni) annually between 2004 and 2006. Cross-sectional surveys of ITN coverage were undertaken coincidentally with the incremental availability of commercial sector nets (2004), the introduction of heavily subsidized nets through clinics (2005), and the introduction of free mass distributed ITNs (2006). The changing prevalence of ITN coverage was examined with special reference to the degree of equity in each delivery approach. ITN coverage was only 7.1% in 2004 when the predominant source of nets was the commercial retail sector. By the end of 2005, following the expansion of heavily subsidized clinic distribution system, ITN coverage rose to 23.5%. In 2006 a large-scale mass distribution of ITNs was mounted providing nets free of charge to children, resulting in a dramatic increase in ITN coverage to 67.3%. With each subsequent survey socioeconomic inequity in net coverage sequentially decreased: 2004 (most poor [2.9%] versus least poor [15.6%]; concentration index 0.281); 2005 (most poor [17.5%] versus least poor [37.9%]; concentration index 0.131), and 2006 with near-perfect equality (most poor [66.3%] versus least poor [66.6%]; concentration index 0.000). The free mass distribution method achieved highest coverage among the poorest children, the highly subsidised clinic nets programme was marginally in favour of the least poor, and the commercial social marketing favoured the least poor. CONCLUSIONS Rapid scaling up of ITN coverage among Africa's poorest rural children can be achieved through mass distribution campaigns. These efforts must form an important adjunct to regular, routine access to ITNs through clinics, and each complimentary approach should aim to make this intervention free to clients to ensure equitable access among those least able to afford even the cost of a heavily subsidized net.
Collapse
|
Evaluation Study |
18 |
198 |
8
|
Bejon P, Williams TN, Liljander A, Noor AM, Wambua J, Ogada E, Olotu A, Osier FHA, Hay SI, Färnert A, Marsh K. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med 2010; 7:e1000304. [PMID: 20625549 PMCID: PMC2897769 DOI: 10.1371/journal.pmed.1000304] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/27/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Infectious diseases often demonstrate heterogeneity of transmission among host populations. This heterogeneity reduces the efficacy of control strategies, but also implies that focusing control strategies on "hotspots" of transmission could be highly effective. METHODS AND FINDINGS In order to identify hotspots of malaria transmission, we analysed longitudinal data on febrile malaria episodes, asymptomatic parasitaemia, and antibody titres over 12 y from 256 homesteads in three study areas in Kilifi District on the Kenyan coast. We examined heterogeneity by homestead, and identified groups of homesteads that formed hotspots using a spatial scan statistic. Two types of statistically significant hotspots were detected; stable hotspots of asymptomatic parasitaemia and unstable hotspots of febrile malaria. The stable hotspots were associated with higher average AMA-1 antibody titres than the unstable clusters (optical density [OD] = 1.24, 95% confidence interval [CI] 1.02-1.47 versus OD = 1.1, 95% CI 0.88-1.33) and lower mean ages of febrile malaria episodes (5.8 y, 95% CI 5.6-6.0 versus 5.91 y, 95% CI 5.7-6.1). A falling gradient of febrile malaria incidence was identified in the penumbrae of both hotspots. Hotspots were associated with AMA-1 titres, but not seroconversion rates. In order to target control measures, homesteads at risk of febrile malaria could be predicted by identifying the 20% of homesteads that experienced an episode of febrile malaria during one month in the dry season. That 20% subsequently experienced 65% of all febrile malaria episodes during the following year. A definition based on remote sensing data was 81% sensitive and 63% specific for the stable hotspots of asymptomatic malaria. CONCLUSIONS Hotspots of asymptomatic parasitaemia are stable over time, but hotspots of febrile malaria are unstable. This finding may be because immunity offsets the high rate of febrile malaria that might otherwise result in stable hotspots, whereas unstable hotspots necessarily affect a population with less prior exposure to malaria.
Collapse
|
research-article |
15 |
197 |
9
|
Okiro EA, Hay SI, Gikandi PW, Sharif SK, Noor AM, Peshu N, Marsh K, Snow RW. The decline in paediatric malaria admissions on the coast of Kenya. Malar J 2007; 6:151. [PMID: 18005422 PMCID: PMC2194691 DOI: 10.1186/1475-2875-6-151] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/15/2007] [Indexed: 11/15/2022] Open
Abstract
Background There is only limited information on the health impact of expanded coverage of malaria control and preventative strategies in Africa. Methods Paediatric admission data were assembled over 8.25 years from three District Hospitals; Kilifi, Msambweni and Malindi, situated along the Kenyan Coast. Trends in monthly malaria admissions between January 1999 and March 2007 were analysed using several time-series models that adjusted for monthly non-malaria admission rates and the seasonality and trends in rainfall. Results Since January 1999 paediatric malaria admissions have significantly declined at all hospitals. This trend was observed against a background of rising or constant non-malaria admissions and unaffected by long-term rainfall throughout the surveillance period. By March 2007 the estimated proportional decline in malaria cases was 63% in Kilifi, 53% in Kwale and 28% in Malindi. Time-series models strongly suggest that the observed decline in malaria admissions was a result of malaria-specific control efforts in the hospital catchment areas. Conclusion This study provides evidence of a changing disease burden on the Kenyan coast and that the most parsimonious explanation is an expansion in the coverage of interventions such as the use of insecticide-treated nets and the availability of anti-malarial medicines. While specific attribution to intervention coverage cannot be computed what is clear is that this area of Kenya is experiencing a malaria epidemiological transition.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
196 |
10
|
Noor AM, Kinyoki DK, Mundia CW, Kabaria CW, Mutua JW, Alegana VA, Fall IS, Snow RW. The changing risk of Plasmodium falciparum malaria infection in Africa: 2000-10: a spatial and temporal analysis of transmission intensity. Lancet 2014; 383:1739-47. [PMID: 24559537 PMCID: PMC4030588 DOI: 10.1016/s0140-6736(13)62566-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Over a decade ago, the Roll Back Malaria Partnership was launched, and since then there has been unprecedented investment in malaria control. We examined the change in malaria transmission intensity during the period 2000-10 in Africa. METHODS We assembled a geocoded and community Plasmodium falciparum parasite rate standardised to the age group 2-10 years (PfPR2-10) database from across 49 endemic countries and territories in Africa from surveys undertaken since 1980. The data were used within a Bayesian space-time geostatistical framework to predict PfPR2-10 in 2000 and 2010 at a 1 × 1 km spatial resolution. Population distribution maps at the same spatial resolution were used to compute populations at risk by endemicity class and estimate population-adjusted PfPR2-10 (PAPfPR2-10) for each of the 44 countries for which predictions were possible for each year. FINDINGS Between 2000 and 2010, the population in hyperendemic (>50% to 75% PfPR2-10) or holoendemic (>75% PfPR2-10) areas decreased from 218·6 million (34·4%) of 635·7 million to 183·5 million (22·5%) of 815·7 million across 44 malaria-endemic countries. 280·1 million (34·3%) people lived in areas of mesoendemic transmission (>10% to 50% PfPR2-10) in 2010 compared with 178·6 million (28·1%) in 2000. Population in areas of unstable or very low transmission (<5% PfPR2-10) increased from 131·7 million people (20·7%) in 2000 to 219·0 million (26·8%) in 2010. An estimated 217·6 million people, or 26·7% of the 2010 population, lived in areas where transmission had reduced by at least one PfPR2-10 endemicity class. 40 countries showed a reduction in national mean PAPfPR2-10. Only ten countries contributed 87·1% of the population living in areas of hyperendemic or holoendemic transmission in 2010. INTERPRETATION Substantial reductions in malaria transmission have been achieved in endemic countries in Africa over the period 2000-10. However, 57% of the population in 2010 continued to live in areas where transmission remains moderate to intense and global support to sustain and accelerate the reduction of transmission must remain a priority. FUNDING Wellcome Trust.
Collapse
|
research-article |
11 |
186 |
11
|
Fegan GW, Noor AM, Akhwale WS, Cousens S, Snow RW. Effect of expanded insecticide-treated bednet coverage on child survival in rural Kenya: a longitudinal study. Lancet 2007; 370:1035-9. [PMID: 17889242 PMCID: PMC2117339 DOI: 10.1016/s0140-6736(07)61477-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The potential of insecticide-treated bednets (ITNs) to contribute to child survival has been well documented in randomised controlled trials. ITN coverage has increased rapidly in Kenya from 7% in 2004 to 67% in 2006. We aimed to assess the extent to which this investment has led to improvements in child survival. METHODS A dynamic cohort of about 3500 children aged 1-59 months were enumerated three times at yearly intervals in 72 rural clusters located in four districts of Kenya. The effect of ITN use on mortality was assessed with Poisson regression to take account of potential effect-modifying and confounding covariates. FINDINGS 100 children died over 2 years. Overall mortality rates were much the same in the first and second years of the study (14.5 per 1000 person-years in the first year and 15.4 per 1000 person-years in the second). After adjustment for age, time period, and a number of other possible confounding variables, ITN use was associated with a 44% reduction in mortality (mortality rate ratio 0.56, 95% CI 0.33-0.96; p=0.04). This level of protection corresponds to about seven deaths averted for every 1000 ITNs distributed. INTERPRETATION A combined approach of social marketing followed by mass free distribution of ITNs translated into child survival effects that are comparable with those seen in previous randomised controlled trials.
Collapse
|
Multicenter Study |
18 |
168 |
12
|
Abstract
BACKGROUND Insecticide-treated bednets (ITNs) provide a means to improve child survival across Africa. Sales figures of these nets and survey coverage data presented nationally mask inequities in populations at biological and economic risk, and do not allow for precision in the estimation of unmet commodity needs. We gathered subnational ITN coverage sample survey data from 40 malaria-endemic countries in Africa between 2000 and 2007. METHODS We computed the projected ITN coverage among children aged less than 5 years for age-adjusted population data that were stratified according to malaria transmission risks, proximate determinants of poverty, and methods of ITN delivery. FINDINGS In 2000, only 1.7 million (1.8%) African children living in stable malaria-endemic conditions were protected by an ITN and the number increased to 20.3 million (18.5%) by 2007 leaving 89.6 million children unprotected. Of these, 30 million were living in some of the poorest areas of Africa: 54% were living in only seven countries and 25% in Nigeria alone. Overall, 33 (83%) countries were estimated to have ITN coverage of less than 40% in 2007. On average, we noted a greater increase in ITN coverage in areas where free distribution had operated between survey periods. INTERPRETATION By mapping the distribution of populations in relation to malaria risk and intervention coverage, we provide a means to track the future requirements for scaling up essential disease-prevention strategies. The present coverage of ITN in Africa remains inadequate and a focused effort to improve distribution in selected areas would have a substantial effect on the continent's malaria burden.
Collapse
|
research-article |
16 |
161 |
13
|
Noor AM, Zurovac D, Hay SI, Ochola SA, Snow RW. Defining equity in physical access to clinical services using geographical information systems as part of malaria planning and monitoring in Kenya. Trop Med Int Health 2003; 8:917-26. [PMID: 14516303 PMCID: PMC2912492 DOI: 10.1046/j.1365-3156.2003.01112.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Distance is a crucial feature of health service use and yet its application and utility to health care planning have not been well explored, particularly in the light of large-scale international and national efforts such as Roll Back Malaria. We have developed a high-resolution map of population-to-service access in four districts of Kenya. Theoretical physical access, based upon national targets, developed as part of the Kenyan health sector reform agenda, was compared with actual health service usage data among 1668 paediatric patients attending 81 sampled government health facilities. Actual and theoretical use were highly correlated. Patients in the larger districts of Kwale and Makueni, where access to government health facilities was relatively poor, travelled greater mean distances than those in Greater Kisii and Bondo. More than 60% of the patients in the four districts attended health facilities within a 5-km range. Interpolated physical access surfaces across districts highlighted areas of poor access and large differences between urban and rural settings. Users from rural communities travelled greater distances to health facilities than those in urban communities. The implications of planning and monitoring equitable delivery of clinical services at national and international levels are discussed.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
144 |
14
|
Tatem AJ, Noor AM, von Hagen C, Di Gregorio A, Hay SI. High resolution population maps for low income nations: combining land cover and census in East Africa. PLoS One 2007; 2:e1298. [PMID: 18074022 PMCID: PMC2110897 DOI: 10.1371/journal.pone.0001298] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 11/15/2007] [Indexed: 11/29/2022] Open
Abstract
Background Between 2005 and 2050, the human population is forecast to grow by 2.7 billion, with the vast majority of this growth occurring in low income countries. This growth is likely to have significant social, economic and environmental impacts, and make the achievement of international development goals more difficult. The measurement, monitoring and potential mitigation of these impacts require high resolution, contemporary data on human population distributions. In low income countries, however, where the changes will be concentrated, the least information on the distribution of population exists. In this paper we investigate whether satellite imagery in combination with land cover information and census data can be used to create inexpensive, high resolution and easily-updatable settlement and population distribution maps over large areas. Methodology/Principal Findings We examine various approaches for the production of maps of the East African region (Kenya, Uganda, Burundi, Rwanda and Tanzania) and where fine resolution census data exists, test the accuracies of map production approaches and existing population distribution products. The results show that combining high resolution census, settlement and land cover information is important in producing accurate population distribution maps. Conclusions We find that this semi-automated population distribution mapping at unprecedented spatial resolution produces more accurate results than existing products and can be undertaken for as little as $0.01 per km2. The resulting population maps are a product of the Malaria Atlas Project (MAP: http://www.map.ox.ac.uk) and are freely available.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
140 |
15
|
Weiss DJ, Bertozzi-Villa A, Rumisha SF, Amratia P, Arambepola R, Battle KE, Cameron E, Chestnutt E, Gibson HS, Harris J, Keddie S, Millar JJ, Rozier J, Symons TL, Vargas-Ruiz C, Hay SI, Smith DL, Alonso PL, Noor AM, Bhatt S, Gething PW. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis. THE LANCET. INFECTIOUS DISEASES 2021; 21:59-69. [PMID: 32971006 PMCID: PMC7505634 DOI: 10.1016/s1473-3099(20)30700-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Substantial progress has been made in reducing the burden of malaria in Africa since 2000, but those gains could be jeopardised if the COVID-19 pandemic affects the availability of key malaria control interventions. The aim of this study was to evaluate plausible effects on malaria incidence and mortality under different levels of disruption to malaria control. METHODS Using an established set of spatiotemporal Bayesian geostatistical models, we generated geospatial estimates across malaria-endemic African countries of the clinical case incidence and mortality of malaria, incorporating an updated database of parasite rate surveys, insecticide-treated net (ITN) coverage, and effective treatment rates. We established a baseline estimate for the anticipated malaria burden in Africa in the absence of COVID-19-related disruptions, and repeated the analysis for nine hypothetical scenarios in which effective treatment with an antimalarial drug and distribution of ITNs (both through routine channels and mass campaigns) were reduced to varying extents. FINDINGS We estimated 215·2 (95% uncertainty interval 143·7-311·6) million cases and 386·4 (307·8-497·8) thousand deaths across malaria-endemic African countries in 2020 in our baseline scenario of undisrupted intervention coverage. With greater reductions in access to effective antimalarial drug treatment, our model predicted increasing numbers of cases and deaths: 224·1 (148·7-326·8) million cases and 487·9 (385·3-634·6) thousand deaths with a 25% reduction in antimalarial drug coverage; 233·1 (153·7-342·5) million cases and 597·4 (468·0-784·4) thousand deaths with a 50% reduction; and 242·3 (158·7-358·8) million cases and 715·2 (556·4-947·9) thousand deaths with a 75% reduction. Halting planned 2020 ITN mass distribution campaigns and reducing routine ITN distributions by 25%-75% also increased malaria burden to a total of 230·5 (151·6-343·3) million cases and 411·7 (322·8-545·5) thousand deaths with a 25% reduction; 232·8 (152·3-345·9) million cases and 415·5 (324·3-549·4) thousand deaths with a 50% reduction; and 234·0 (152·9-348·4) million cases and 417·6 (325·5-553·1) thousand deaths with a 75% reduction. When ITN coverage and antimalarial drug coverage were synchronously reduced, malaria burden increased to 240·5 (156·5-358·2) million cases and 520·9 (404·1-691·9) thousand deaths with a 25% reduction; 251·0 (162·2-377·0) million cases and 640·2 (492·0-856·7) thousand deaths with a 50% reduction; and 261·6 (167·7-396·8) million cases and 768·6 (586·1-1038·7) thousand deaths with a 75% reduction. INTERPRETATION Under pessimistic scenarios, COVID-19-related disruption to malaria control in Africa could almost double malaria mortality in 2020, and potentially lead to even greater increases in subsequent years. To avoid a reversal of two decades of progress against malaria, averting this public health disaster must remain an integrated priority alongside the response to COVID-19. FUNDING Bill and Melinda Gates Foundation; Channel 7 Telethon Trust, Western Australia.
Collapse
|
research-article |
4 |
135 |
16
|
Osgood-Zimmerman A, Millear AI, Stubbs RW, Shields C, Pickering BV, Earl L, Graetz N, Kinyoki DK, Ray SE, Bhatt S, Browne AJ, Burstein R, Cameron E, Casey DC, Deshpande A, Fullman N, Gething PW, Gibson HS, Henry NJ, Herrero M, Krause LK, Letourneau ID, Levine AJ, Liu PY, Longbottom J, Mayala BK, Mosser JF, Noor AM, Pigott DM, Piwoz EG, Rao P, Rawat R, Reiner RC, Smith DL, Weiss DJ, Wiens KE, Mokdad AH, Lim SS, Murray CJL, Kassebaum NJ, Hay SI. Mapping child growth failure in Africa between 2000 and 2015. Nature 2018; 555:41-47. [PMID: 29493591 PMCID: PMC6346257 DOI: 10.1038/nature25760] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/17/2018] [Indexed: 12/28/2022]
Abstract
Insufficient growth during childhood is associated with poor health outcomes and an increased risk of death. Between 2000 and 2015, nearly all African countries demonstrated improvements for children under 5 years old for stunting, wasting, and underweight, the core components of child growth failure. Here we show that striking subnational heterogeneity in levels and trends of child growth remains. If current rates of progress are sustained, many areas of Africa will meet the World Health Organization Global Targets 2025 to improve maternal, infant and young child nutrition, but high levels of growth failure will persist across the Sahel. At these rates, much, if not all of the continent will fail to meet the Sustainable Development Goal target—to end malnutrition by 2030. Geospatial estimates of child growth failure provide a baseline for measuring progress as well as a precision public health platform to target interventions to those populations with the greatest need, in order to reduce health disparities and accelerate progress. Geospatial estimates of child growth failure in Africa provide a baseline for measuring progress and a precision public health platform to target interventions to those populations with the greatest need.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
133 |
17
|
Rodriguez LL, Maupin GO, Ksiazek TG, Rollin PE, Khan AS, Schwarz TF, Lofts RS, Smith JF, Noor AM, Peters CJ, Nichol ST. Molecular investigation of a multisource outbreak of Crimean-Congo hemorrhagic fever in the United Arab Emirates. Am J Trop Med Hyg 1997; 57:512-8. [PMID: 9392588 DOI: 10.4269/ajtmh.1997.57.512] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During the investigation of an outbreak of Crimean-Congo hemorrhagic fever (CCHF) in the United Arab Emirates (UAE) between 1994 and 1995, blood samples from suspected CCHF cases and ticks collected from livestock were tested for CCHF virus by antigen-capture ELISA and by a reverse transcription-polymerase chain reaction. Phylogenetic analysis of partial small (S) segment nucleotide sequences from four ticks and five human samples showed that with one exception, all the human and tick viruses clustered along with samples from Pakistan and Madagascar in one distinct lineage. Within this lineage, sequences from the UAE patients were identical or closely related to those from three Hyalomma spp. ticks obtained from livestock recently imported from Somalia. Another sequence from a UAE patient was more closely related to a CCHF virus from Nigeria. These data indicate that the 1994-1995 CCHF epidemic in the UAE was a multisource outbreak possibly associated with importation of CCHF virus-infected livestock and ticks.
Collapse
|
|
28 |
124 |
18
|
Noor AM, Amin AA, Gething PW, Atkinson PM, Hay SI, Snow RW. Modelling distances travelled to government health services in Kenya. Trop Med Int Health 2006; 11:188-96. [PMID: 16451343 PMCID: PMC2912494 DOI: 10.1111/j.1365-3156.2005.01555.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To systematically evaluate descriptive measures of spatial access to medical treatment, as part of the millennium development goals to reduce the burden of HIV/AIDS, tuberculosis and malaria. METHODS We obtained high-resolution spatial and epidemiological data on health services, population, transport network, topography, land cover and paediatric fever treatment in four Kenyan districts to develop access and use models for government health services in Kenya. Community survey data were used to model use of government health services by febrile children. A model based on the transport network was then implemented and adjusted for actual use patterns. We compared the predictive accuracy of this refined model to that of Euclidean distance metrics. RESULTS Higher-order facilities were more attractive to patients (54%, 58% and 60% in three scenarios) than lower-order ones. The transport network model, adjusted for competition between facilities, was most accurate and selected as the best-fit model. It estimated that 63% of the population of the study districts were within the 1 h national access benchmark, against 82% estimated by the Euclidean model. CONCLUSIONS Extrapolating the results from the best-fit model in study districts to the national level shows that approximately six million people are currently incorrectly estimated to have access to government health services within 1 h. Simple Euclidean distance assumptions, which underpin needs assessments and against which millennium development goals are evaluated, thus require reconsideration.
Collapse
|
research-article |
19 |
117 |
19
|
Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, Juma E, Snow RW. The risks of malaria infection in Kenya in 2009. BMC Infect Dis 2009; 9:180. [PMID: 19930552 PMCID: PMC2783030 DOI: 10.1186/1471-2334-9-180] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background To design an effective strategy for the control of malaria requires a map of infection and disease risks to select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present a new map of malaria risk for Kenya in 2009. Methods Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size, positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10 years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological and climate covariates were matched to each PfPR2-10 survey location and examined separately and in combination for relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework to predict continuous and categorical maps of mean PfPR2-10 at a 1 × 1 km resolution across Kenya for the year 2009. Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior uncertainty were mapped. Results A total of 2,682 estimates of PfPR2-10 from surveys undertaken at 2,095 sites between 1975 and 2009 were selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-10; and linear correlation between observed and predicted PfPR2-10 of 0.81. The majority of Kenya's 2009 population (35.2 million, 86.3%) reside in areas where predicted PfPR2-10 is less than 5%; conversely in 2009 only 4.3 million people (10.6%) lived in areas where PfPR2-10 was predicted to be ≥40% and were largely located around the shores of Lake Victoria. Conclusion Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in time and space to remodel risks and redefine intervention priorities over the next 10-15 years.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
113 |
20
|
Wesolowski A, Eagle N, Noor AM, Snow RW, Buckee CO. Heterogeneous mobile phone ownership and usage patterns in Kenya. PLoS One 2012; 7:e35319. [PMID: 22558140 PMCID: PMC3338828 DOI: 10.1371/journal.pone.0035319] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/15/2012] [Indexed: 11/30/2022] Open
Abstract
The rapid adoption of mobile phone technologies in Africa is offering exciting opportunities for engaging with high-risk populations through mHealth programs, and the vast volumes of behavioral data being generated as people use their phones provide valuable data about human behavioral dynamics in these regions. Taking advantage of these opportunities requires an understanding of the penetration of mobile phones and phone usage patterns across the continent, but very little is known about the social and geographical heterogeneities in mobile phone ownership among African populations. Here, we analyze a survey of mobile phone ownership and usage across Kenya in 2009 and show that distinct regional, gender-related, and socioeconomic variations exist, with particularly low ownership among rural communities and poor people. We also examine patterns of phone sharing and highlight the contrasting relationships between ownership and sharing in different parts of the country. This heterogeneous penetration of mobile phones has important implications for the use of mobile technologies as a source of population data and as a public health tool in sub-Saharan Africa.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
107 |
21
|
Pindolia DK, Garcia AJ, Wesolowski A, Smith DL, Buckee CO, Noor AM, Snow RW, Tatem AJ. Human movement data for malaria control and elimination strategic planning. Malar J 2012; 11:205. [PMID: 22703541 PMCID: PMC3464668 DOI: 10.1186/1475-2875-11-205] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/15/2012] [Indexed: 11/29/2022] Open
Abstract
Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.
Collapse
|
Review |
13 |
106 |
22
|
Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J 2007; 6:17. [PMID: 17306022 PMCID: PMC1805762 DOI: 10.1186/1475-2875-6-17] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/16/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Open access to databases of information generated by the research community can synergize individual efforts and are epitomized by the genome mapping projects. Open source models for outputs of scientific research funded by tax-payers and charities are becoming the norm. This has yet to be extended to malaria epidemiology and control. METHODS The exhaustive searches and assembly process for a global database of malaria parasite prevalence as part of the Malaria Atlas Project (MAP) are described. The different data sources visited and how productive these were in terms of availability of parasite rate (PR) data are presented, followed by a description of the methods used to assemble a relational database and an associated geographic information system. The challenges facing spatial data assembly from varied sources are described in an effort to help inform similar future applications. RESULTS At the time of writing, the MAP database held 3,351 spatially independent PR estimates from community surveys conducted since 1985. These include 3,036 Plasmodium falciparum and 1,347 Plasmodium vivax estimates in 74 countries derived from 671 primary sources. More than half of these data represent malaria prevalence after the year 2000. CONCLUSION This database will help refine maps of the global spatial limits of malaria and be the foundation for the development of global malaria endemicity models as part of MAP. A widespread application of these maps is envisaged. The data compiled and the products generated by MAP are planned to be released in June 2009 to facilitate a more informed approach to global malaria control.
Collapse
|
Review |
18 |
105 |
23
|
Bousema T, Youssef RM, Cook J, Cox J, Alegana VA, Amran J, Noor AM, Snow RW, Drakeley C. Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008. Emerg Infect Dis 2010; 16:392-9. [PMID: 20202412 PMCID: PMC3322012 DOI: 10.3201/eid1603.090732] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
101 |
24
|
Maina J, Ouma PO, Macharia PM, Alegana VA, Mitto B, Fall IS, Noor AM, Snow RW, Okiro EA. A spatial database of health facilities managed by the public health sector in sub Saharan Africa. Sci Data 2019; 6:134. [PMID: 31346183 PMCID: PMC6658526 DOI: 10.1038/s41597-019-0142-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Health facilities form a central component of health systems, providing curative and preventative services and structured to allow referral through a pyramid of increasingly complex service provision. Access to health care is a complex and multidimensional concept, however, in its most narrow sense, it refers to geographic availability. Linking health facilities to populations has been a traditional per capita index of heath care coverage, however, with locations of health facilities and higher resolution population data, Geographic Information Systems allow for a more refined metric of health access, define geographic inequalities in service provision and inform planning. Maximizing the value of spatial heath access requires a complete census of providers and their locations. To-date there has not been a single, geo-referenced and comprehensive public health facility database for sub-Saharan Africa. We have assembled national master health facility lists from a variety of government and non-government sources from 50 countries and islands in sub Saharan Africa and used multiple geocoding methods to provide a comprehensive spatial inventory of 98,745 public health facilities.
Collapse
|
Dataset |
6 |
101 |
25
|
Khan AS, Maupin GO, Rollin PE, Noor AM, Shurie HH, Shalabi AG, Wasef S, Haddad YM, Sadek R, Ijaz K, Peters CJ, Ksiazek TG. An outbreak of Crimean-Congo hemorrhagic fever in the United Arab Emirates, 1994-1995. Am J Trop Med Hyg 1997; 57:519-25. [PMID: 9392589 DOI: 10.4269/ajtmh.1997.57.519] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A multi-faceted investigation was conducted in the United Arab Emirates to characterize the epidemiologic and ecologic factors underlying an outbreak of Crimean-Congo hemorrhagic fever (CCHF) noted in November 1994 among abattoir workers. A chart review was conducted among hospitalized suspected cases of viral hemorrhagic fever with onset between January 1994 and March 1995 coupled with serologic testing of available specimens for the presence of virus antigen and IgG and IgM antibodies by ELISA. Livestock handlers and animal skin processors were interviewed and tested for the presence of IgG antibody. Sera from imported and domestic ruminants were examined for antibody for CCHF virus, and ticks collected from these animals were tested with an antigen-capture ELISA. Thirty-five suspected cases of CCHF were identified (case fatality = 62%). Livestock market employees, abattoir workers, and animal skin processors accounted for 16 (57%) of 28 cases with known occupational status. Serologic evidence of past asymptomatic infection was noted in 12 (4%) of 291 livestock and abattoir workers but in none of the controls. Nineteen (7%) of 268 animals were positive for CCHF virus antibodies by ELISA including 12 ruminants from Somalia and Iran and five indigenous camels. One Hyalomma impeltatum and two H. excavatum from Somali cattle and one H. anatolicum from a Somali goat were positive for CCHF virus antigen.
Collapse
|
|
28 |
99 |