1
|
Lesch S, Blumenberg V, Stoiber S, Gottschlich A, Ogonek J, Cadilha BL, Dantes Z, Rataj F, Dorman K, Lutz J, Karches CH, Heise C, Kurzay M, Larimer BM, Grassmann S, Rapp M, Nottebrock A, Kruger S, Tokarew N, Metzger P, Hoerth C, Benmebarek MR, Dhoqina D, Grünmeier R, Seifert M, Oener A, Umut Ö, Joaquina S, Vimeux L, Tran T, Hank T, Baba T, Huynh D, Megens RTA, Janssen KP, Jastroch M, Lamp D, Ruehland S, Di Pilato M, Pruessmann JN, Thomas M, Marr C, Ormanns S, Reischer A, Hristov M, Tartour E, Donnadieu E, Rothenfusser S, Duewell P, König LM, Schnurr M, Subklewe M, Liss AS, Halama N, Reichert M, Mempel TR, Endres S, Kobold S. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat Biomed Eng 2021; 5:1246-1260. [PMID: 34083764 PMCID: PMC7611996 DOI: 10.1038/s41551-021-00737-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.
Collapse
|
research-article |
4 |
114 |
2
|
Voigt C, May P, Gottschlich A, Markota A, Wenk D, Gerlach I, Voigt S, Stathopoulos GT, Arendt KAM, Heise C, Rataj F, Janssen KP, Königshoff M, Winter H, Himsl I, Thasler WE, Schnurr M, Rothenfußer S, Endres S, Kobold S. Cancer cells induce interleukin-22 production from memory CD4 + T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci U S A 2017; 114:12994-12999. [PMID: 29150554 PMCID: PMC5724250 DOI: 10.1073/pnas.1705165114] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IL-22 has been identified as a cancer-promoting cytokine that is secreted by infiltrating immune cells in several cancer models. We hypothesized that IL-22 regulation would occur at the interface between cancer cells and immune cells. Breast and lung cancer cells of murine and human origin induced IL-22 production from memory CD4+ T cells. In the present study, we found that IL-22 production in humans is dependent on activation of the NLRP3 inflammasome with the subsequent release of IL-1β from both myeloid and T cells. IL-1 receptor signaling via the transcription factors AhR and RORγt in T cells was necessary and sufficient for IL-22 production. In these settings, IL-1 induced IL-22 production from a mixed T helper cell population comprised of Th1, Th17, and Th22 cells, which was abrogated by the addition of anakinra. We confirmed these findings in vitro and in vivo in two murine tumor models, in primary human breast and lung cancer cells, and in deposited expression data. Relevant to ongoing clinical trials in breast cancer, we demonstrate here that the IL-1 receptor antagonist anakinra abrogates IL-22 production and reduces tumor growth in a murine breast cancer model. Thus, we describe here a previously unrecognized mechanism by which cancer cells induce IL-22 production from memory CD4+ T cells via activation of the NLRP3 inflammasome and the release of IL-1β to promote tumor growth. These findings may provide the basis for therapeutic interventions that affect IL-22 production by targeting IL-1 activity.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- CD4-Positive T-Lymphocytes/metabolism
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation
- Culture Media, Conditioned
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Inflammasomes/metabolism
- Interleukin-1beta/physiology
- Interleukins/biosynthesis
- Interleukins/metabolism
- Leukocytes, Mononuclear/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neoplasm Transplantation
- Signal Transduction
- Tumor Burden
- Interleukin-22
Collapse
|
research-article |
8 |
110 |
3
|
Cadilha BL, Benmebarek MR, Dorman K, Oner A, Lorenzini T, Obeck H, Vänttinen M, Di Pilato M, Pruessmann JN, Stoiber S, Huynh D, Märkl F, Seifert M, Manske K, Suarez-Gosalvez J, Zeng Y, Lesch S, Karches CH, Heise C, Gottschlich A, Thomas M, Marr C, Zhang J, Pandey D, Feuchtinger T, Subklewe M, Mempel TR, Endres S, Kobold S. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. SCIENCE ADVANCES 2021; 7:eabi5781. [PMID: 34108220 PMCID: PMC8189699 DOI: 10.1126/sciadv.abi5781] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 05/11/2023]
Abstract
CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-β (TGF-β). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-β receptor 2 (DNR) can simultaneously shield them from TGF-β. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-β shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
66 |
4
|
Gottschlich A, Thomas M, Grünmeier R, Lesch S, Rohrbacher L, Igl V, Briukhovetska D, Benmebarek MR, Vick B, Dede S, Müller K, Xu T, Dhoqina D, Märkl F, Robinson S, Sendelhofert A, Schulz H, Umut Ö, Kavaka V, Tsiverioti CA, Carlini E, Nandi S, Strzalkowski T, Lorenzini T, Stock S, Müller PJ, Dörr J, Seifert M, Cadilha BL, Brabenec R, Röder N, Rataj F, Nüesch M, Modemann F, Wellbrock J, Fiedler W, Kellner C, Beltrán E, Herold T, Paquet D, Jeremias I, von Baumgarten L, Endres S, Subklewe M, Marr C, Kobold S. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat Biotechnol 2023; 41:1618-1632. [PMID: 36914885 PMCID: PMC7615296 DOI: 10.1038/s41587-023-01684-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.
Collapse
|
|
2 |
48 |
5
|
Demel UM, Böger M, Yousefian S, Grunert C, Zhang L, Hotz PW, Gottschlich A, Köse H, Isaakidis K, Vonficht D, Grünschläger F, Rohleder E, Wagner K, Dönig J, Igl V, Brzezicha B, Baumgartner F, Habringer S, Löber J, Chapuy B, Weidinger C, Kobold S, Haas S, Busse AB, Müller S, Wirth M, Schick M, Keller U. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J Clin Invest 2022; 132:152383. [PMID: 35499080 PMCID: PMC9057585 DOI: 10.1172/jci152383] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell–mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell–mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies.
Collapse
|
|
3 |
48 |
6
|
Wagenbauer KF, Pham N, Gottschlich A, Kick B, Kozina V, Frank C, Trninic D, Stömmer P, Grünmeier R, Carlini E, Tsiverioti CA, Kobold S, Funke JJ, Dietz H. Programmable multispecific DNA-origami-based T-cell engagers. NATURE NANOTECHNOLOGY 2023; 18:1319-1326. [PMID: 37591933 PMCID: PMC10656288 DOI: 10.1038/s41565-023-01471-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 08/19/2023]
Abstract
Multispecific antibodies have emerged as versatile therapeutic agents, and therefore, approaches to optimize and streamline their design and assembly are needed. Here we report on the modular and programmable assembly of IgG antibodies, F(ab) and scFv fragments on DNA origami nanocarriers. We screened 105 distinct quadruplet antibody variants in vitro for the ability to activate T cells in the presence of target cells. T-cell engagers were identified, which in vitro showed the specific and efficient T-cell-mediated lysis of five distinct target cell lines. We used these T-cell engagers to target and lyse tumour cells in vivo in a xenograft mouse tumour model. Our approach enables the rapid generation, screening and testing of bi- and multispecific antibodies to facilitate preclinical pharmaceutical development from in vitro discovery to in vivo proof of concept.
Collapse
Grants
- This work was supported by a European Research Council Consolidator Grant to H.D. (grant agreement 724261), the Deutsche Forschungsgemeinschaft through grants provided within the Gottfried Wilhelm Leibniz Program (to H.D.), the Medical Valley Award, the M4 Award, a GO-Bio initial award (Federal Ministry of Education and Research (BMBF) of Germany), and a Funding by the ForTra gGmbH für Forschungstransfer der Else Kröner-Fresenius Stiftung all to KFW, JJF, BK and HD. The work has received support from the Max Planck School Matter to Life (to H.D.) jointly financed by the Federal Ministry of Education and Research (BMBF) of Germany and the Max Planck Society
- This study was further supported by the international doctoral program the Förderprogramm für Forschung und Lehre der Medizinischen Fakultät der LMU (A.G, grant number 1139), the Deutsche Forschungsgemeinschaft (A.G. – grant number: GO 3823/1-1); S.K. - grant number: KO 5055/3-1), ‘i-Target: immunotargeting of cancer’ (funded by the Elite Network of Bavaria; to S.K.), Melanoma Research Alliance (grant number 409510 to S.K.), Marie Sklodowska-Curie Training Network for Optimizing Adoptive T Cell Therapy of Cancer (funded by the Horizon 2020 programme of the European Union; grant 955575 to S.K.), Else Kröner-Fresenius-Stiftung (to S.K.), German Cancer Aid (AvantCAR.de to S. Kobold), Ernst Jung Stiftung (to S.K.), the Wilhelm-Sander Stiftung (to S. Kobold), Institutional Strategy LMUexcellent of LMU Munich (within the framework of the German Excellence Initiative; to S.K.), Bundesministerium für Bildung und Forschung (S.K.), European Research Council (Starting Grant 756017 and Proof of Concept Grant 101100460 to S. Kobold), Deutsche Forschungsgemeinschaft (DFG; KO5055-2-1 and 510821390 to S.K.), by the SFB-TRR 338/1 2021–452881907 (to S.K.), Fritz-Bender Foundation (to S.K.), Deutsche José Carreras Leukämie Stiftung (to S.K.) and Hector Foundation (to S.K.).
Collapse
|
research-article |
2 |
44 |
7
|
Briukhovetska D, Suarez-Gosalvez J, Voigt C, Markota A, Giannou AD, Schübel M, Jobst J, Zhang T, Dörr J, Märkl F, Majed L, Müller PJ, May P, Gottschlich A, Tokarew N, Lücke J, Oner A, Schwerdtfeger M, Andreu-Sanz D, Grünmeier R, Seifert M, Michaelides S, Hristov M, König LM, Cadilha BL, Mikhaylov O, Anders HJ, Rothenfusser S, Flavell RA, Cerezo-Wallis D, Tejedo C, Soengas MS, Bald T, Huber S, Endres S, Kobold S. T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity 2023; 56:143-161.e11. [PMID: 36630913 PMCID: PMC9839367 DOI: 10.1016/j.immuni.2022.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.
Collapse
|
research-article |
2 |
41 |
8
|
Gottschlich A, Endres S, Kobold S. Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers (Basel) 2021; 13:477. [PMID: 33530653 PMCID: PMC7865618 DOI: 10.3390/cancers13030477] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Since its discovery, interleukin-1 has been extensively studied in a wide range of medical fields. Besides carrying out vital physiological functions, it has been implicated with a pivotal role in the progression and spreading of different cancer entities. During the last years, several clinical trials have been conducted, shedding light on the role of IL-1 blocking agents for the treatment of cancer. Additionally, recent developments in the field of immuno-oncology have implicated IL-1-induced signaling cascades as a major driver of severe chimeric antigen receptor T cell-associated toxicities such as cytokine release syndrome and immune effector cell-associated neurotoxicity. In this review, we summarize current clinical trials investigating the role of IL-1 blockade in cancer treatment and elaborate the proposed mechanism of these innovative treatment approaches. Additionally, we highlight cutting-edge developments utilizing IL-1 blocking agents to enhance the safety and efficacy of adoptive T cell therapy.
Collapse
|
Review |
4 |
39 |
9
|
Eisenmesser EZ, Gottschlich A, Redzic JS, Paukovich N, Nix JC, Azam T, Zhang L, Zhao R, Kieft JS, The E, Meng X, Dinarello CA. Interleukin-37 monomer is the active form for reducing innate immunity. Proc Natl Acad Sci U S A 2019; 116:5514-5522. [PMID: 30819901 PMCID: PMC6431183 DOI: 10.1073/pnas.1819672116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Interleukin-37 (IL-37), a member of the IL-1 family of cytokines, is a fundamental suppressor of innate and acquired immunities. Here, we used an integrative approach that combines biophysical, biochemical, and biological studies to elucidate the unique characteristics of IL-37. Our studies reveal that single amino acid mutations at the IL-37 dimer interface that result in the stable formation of IL-37 monomers also remain monomeric at high micromolar concentrations and that these monomeric IL-37 forms comprise higher antiinflammatory activities than native IL-37 on multiple cell types. We find that, because native IL-37 forms dimers with nanomolar affinity, higher IL-37 only weakly suppresses downstream markers of inflammation whereas lower concentrations are more effective. We further show that IL-37 is a heparin binding protein that modulates this self-association and that the IL-37 dimers must block the activity of the IL-37 monomer. Specifically, native IL-37 at 2.5 nM reduces lipopolysaccharide (LPS)-induced vascular cell adhesion molecule (VCAM) protein levels by ∼50%, whereas the monomeric D73K mutant reduced VCAM by 90% at the same concentration. Compared with other members of the IL-1 family, both the N and the C termini of IL-37 are extended, and we show they are disordered in the context of the free protein. Furthermore, the presence of, at least, one of these extended termini is required for IL-37 suppressive activity. Based on these structural and biological studies, we present a model of IL-37 interactions that accounts for its mechanism in suppressing innate inflammation.
Collapse
|
research-article |
6 |
38 |
10
|
Benmebarek MR, Cadilha BL, Herrmann M, Lesch S, Schmitt S, Stoiber S, Darwich A, Augsberger C, Brauchle B, Rohrbacher L, Oner A, Seifert M, Schwerdtfeger M, Gottschlich A, Rataj F, Fenn NC, Klein C, Subklewe M, Endres S, Hopfner KP, Kobold S. A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia 2021; 35:2243-2257. [PMID: 33414484 PMCID: PMC7789085 DOI: 10.1038/s41375-020-01109-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.
Collapse
|
research-article |
4 |
21 |
11
|
Helferich B, Doppstadt A, Gottschlich A. Synthesen von Glykosiden im homogenen Medium. Naturwissenschaften 1953. [DOI: 10.1007/bf00590360] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
72 |
18 |
12
|
Gottschlich A, Endres S, Kobold S. Can we use interleukin-1β blockade for lung cancer treatment? Transl Lung Cancer Res 2018; 7:S160-S164. [PMID: 29780710 DOI: 10.21037/tlcr.2018.03.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
Comment |
7 |
17 |
13
|
Umut Ö, Gottschlich A, Endres S, Kobold S. CAR T cell therapy in solid tumors: a short review. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2021; 14:143-149. [PMID: 34777609 PMCID: PMC8550638 DOI: 10.1007/s12254-021-00703-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/06/2021] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been established in the treatment of hematological malignancies. However, in solid tumors its efficacy remains limited. The aim of this article is to give an overview of the field of cell therapy itself, to introduce the underlying concepts of CAR T cell-based treatment approaches and to address its limitations in advancing the treatment for solid malignancies.
Collapse
|
Review |
4 |
8 |
14
|
Husse S, Gottschlich A, Schrey S, Stepan H, Hoffmann J. [Predictive value of the sFlt1/PlGF ratio for the diagnosis of preeclampsia in high-risk patients]. Z Geburtshilfe Neonatol 2014; 218:34-41. [PMID: 24595913 DOI: 10.1055/s-0034-1368713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND A dysbalance of proangiogenic [placental growth factor (PlGF)] and antiangiogenic [soluble fms-like tyrosine kinase 1 (sFlt-1)] proteins is known to cause the symptoms of preeclampsia (PE), HELLP syndrome (hemolysis, elevated liver enzymes, low platelets) or intrauterine growth restriction (IUGR). An increased sFlt-1/PlGF ratio ≥85 is considered a reliable diagnostic marker. Altered sFlt1 and PlGF concentrations can be detected several weeks prior to the onset of clinical symptoms. In this study we analysed the role of the sFlt1/PlGF ratio as a predictive marker for preeclampsia in a high-risk patient group. PATIENTS AND MATERIALS We prospectively included 68 singleton pregnancies with at least one risk factor for PE, HELLP syndrome or IUGR. During the study the patients were divided into one group with symptoms (patient group) and one group without symptoms (control group) for the above-mentioned diseases. The sFlt1/PlGF ratios were measured on admission and during the course of pregnancy. RESULTS During pregnancy 41% of patients developed PE, HELLP syndrome or IUGR. An increase of the absolute value of the sFlt1/PlGF ratio ≥85 was only observed in the patient group and was found to be a predictive factor for PE, HELLP syndrome or IUGR at 25+0 to 31+0 weeks of gestation (p=0.005) and after 35+0 weeks of gestation (p=0.044). Alterations of the sFlt1/PlGF ratio were observed in all patients but were higher in the patient group from 7-10 weeks prior to delivery and with the highest peak 0-2 weeks prior to delivery. Compared to the control group (mean±SD 66.9±134) absolute values of sFlt1/PlGF ratio were significantly (p=0.021) increased 0-2 weeks prior to delivery in the patient group (mean±SD 393.3±147.4). An increase of the sFlt1/PlGF ratio ≥85 0-2 weeks before delivery has shown to be predictive for one of the mentioned diseases (p=0.025). CONCLUSIONS In high-risk patients the sFlt1/PlGF ratio can be used for an individual risk assessment with regard to PE, HELLP syndrome or IUGR. Serial measurements permit a risk-adapted prenatal care of these patients.
Collapse
|
Journal Article |
11 |
6 |
15
|
Märkl F, Benmebarek MR, Keyl J, Cadilha BL, Geiger M, Karches C, Obeck H, Schwerdtfeger M, Michaelides S, Briukhovetska D, Stock S, Jobst J, Müller PJ, Majed L, Seifert M, Klüver AK, Lorenzini T, Grünmeier R, Thomas M, Gottschlich A, Klaus R, Marr C, von Bergwelt-Baildon M, Rothenfusser S, Levesque MP, Heppt MV, Endres S, Klein C, Kobold S. Bispecific antibodies redirect synthetic agonistic receptor modified T cells against melanoma. J Immunother Cancer 2023; 11:jitc-2022-006436. [PMID: 37208128 DOI: 10.1136/jitc-2022-006436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Melanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens. METHODS Human as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo. RESULTS MCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model. CONCLUSION The SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.
Collapse
|
|
2 |
5 |
16
|
Kolorz J, Demir S, Gottschlich A, Beirith I, Ilmer M, Lüthy D, Walz C, Dorostkar MM, Magg T, Hauck F, von Schweinitz D, Kobold S, Kappler R, Berger M. The Neurokinin-1 Receptor Is a Target in Pediatric Rhabdoid Tumors. Curr Oncol 2021; 29:94-110. [PMID: 35049682 PMCID: PMC8775224 DOI: 10.3390/curroncol29010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/25/2022] Open
Abstract
Rhabdoid tumors (RT) are among the most aggressive tumors in early childhood. Overall survival remains poor, and treatment only effectively occurs at the cost of high toxicity and late adverse effects. It has been reported that the neurokinin-1 receptor/ substance P complex plays an important role in cancer and proved to be a promising target. However, its role in RT has not yet been described. This study aims to determine whether the neurokinin-1 receptor is expressed in RT and whether neurokinin-1 receptor (NK1R) antagonists can serve as a novel therapeutic approach in treating RTs. By in silico analysis using the cBio Cancer Genomics Portal we found that RTs highly express neurokinin-1 receptor. We confirmed these results by RT-PCR in both tumor cell lines and in human tissue samples of various affected organs. We demonstrated a growth inhibitory and apoptotic effect of aprepitant in viability assays and flow cytometry. Furthermore, this effect proved to remain when used in combination with the cytostatic cisplatin. Western blot analysis showed an upregulation of apoptotic signaling pathways in rhabdoid tumors when treated with aprepitant. Overall, our findings suggest that NK1R may be a promising target for the treatment of RT in combination with other anti-cancer therapies and can be targeted with the NK1R antagonist aprepitant.
Collapse
|
|
4 |
3 |
17
|
Schubert RA, Schleussner E, Hoffmann J, Fiedler A, Stepan H, Gottschlich A. [Prevention of preterm birth by Shirodkar cerclage--clinical results of a retrospective analysis]. Z Geburtshilfe Neonatol 2014; 218:165-70. [PMID: 25127350 DOI: 10.1055/s-0034-1382070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In spite of the continuous progress in prenatal care, 1 out of 10 babies is born too early--tendency rising worldwide. As a consequence of the heterogeneous aetiology of preterm birth, there is still no single and efficient interventional therapy. Cerclage is one option for pregnancies with cervical insufficiency, whereas the clinical benefit is discussed controversially. We analyzed in a retrospective study with 120 patients the effect of a cerclage intervention regarding pregnancy prolongation. Patients with cervical incompetence and Shirodkar cerclage were compared to those undergoing conservative treatment. As expected, gestational age at delivery was significantly lower after emergency cerclage (31 weeks) compared to prophylactic (36 weeks) and therapeutic cerclage (35 weeks). Prolongation differs significantly between the prophylactic (18 weeks), therapeutic (14 weeks) and emergency cerclage (10 weeks) groups. Conservative management achieved 8 weeks prolongation. Of note, particularly emergency cerclage in cases with advanced cervical incompetence resulted in a substantially higher pregnancy prolongation (10 weeks) compared to no intervention (one week). The efficiency of cerclage operations has to be assessed in a differentiated manner based on the clinical situation and indication. The clinical benefit depends strongly on proper patient selection.
Collapse
|
Comparative Study |
11 |
0 |
18
|
Gottschlich A, Hoffmann J, Kern J, Stepan H. Präeklampsie vs. chronische Nierenerkrankung – Differentialdiagnose mittels sFlt-1/PlGF-Ratio. Z Geburtshilfe Neonatol 2013. [DOI: 10.1055/s-0033-1361382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
|
12 |
|
19
|
Xhaxho S, Chen-Wichmann L, Kreissig S, Windisch R, Gottschlich A, Nandi S, Schabernack S, Kohler I, Kellner C, Kobold S, Humpe A, Wichmann C. Efficient Chimeric Antigen Receptor T-Cell Generation Starting with Leukoreduction System Chambers of Thrombocyte Apheresis Sets. Transfus Med Hemother 2024; 51:111-118. [PMID: 38584695 PMCID: PMC10996058 DOI: 10.1159/000532130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/17/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction Primary human blood cells represent an essential model system to study physiology and disease. However, human blood is a limited resource. During healthy donor plateletpheresis, the leukoreduction system chamber (LRSC) reduces the leukocyte amount within the subsequent platelet concentrate through saturated, fluidized, particle bed filtration technology. Normally, the LRSC is discarded after apheresis is completed. Compared to peripheral blood, LRSC yields 10-fold mononuclear cell concentration. Methods To explore if those retained leukocytes are attractive for research purposes, we isolated CD3+ T cells from the usually discarded LRSCs via density gradient centrifugation in order to manufacture CD19-targeted chimeric antigen receptor (CAR) T cells. Results Immunophenotypic characterization revealed viable and normal CD4+ and CD8+ T-cell populations within LRSC, with low CD19+ B cell counts. Magnetic-activated cell sorting (MACS) purified CD3+ T cells were transduced with CD19 CAR-encoding lentiviral self-inactivating vectors using concentrated viral supernatants. Robust CD19 CAR cell surface expression on transduced T cells was confirmed by flow cytometry. CD19 CAR T cells were further enriched through anti-CAR MACS, yielding 80% CAR+ T-cell populations. In vitro CAR T cell expansion to clinically relevant numbers was achieved. To prove functionality, CAR T cells were co-incubated with the human CD19+ B cell precursor leukemia cell line Nalm6. Compared to unmodified T cells, CD19 CAR T cells effectively eradicated Nalm6 cells. Conclusion Taken together, we can show that lymphocytes isolated from LRSCs of plateletpheresis sets can be efficiently used for the generation of functional CAR T cells for experimental purposes.
Collapse
|
research-article |
1 |
|
20
|
Schaarschmidt W, Jank A, Gottschlich A, Thadhani R, Stepan H. Maternale und fetale Effekte einer extrakorporalen sFlt-1-Apherese bei Präeklampsie. Geburtshilfe Frauenheilkd 2013. [DOI: 10.1055/s-0033-1343561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
|
12 |
|
21
|
Gottschlich A, Kern J, Stepan H. Differentialdiagnose Präeklampsie vs. chronische Nierenerkrankung mittels sFlt-1/PlGF-Ratio am Beispiel zweier klinischer Fälle. Geburtshilfe Frauenheilkd 2013. [DOI: 10.1055/s-0033-1347748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
|
12 |
|
22
|
Tsiverioti CA, Gottschlich A, Trefny M, Theurich S, Anders HJ, Kroiss M, Kobold S. Beyond CAR T cells: exploring alternative cell sources for CAR-like cellular therapies. Biol Chem 2024; 405:485-515. [PMID: 38766710 DOI: 10.1515/hsz-2023-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has led to remarkable clinical outcomes in the treatment of hematological malignancies. However, challenges remain, such as limited infiltration into solid tumors, inadequate persistence, systemic toxicities, and manufacturing insufficiencies. The use of alternative cell sources for CAR-based therapies, such as natural killer cells (NK), macrophages (MΦ), invariant Natural Killer T (iNKT) cells, γδT cells, neutrophils, and induced pluripotent stem cells (iPSC), has emerged as a promising avenue. By harnessing these cells' inherent cytotoxic mechanisms and incorporating CAR technology, common CAR-T cell-related limitations can be effectively mitigated. We herein present an overview of the tumoricidal mechanisms, CAR designs, and manufacturing processes of CAR-NK cells, CAR-MΦ, CAR-iNKT cells, CAR-γδT cells, CAR-neutrophils, and iPSC-derived CAR-cells, outlining the advantages, limitations, and potential solutions of these therapeutic strategies.
Collapse
|
Review |
1 |
|
23
|
Nordmeyer A, Gottschlich A, Rasche M, Stepan H. Case Report: Renale Dysfunktion als dominantes Symptom einer akuten Schwangerschaftsfettleber. Z Geburtshilfe Neonatol 2009. [DOI: 10.1055/s-0029-1222966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
16 |
|
24
|
Thomas M, Brabenec R, Gregor L, Andreu-Sanz D, Carlini E, Müller PJ, Gottschlich A, Simnica D, Kobold S, Marr C. The role of single cell transcriptomics for efficacy and toxicity profiling of chimeric antigen receptor (CAR) T cell therapies. Comput Biol Med 2025; 192:110332. [PMID: 40375426 DOI: 10.1016/j.compbiomed.2025.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
CAR T cells are genetically modified T cells that target specific epitopes. CAR T cell therapy has proven effective in difficult-to-treat B cell cancers and is now expanding into hematology and solid tumors. To date, approved CAR therapies target only two specific epitopes on cancer cells. Identifying more suitable targets is challenged by the lack of truly cancer-specific structures and the potential for on-target off-tumor toxicity. We analyzed gene expression of potential targets in single-cell data from cancer and healthy tissues. Because safety and efficacy can ultimately only be defined clinically, we selected approved and investigational targets for which clinical trail data are available. We generated atlases using >300,000 cells from 48 patients with follicular lymphoma, multiple myeloma, and B-cell acute lymphoblastic leukemia, and integrated over 3 million cells from 35 healthy tissues, harmonizing datasets from over 300 donors. To contextualize findings, we compared target expression patterns with outcome data from clinical trials, linking target profiles to efficacy and toxicity, and ranked 15 investigational targets based on their similarity to approved ones. Target expression did not significantly correlate with reported clinical toxicities in patients undergoing therapy. This may be attributed to the intricate interplay of patient-specific variables, the limited amount of metadata, and the complexity underlying toxicity. Nevertheless, our study serves as a resource for retrospective and prospective target evaluation to improve the safety and efficacy of CAR therapies.
Collapse
|
|
1 |
|
25
|
Gottschlich A, Stepan H, Thome U, Kern J, Faber R. Spontane monochoriale – quadramniale Vierlingsschwangerschaft – ein Fallbericht. Z Geburtshilfe Neonatol 2013. [DOI: 10.1055/s-0033-1361463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
|
12 |
|