1
|
Longo R, Arfelli F, Bonazza D, Bottigli U, Brombal L, Contillo A, Cova MA, Delogu P, Di Lillo F, Di Trapani V, Donato S, Dreossi D, Fanti V, Fedon C, Golosio B, Mettivier G, Oliva P, Pacilè S, Sarno A, Rigon L, Russo P, Taibi A, Tonutti M, Zanconati F, Tromba G. Advancements towards the implementation of clinical phase-contrast breast computed tomography at Elettra. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1343-1353. [PMID: 31274463 DOI: 10.1107/s1600577519005502] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Breast computed tomography (BCT) is an emerging application of X-ray tomography in radiological practice. A few clinical prototypes are under evaluation in hospitals and new systems are under development aiming at improving spatial and contrast resolution and reducing delivered dose. At the same time, synchrotron-radiation phase-contrast mammography has been demonstrated to offer substantial advantages when compared with conventional mammography. At Elettra, the Italian synchrotron radiation facility, a clinical program of phase-contrast BCT based on the free-space propagation approach is under development. In this paper, full-volume breast samples imaged with a beam energy of 32 keV delivering a mean glandular dose of 5 mGy are presented. The whole acquisition setup mimics a clinical study in order to evaluate its feasibility in terms of acquisition time and image quality. Acquisitions are performed using a high-resolution CdTe photon-counting detector and the projection data are processed via a phase-retrieval algorithm. Tomographic reconstructions are compared with conventional mammographic images acquired prior to surgery and with histologic examinations. Results indicate that BCT with monochromatic beam and free-space propagation phase-contrast imaging provide relevant three-dimensional insights of breast morphology at clinically acceptable doses and scan times.
Collapse
|
|
6 |
34 |
2
|
Brombal L, Donato S, Dreossi D, Arfelli F, Bonazza D, Contillo A, Delogu P, Di Trapani V, Golosio B, Mettivier G, Oliva P, Rigon L, Taibi A, Longo R. Phase-contrast breast CT: the effect of propagation distance. ACTA ACUST UNITED AC 2018; 63:24NT03. [DOI: 10.1088/1361-6560/aaf2e1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
7 |
31 |
3
|
Pavan A, Ghin F, Contillo A, Milesi C, Campana G, Mather G. Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): A combined stochastic resonance and equivalent noise approach. Brain Stimul 2019; 12:967-977. [DOI: 10.1016/j.brs.2019.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/17/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023] Open
|
|
6 |
27 |
4
|
Piai A, Contillo A, Arfelli F, Bonazza D, Brombal L, Assunta Cova M, Delogu P, Di Trapani V, Donato S, Golosio B, Mettivier G, Oliva P, Rigon L, Taibi A, Tonutti M, Tromba G, Zanconati F, Longo R. Quantitative characterization of breast tissues with dedicated CT imaging. Phys Med Biol 2019; 64:155011. [PMID: 31234148 DOI: 10.1088/1361-6560/ab2c29] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A quantitative characterization of the soft tissues composing the human breast is achieved by means of a monochromatic CT phase-contrast imaging system, through accurate measurements of their attenuation coefficients within the energy range of interest for breast CT clinical examinations. Quantitative measurements of linear attenuation coefficients are performed on tomographic reconstructions of surgical samples, using monochromatic x-ray beams from a synchrotron source and a free space propagation setup. An online calibration is performed on the obtained reconstructions, in order to reassess the validity of the standard calibration procedure of the CT scanner. Three types of healthy tissues (adipose, glandular, and skin) and malignant tumors, when present, are considered from each sample. The measured attenuation coefficients are in very good agreement with the outcomes of similar studies available in the literature, although they span an energy range that was mostly neglected in the previous studies. No globally significant differences are observed between healthy and malignant dense tissues, although the number of considered samples does not appear sufficient to address the issue of a quantitative differentiation of tumors. The study assesses the viability of the proposed methodology for the measurement of linear attenuation coefficients, and provides a denser sampling of attenuation data in the energy range useful to breast CT.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
19 |
5
|
Brombal L, Golosio B, Arfelli F, Bonazza D, Contillo A, Delogu P, Donato S, Mettivier G, Oliva P, Rigon L, Taibi A, Tromba G, Zanconati F, Longo R. Monochromatic breast computed tomography with synchrotron radiation: phase-contrast and phase-retrieved image comparison and full-volume reconstruction. J Med Imaging (Bellingham) 2018; 6:031402. [PMID: 30525064 DOI: 10.1117/1.jmi.6.3.031402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
A program devoted to performing the first in vivo synchrotron radiation (SR) breast computed tomography (BCT) is ongoing at the Elettra facility. Using the high spatial coherence of SR, phase-contrast (PhC) imaging techniques can be used. The latest high-resolution BCT acquisitions of breast specimens, obtained with the propagation-based PhC approach, are herein presented as part of the SYRMA-3D collaboration effort toward the clinical exam. Images are acquired with a 60 - μ m pixel dead-time-free single-photon-counting CdTe detector. The samples are imaged at 32 and 38 keV in a continuous rotating mode, delivering 5 to 20 mGy of mean glandular dose. Contrast-to-noise ratio (CNR) and spatial resolution performances are evaluated for both PhC and phase-retrieved images, showing that by applying the phase-retrieval algorithm a five-time CNR increase can be obtained with a minor loss in spatial resolution across soft tissue interfaces. It is shown that, despite having a poorer CNR, PhC images can provide a sharper visualization of microcalcifications, thus being complementary to phase-retrieved images. Furthermore, the first full-volume scan of a mastectomy sample ( 9 × 9 × 3 cm 3 ) is reported. This investigation into surgical specimens indicates that SR BCT in terms of CNR, spatial resolution, scan duration, and scan volume is feasible.
Collapse
|
Journal Article |
7 |
19 |
6
|
Ghin F, Pavan A, Contillo A, Mather G. The effects of high-frequency transcranial random noise stimulation (hf-tRNS) on global motion processing: An equivalent noise approach. Brain Stimul 2018; 11:1263-1275. [PMID: 30078542 DOI: 10.1016/j.brs.2018.07.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND High frequency transcranial random noise stimulation (hf-tRNS) facilitates performance in several perceptual and cognitive tasks, however, little is known about the underlying modulatory mechanisms. OBJECTIVE In this study we compared the effects of hf-tRNS to those of anodal and cathodal tDCS in a global motion direction discrimination task. An equivalent noise (EN) paradigm was used to assess how hf-tRNS modulates the mechanisms underlying local and global motion processing. METHOD Motion coherence threshold and slope of the psychometric function were estimated using an 8AFC task in which observers had to discriminate the motion direction of a random dot kinematogram presented either in the left or right visual hemi-field. During the task hf-tRNS, anodal and cathodal tDCS were delivered over the left hMT+. In a subsequent experiment we implemented an EN paradigm in order to investigate the effects of hf-tRNS on the mechanisms involved in visual motion integration (i.e., internal noise and sampling). RESULTS hf-tRNS reduced the motion coherence threshold but did not affect the slope of the psychometric function, suggesting no modulation of stimulus discriminability. Anodal and cathodal tDCS did not produce any modulatory effects. EN analysis in the last experiment found that hf-tRNS modulates sampling but not internal noise, suggesting that hf-tRNS modulates the integration of local motion cues. CONCLUSION hf-tRNS interacts with the output neurons tuned to directions near to the directional signal, incrementing the signal-to-noise ratio and the pooling of local motion cues and thus increasing the sensitivity for global moving stimuli.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
16 |
7
|
Pavan A, Hocketstaller J, Contillo A, Greenlee MW. Tilt aftereffect following adaptation to translational Glass patterns. Sci Rep 2016; 6:23567. [PMID: 27005949 PMCID: PMC4804272 DOI: 10.1038/srep23567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/08/2016] [Indexed: 11/23/2022] Open
Abstract
Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention.
Collapse
|
research-article |
9 |
11 |
8
|
Contillo A, Di Domenico G, Cardarelli P, Gambaccini M, Taibi A. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Polychromaticity correction. Med Phys 2016; 42:6641-50. [PMID: 26520754 DOI: 10.1118/1.4933199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Contrast-enhanced digital mammography is an image subtraction technique that is able to improve the detectability of lesions in dense breasts. One of the main sources of error, when the technique is performed by means of commercial mammography devices, is represented by the intrinsic polychromaticity of the x-ray beams. The aim of the work is to propose an iterative procedure, which only assumes the knowledge of a small set of universal quantities, to take into account the polychromaticity and correct the subtraction results accordingly. METHODS In order to verify the procedure, it has been applied to an analytical simulation of a target containing a contrast medium and to actual radiographs of a breast phantom containing cavities filled with a solution of the same medium. RESULTS The reconstructed densities of contrast medium were compared, showing very good agreement between the theoretical predictions and the experimental results already after the first iteration. Furthermore, the convergence of the iterative procedure was studied, showing that only a small number of iterations is necessary to reach limiting values. CONCLUSIONS The proposed procedure represents an efficient solution to the polychromaticity issue, qualifying therefore as a viable alternative to inverse-map functions.
Collapse
|
Validation Study |
9 |
8 |
9
|
Paternò G, Cardarelli P, Contillo A, Gambaccini M, Taibi A. Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest. Phys Med 2018; 51:64-70. [DOI: 10.1016/j.ejmp.2018.04.395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022] Open
|
|
7 |
8 |
10
|
Baldelli P, Bertolini M, Contillo A, Della Gala G, Golinelli P, Pagan L, Rivetti S, Taibi A. A comparative study of physical image quality in digital and synthetic mammography from commercially available mammography systems. Phys Med Biol 2018; 63:165020. [PMID: 29972144 DOI: 10.1088/1361-6560/aad106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present a comparison between full field digital mammography and synthetic mammography, performed on several mammography systems from four different manufacturers. The analysis is carried out on both the digital and synthetic images of two commercially available mammography phantoms, and focuses on a set of objective metrics that encode the geometrical appearance of imaging features of diagnostic interest. In particular, we measured sizes and contrasts of several clusters of microcalcification specks, shapes and contrasts of circular masses, and the power spectrum of background regions mimicking the heterogeneous texture of the breast parenchyma. Despite the potential issues of tomosynthesis in terms of image blurring, the synthetic images do not highlight any globally significant differences in the rendering of the details of interest, when compared to the original digital mammograms: relative contrasts are generally preserved, as well as the geometry of broad structures. We conclude that, as far as the considered objective metrics are concerned, the image quality of synthetic mammography does not exhibit significant differences with respect to the one of full field digital mammography, for all the considered systems.
Collapse
|
Journal Article |
7 |
7 |
11
|
O'Hare L, Goodwin P, Sharp A, Contillo A, Pavan A. Improvement in visual perception after high-frequency transcranial random noise stimulation (hf-tRNS) in those with migraine: An equivalent noise approach. Neuropsychologia 2021; 161:107990. [PMID: 34403655 DOI: 10.1016/j.neuropsychologia.2021.107990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Migraine is a common neurological disorder with strong links to vision. Interictal migraine is thought to be characterised by internal noise in the brain, possibly due to increased variability in neural firing, which can be estimated using equivalent noise tasks. High-frequency transcranial random noise stimulation (hf-tRNS) can be used to modulate levels of internal noise in the brain, and so presents a possible therapy to redress noise levels in the migraine brain. This is a case-control study using a 2-alternative forced choice (2AFC) design. Hf-tRNS and Sham control stimulation were used alongside a global motion direction discrimination task and visually based equivalent noise tasks. The migraine group demonstrated increased baseline internal noise levels compared to the control group. Internal noise levels, and sampling, were reduced using hf-tRNS but not Sham stimulation. However, there were no differences in terms of coherence thresholds, slopes, and lapse rate for global motion discrimination between the two groups. This is the first demonstration of the possibility of decreasing internal noise levels in migraine using hf-tRNS. Future work could explore the possibility of neurostimulation as a therapy for migraine.
Collapse
|
|
4 |
6 |
12
|
Di Domenico G, Cardarelli P, Contillo A, Taibi A, Gambaccini M. X-ray focal spot reconstruction by circular penumbra analysis-Application to digital radiography systems. Med Phys 2016; 43:294. [PMID: 26745922 DOI: 10.1118/1.4938414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiograph of a simple test object, acquired with a suitable magnification. METHODS The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. RESULTS In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. CONCLUSIONS The method was proven to be effective for simulated images and the results of the experimental test suggest that it could be considered as an alternative technique for focal spot distribution evaluation. The method offers the possibility to measure the actual focal spot size and emission distribution at the same exposure conditions as clinical routine, avoiding high tube loading as in the case of the pin-hole imaging technique.
Collapse
|
Journal Article |
9 |
5 |
13
|
Pavan A, Contillo A, Ghin F, Foxwell MJ, Mather G. Limited Attention Diminishes Spatial Suppression From Large Field Glass Patterns. Perception 2019; 48:286-315. [PMID: 30885042 DOI: 10.1177/0301006619835457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We investigated the role of visuospatial attention in the processing of global form from GPs by measuring the effect of distraction on adaptation to GPs. In the nondistracted condition, observers were adapted to coherent GPs. After the adaptation period, they were presented with a test GP divided in two halves along the vertical and were required to judge which side of the test GP was more coherent. In the attention-distracted condition, a high-load rapid serial visual presentation task was performed during the adapting period. The magnitude of the form after-effect was measured using a technique that measures the coherence level at which the test GP appears random. The rationale was that if attention has a modulatory effect on the spatial summation of dipoles, in the attention-distracted condition, we should expect a weaker form after-effect. However, the results showed stronger form after-effect in the attention-distracted condition than in the nondistracted condition, suggesting that distraction during adaptation increases the strength of form adaptation. Additional experiments suggested that distraction may reduce the spatial suppression from large-scale textures, strengthening the spatial summation of local-oriented signals.
Collapse
|
|
6 |
4 |
14
|
Contillo A, Di Domenico G, Cardarelli P, Gambaccini M, Taibi A. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization. Med Phys 2016; 43:3080-3089. [DOI: 10.1118/1.4951730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
|
9 |
4 |
15
|
Brombal L, Arana Peña LM, Arfelli F, Longo R, Brun F, Contillo A, Di Lillo F, Tromba G, Di Trapani V, Donato S, Menk RH, Rigon L. Motion artifacts assessment and correction using optical tracking in synchrotron radiation breast CT. Med Phys 2021; 48:5343-5355. [PMID: 34252212 PMCID: PMC9291820 DOI: 10.1002/mp.15084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The SYRMA‐3D collaboration is setting up a breast computed tomography (bCT) clinical program at the Elettra synchrotron radiation facility in Trieste, Italy. Unlike the few dedicated scanners available at hospitals, synchrotron radiation bCT requires the patient's rotation, which in turn implies a long scan duration (from tens of seconds to few minutes). At the same time, it allows the achievement of high spatial resolution. These features make synchrotron radiation bCT prone to motion artifacts. This article aims at assessing and compensating for motion artifacts through an optical tracking approach. Methods In this study, patients’ movements due to breathing have been first assessed on seven volunteers and then simulated during the CT scans of a breast phantom and a surgical specimen, by adding a periodic oscillatory motion (constant speed, 1 mm amplitude, 12 cycles/minute). CT scans were carried out at 28 keV with a mean glandular dose of 5 mGy. Motion artifacts were evaluated and a correction algorithm based on the optical tracking of fiducial marks was introduced. A quantitative analysis based on the structural similarity (SSIM) index and the normalized mean square error (nMSE) was performed on the reconstructed CT images. Results CT images reconstructed through the optical tracking procedure were found to be as good as the motionless reference image. Moreover, the analysis of SSIM and nMSE demonstrated that an uncorrected motion of the order of the system's point spread function (around 0.1 mm in the present case) can be tolerated. Conclusions Results suggest that a motion correction procedure based on an optical tracking system would be beneficial in synchrotron radiation bCT.
Collapse
|
Journal Article |
4 |
3 |
16
|
Pavan A, Contillo A, Mather G. Modelling adaptation to directional motion using the Adelson-Bergen energy sensor. PLoS One 2013; 8:e59298. [PMID: 23555013 PMCID: PMC3598751 DOI: 10.1371/journal.pone.0059298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 02/14/2013] [Indexed: 11/26/2022] Open
Abstract
The motion energy sensor has been shown to account for a wide range of physiological and psychophysical results in motion detection and discrimination studies. It has become established as the standard computational model for retinal movement sensing in the human visual system. Adaptation effects have been extensively studied in the psychophysical literature on motion perception, and play a crucial role in theoretical debates, but the current implementation of the energy sensor does not provide directly for modelling adaptation-induced changes in output. We describe an extension of the model to incorporate changes in output due to adaptation. The extended model first computes a space-time representation of the output to a given stimulus, and then a RC gain-control circuit ("leaky integrator") is applied to the time-dependent output. The output of the extended model shows effects which mirror those observed in psychophysical studies of motion adaptation: a decline in sensor output during stimulation, and changes in the relative of outputs of different sensors following this adaptation.
Collapse
|
research-article |
12 |
3 |
17
|
Dullin C, D'Amico L, Saccomano G, Longo E, Wagner WL, Reiser J, Svetlove A, Albers J, Contillo A, Abrami A, Sturari L, Tromba G, Sodini N, Dreossi D. Novel setup for rapid phase contrast CT imaging of heavy and bulky specimens. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:650-654. [PMID: 36952235 PMCID: PMC10161890 DOI: 10.1107/s1600577523001649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
This work introduces a novel setup for computed tomography of heavy and bulky specimens at the SYRMEP beamline of the Italian synchrotron Elettra. All the key features of the setup are described and the first application to off-center computed tomography scanning of a human chest phantom (approximately 45 kg) as well as the first results for vertical helical acquisitions are discussed.
Collapse
|
|
2 |
2 |
18
|
Vrbaški S, Arana Pena LM, Brombal L, Donato S, Taibi A, Contillo A, Longo R. Characterization of breast tissues in density and effective atomic number basis via spectral x-ray computed tomography. Phys Med Biol 2023. [PMID: 37276869 DOI: 10.1088/1361-6560/acdbb6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Objective. Differentiation of breast tissues is challenging in X-ray imaging because tissues might share similar or even the same linear attenuation coefficients μ. Spectral computed tomography (CT) allows for more quantitative characterization in terms of tissue density (ρ) and effective atomic number (Zeff) by exploiting the energy dependence of μ. The objective of this study was to examine the potential of ρ / Zeff decomposition in spectral breast CT so as to explore the benefits of tissue characterization and improve the diagnostic accuracy of this emerging 3D imaging technique.Approach.In this work, 5 mastectomy samples and a phantom with inserts mimicking breast soft tissues were evaluated in a retrospective study. The samples were imaged at three monochromatic energy levels in the range of 24 - 38 keV at 5 mGy per scan using a propagation-based phase-contrast setup at SYRMEP beamline at the Italian national synchrotron Elettra.Main results.A custom-made algorithm incorporating CT reconstructions of an arbitrary number of spectral energy channels was developed to extract the density and effective atomic number of adipose, fibro-glandular, pure glandular, tumor, and skin from regions selected by a radiologist.Significance.Preliminary results suggest that, via spectral CT, it is possible to enhance tissue differentiation. It was found that adipose, fibro-glandular and tumorous tissues have average effective atomic numbers (5.94 ± 0.09, 7.03 ± 0.012, and 7.40 ± 0.10) and densities (0.90 ± 0.02, 0.96 ± 0.02, and 1.07 ± 0.03 g/cm3) and can be better distinguished if both quantitative values are observed together.
Collapse
|
|
2 |
2 |
19
|
Muscatiello N, Cuomo R, Gentile M, De Francesco V, Stoppino V, Contillo A, Salcuni A, Natale C, Panella C, Ierardi E. Endoscopic ultrasound localization of a solitary insulinoma of pancreatic tail misdiagnosed as epilepsy: case report. ABDOMINAL IMAGING 2004; 28:859-61. [PMID: 14753607 DOI: 10.1007/s00261-003-0039-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 17-year-old female patient with features of epilepsy was treated with valproic acid. Two years later, hypoglycemia and hyperinsulinemia appeared. Transabdominal ultrasonography, spiral computed tomography, and indium-111 Octreoscan were performed without positive results. Endoscopic ultrasonography identified an oval tumor in the pancreatic tail with a color Doppler hypervascular pattern. Surgical enucleation decreased levels of insulin and C-peptide within 20 min, and the patient became free of symptoms and medications.
Collapse
|
|
21 |
2 |
20
|
Mather G, Pavan A, Contillo A. Modelling adaptation using the Adelson-Bergen energy sensor. J Vis 2012. [DOI: 10.1167/12.9.763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
|
13 |
1 |
21
|
Brombal L, Donato S, Dreossi D, Arfelli F, Bonazza D, Contillo A, Delogu P, Di Trapani V, Golosio B, Mettivier G, Oliva P, Rigon L, Taibi A, Longo R. Corrigendum: Phase-contrast breast CT: the effect of propagation distance (2018 Phys. Med. Biol. 63 24NT03). Phys Med Biol 2019. [DOI: 10.1088/1361-6560/ab29b9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
6 |
1 |
22
|
Donato S, Brombal L, Arana Peña LM, Arfelli F, Contillo A, Delogu P, Di Lillo F, Di Trapani V, Fanti V, Longo R, Oliva P, Rigon L, Stori L, Tromba G, Golosio B. Optimization of a customized simultaneous algebraic reconstruction technique algorithm for phase-contrast breast computed tomography. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac65d4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Abstract
Objective. To introduce the optimization of a customized GPU-based simultaneous algebraic reconstruction technique (cSART) in the field of phase-contrast breast computed tomography (bCT). The presented algorithm features a 3D bilateral regularization filter that can be tuned to yield optimal performance for clinical image visualization and tissues segmentation. Approach. Acquisitions of a dedicated test object and a breast specimen were performed at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy) using a large area CdTe single-photon counting detector. Tomographic images were obtained at 5 mGy of mean glandular dose, with a 32 keV monochromatic x-ray beam in the free-space propagation mode. Three independent algorithms parameters were optimized by using contrast-to-noise ratio (CNR), spatial resolution, and noise texture metrics. The results obtained with the cSART algorithm were compared with conventional SART and filtered back projection (FBP) reconstructions. Image segmentation was performed both with gray scale-based and supervised machine-learning approaches. Main results. Compared to conventional FBP reconstructions, results indicate that the proposed algorithm can yield images with a higher CNR (by 35% or more), retaining a high spatial resolution while preserving their textural properties. Alternatively, at the cost of an increased image ‘patchiness’, the cSART can be tuned to achieve a high-quality tissue segmentation, suggesting the possibility of performing an accurate glandularity estimation potentially of use in the realization of realistic 3D breast models starting from low radiation dose images. Significance. The study indicates that dedicated iterative reconstruction techniques could provide significant advantages in phase-contrast bCT imaging. The proposed algorithm offers great flexibility in terms of image reconstruction optimization, either toward diagnostic evaluation or image segmentation.
Collapse
|
|
3 |
1 |
23
|
Pavan A, Contillo A, Mather G. Modelling fast forms of visual neural plasticity using a modified second-order motion energy model. J Comput Neurosci 2014; 37:493-504. [DOI: 10.1007/s10827-014-0520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
|
|
11 |
1 |
24
|
Malvestuto M, Caretta A, Bhardwaj R, Laterza S, Parmigiani F, Gessini A, Zamolo M, Galassi F, Sergo R, Cautero G, Danailov MB, Demidovic A, Sigalotti P, Lonza M, Borghes R, Contillo A, Simoncig A, Manfredda M, Raimondi L, Zangrando M. The MagneDyn beamline at the FERMI free electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:115109. [PMID: 36461546 DOI: 10.1063/5.0105261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The scope of this paper is to outline the main marks and performances of the MagneDyn beamline, which was designed and built to perform ultrafast magnetodynamic studies in solids. Open to users since 2019, MagneDyn operates with variable circular and linear polarized femtosecond pulses delivered by the externally laser-seeded FERMI free-electron laser (FEL). The very high degree of polarization, the high pulse-to-pulse stability, and the photon energy tunability in the 50-300 eV range allow performing advanced time-resolved magnetic dichroic experiments at the K-edge of light elements, e.g., carbon and at the M- and N-edge of the 3d-transition-metals and rare earth elements, respectively. To this end, two experimental end-stations are available. The first is equipped with an in situ dedicated electromagnet, a cryostat, and an extreme ultraviolet Wollaston-like polarimeter. The second, designed for carry-in user instruments, hosts also a spectrometer for pump-probe resonant x-ray emission and inelastic spectroscopy experiments with a sub-eV energy resolution. A Kirkpatrick-Baez active optics system provides a minimum focus of ∼20×20μm2 FWHM at the sample. A pump laser setup, synchronized with the FEL-laser seeding system, delivers sub-picosecond pulses with photon energies ranging from the mid-IR to near-UV for optical pump-FEL probe experiments with a minimal pump-probe jitter of few femtoseconds. The overall combination of these features renders MagneDyn a unique state-of-the-art tool for studying ultrafast magnetic and resonant emission phenomena in solids.
Collapse
|
|
3 |
1 |
25
|
Paternò G, Cardarelli P, Contillo A, Gambaccini M, Taibi A. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest. Phys Med 2018; 45 Suppl 1:S2-S3. [PMID: 29413851 DOI: 10.1016/j.ejmp.2017.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated.
Collapse
|
|
7 |
0 |