1
|
Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D'Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo GF. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 2003; 139:125-33. [PMID: 12628748 DOI: 10.1016/s0378-4274(02)00427-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathophysiology of many neurologic disorders and brain dysfunction. In the same pathological settings evidence has been provided in favour of a participation of intracellular Ca(2+) concentration altered homeostasis in the chain of events leading to neuronal apoptosis. In the present review literature reports and experimental data on the relationship between caspase activation and alteration of intracellular calcium concentrations in the mechanisms triggering neuronal apoptosis are discussed. The data gathered support the conclusion that during oxidative stress in neuronal cells the production of ROS triggers a mechanism that, through the release of cytochrome c from mitochondria and caspase-3 activation, leads to apoptosis; the concomitant ROS-mediated elevation of intracellular Ca(2+) concentration triggers caspase-2 activation but both events do not seem to be involved in cell death.
Collapse
|
Review |
22 |
203 |
2
|
Triggiani M, Gentile M, Secondo A, Granata F, Oriente A, Taglialatela M, Annunziato L, Marone G. Histamine induces exocytosis and IL-6 production from human lung macrophages through interaction with H1 receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4083-91. [PMID: 11238657 DOI: 10.4049/jimmunol.166.6.4083] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increasing evidence suggests that a continuous release of histamine from mast cells occurs in the airways of asthmatic patients and that histamine may modulate functions of other inflammatory cells such as macrophages. In the present study histamine (10(-9)-10(-6) M) increased in a concentration-dependent fashion the basal release of beta-glucuronidase (EC(50) = 8.2 +/- 3.5 x 10(-9) M) and IL-6 (EC(50) = 9.3 +/- 2.9 x 10(-8) M) from human lung macrophages. Enhancement of beta-glucuronidase release induced by histamine was evident after 30 min and peaked at 90 min, whereas that of IL-6 required 2-6 h of incubation. These effects were reproduced by the H(1) agonist (6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptane carboxamide but not by the H(2) agonist dimaprit. Furthermore, histamine induced a concentration-dependent increase of intracellular Ca(2+) concentrations ([Ca(2+)](i)) that followed three types of response, one characterized by a rapid increase, a second in which [Ca(2+)](i) displays a slow but progressive increase, and a third characterized by an oscillatory pattern. Histamine-induced beta-glucuronidase and IL-6 release and [Ca(2+)](i) elevation were inhibited by the selective H(1) antagonist fexofenadine (10(-7)-10(-4) M), but not by the H(2) antagonist ranitidine. Inhibition of histamine-induced beta-glucuronidase and IL-6 release by fexofenadine was concentration dependent and displayed the characteristics of a competitive antagonism (K(d) = 89 nM). These data demonstrate that histamine induces exocytosis and IL-6 production from human macrophages by activating H(1) receptor and by increasing [Ca(2+)](i) and they suggest that histamine may play a relevant role in the long-term sustainment of allergic inflammation in the airways.
Collapse
|
|
24 |
100 |
3
|
Staiano RI, Loffredo S, Borriello F, Iannotti FA, Piscitelli F, Orlando P, Secondo A, Granata F, Lepore MT, Fiorelli A, Varricchi G, Santini M, Triggiani M, Di Marzo V, Marone G. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. J Leukoc Biol 2016; 99:531-40. [PMID: 26467187 PMCID: PMC4787289 DOI: 10.1189/jlb.3hi1214-584r] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 01/03/2023] Open
Abstract
Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling in cancer and chronic inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
94 |
4
|
Secondo A, Staiano RI, Scorziello A, Sirabella R, Boscia F, Adornetto A, Valsecchi V, Molinaro P, Canzoniero LMT, Di Renzo G, Annunziato L. BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 2007; 42:521-35. [PMID: 17343909 DOI: 10.1016/j.ceca.2007.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 01/18/2007] [Accepted: 01/20/2007] [Indexed: 11/27/2022]
Abstract
The specific role played by NCX1, NCX2, and NCX3, the three isoforms of the Na+/Ca2+ exchanger (NCX), has been explored during hypoxic conditions in BHK cells stably transfected with each of these isoforms. Six major findings emerged from the present study: (1) all the three isoforms were highly expressed on the plasma membranes of BHK cells; (2) under physiological conditions, the three NCX isoforms showed similar functional activity; (3) hypoxia plus reoxygenation induced a lower increase of [Ca2+]i in BHK-NCX3-transfected cells than in BHK-NCX1- and BHK-NCX2-transfected cells; (4) NCX3-transfected cells were more resistant to chemical hypoxia plus reoxygenation than NCX1- and NCX2-transfected cells. Interestingly, such augmented resistance was eliminated by CBDMD (10 microM), an inhibitor of NCX and by the specific silencing of the NCX3 isoform; (5) chemical hypoxia plus reoxygenation produced a loss of mitochondrial membrane potential in NCX1- and NCX2-transfected cells, but not in NCX3-transfected cells; (6) the forward mode of operation in NCX3-transfected cells was not affected by ATP depletion, as it occurred in NCX1- and NCX2-transfected cells. Altogether, these results indicate that the brain specifically expressed NCX3 isoform more significantly contributes to the maintenance of [Ca2+]i homeostasis during experimental conditions mimicking ischemia, thereby preventing mitochondrial delta psi collapses and cell death.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
79 |
5
|
Annunziato L, Pannaccione A, Cataldi M, Secondo A, Castaldo P, Di Renzo G, Taglialatela M. Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 2002; 23:819-34. [PMID: 12392785 DOI: 10.1016/s0197-4580(02)00069-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An ever increasing number of reports shows the involvement of free radicals in the functional and structural changes occurring in the brain as a part of the "normal" aging process. Given that plasma membrane and intracellular ion channels play a critical role in maintaining intracellular ion homeostasis, which is crucial for neuronal cell survival, in the present review we have attempted to elaborate on the idea that functional changes in ion channel activity induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) might occur during the aging process. To this aim, we have reviewed the available literature and the data obtained in our laboratory on the ability of ROS and RNS to modify the activity of several plasma membrane and intracellular ion channels and transporters, in an attempt to correlate such changes with those occurring with the aging process. Particular emphasis is given to voltage-gated Na(+), Ca(2+), and K(+) channels, although second messenger-activated channels like Ca(2+)- and ATP-dependent K(+) channels, and intracellular channels controlling intracellular Ca(2+) storage and release will also be discussed. On the basis of the available data it is not yet possible to establish a strict correlation between the changes in neuronal electrophysiological properties induced by oxidative modification at the level of ion channels and the neurodegenerative process accompanying brain aging. However, an increasing amount of information suggests that the modulatory effects exerted by ROS and RNS on ion channel proteins might have a relevant role for neuronal cell survival or death. Obviously, more work is needed to establish the possible involvement of ion channels and of their modulation by ROS and RNS as important mechanisms for the aging process. Only when a more complete molecular picture of the aging process will be available, it will be possible to test the fascinating hypothesis that aging might be pharmacologically delayed by modulating ROS and RNS action on ion channels or the biochemical pathways involved in their modulation.
Collapse
|
Review |
23 |
78 |
6
|
Pignataro G, Tortiglione A, Scorziello A, Giaccio L, Secondo A, Severino B, Santagada V, Caliendo G, Amoroso S, Di Renzo G, Annunziato L. Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 2004; 46:439-48. [PMID: 14975699 DOI: 10.1016/j.neuropharm.2003.09.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 08/20/2003] [Accepted: 09/24/2003] [Indexed: 01/02/2023]
Abstract
In the present paper, the role played by Na+/Ca2+ exchanger (NCX) in focal cerebral ischemia was investigated. To this aim, permanent middle cerebral artery occlusion (pMCAO) was performed in male rats. The effects on the infarct volume of some inhibitors, such as tyrosine-6 glycosylated form of the exchanger inhibitory peptide (GLU-XIP), benzamil derivative (CB-DMB) and diarylaminopropylamine derivative (bepridil), and of the NCX activator, FeCl3, were examined. FeCl3, CB-DMB, bepridil and GLU-XIP, a modified peptide synthesized in our laboratory in order to facilitate its entrance into the cells through the glucose transporter, were intracerebroventricularly (i.c.v.) infused. FeCl3 (10 microg/kg) was able to reduce the extension of brain infarct volume. This effect was counteracted by the concomitant icv administration of CB-DMB (120 microg/kg). All NCX inhibitors, GLU-XIP, CB-DMB and bepridil, caused a worsening of the brain infarct lesion. These results suggest that a stimulation of NCX activity may help neurons and glial cells that are not irreversibly damaged in the penumbral zone to survive, whereas its pharmacological blockade can compromise their survival.
Collapse
|
|
21 |
76 |
7
|
Boscia F, Gala R, Pannaccione A, Secondo A, Scorziello A, Di Renzo G, Annunziato L. NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 2009; 40:3608-17. [PMID: 19745171 DOI: 10.1161/strokeaha.109.557439] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The sodium-calcium exchanger NCX1 represents a key mediator for maintaining [Na(+)](i) and [Ca(2+)](i) in anoxic conditions. To date, no information is available on NCX1 protein expression and activity in microglial cells under ischemic conditions. METHODS By means of Western blotting, patch-clamp electrophysiology, single-cell Fura-2 acetoxymethyl-ester microfluorometry, immunohistochemistry, and confocal microscopy, we investigated the regional and temporal changes of NCX1 protein in microglial cells of the peri-infarct and core regions after permanent middle cerebral artery occlusion. The exchanger expression and activity were measured in primary microglia isolated ex vivo from the core region of adult rat brains 7 days after permanent middle cerebral artery occlusion and in cultured microglia under in vitro hypoxia. RESULTS One day after permanent middle cerebral artery occlusion, NCX1 protein expression was detected in some microglial cells adjacent to the soma of neurons in the infarct core. More interestingly, 3 and 7 days after permanent middle cerebral artery occlusion, NCX1 signal strongly increased in the round-shaped microglia invading the infarct core. Cultured microglial cells obtained from the core also displayed increased NCX1 expression as compared with contralateral cells and showed enhanced NCX activity in the reverse mode of operation. Similarly, NCX activity and NCX1 protein expression were significantly enhanced in BV2 microglia exposed to oxygen and glucose deprivation, whereas NCX2 and NCX3 were downregulated. Interestingly, in NCX1-silenced cells, [Ca(2+)](i) increase induced by hypoxia was completely prevented. Conclusion- The upregulation of NCX1 expression and activity observed in microglia after permanent middle cerebral artery occlusion suggests a relevant role of NCX1 in modulating microglia functions in the postischemic brain.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
70 |
8
|
Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci 2018; 11:87. [PMID: 29623030 PMCID: PMC5874322 DOI: 10.3389/fnmol.2018.00087] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interaction molecule (STIM) senses Ca2+ level reduction and migrates from endoplasmic reticulum (ER)-like sites to the PM where it activates the channel proteins Orai and/or the transient receptor potential channels (TRPC) prompting Ca2+ refilling. Accumulating evidence suggests that SOCE dysregulation may trigger perturbation of intracellular Ca2+ signaling in neurons, glia or hematopoietic cells, thus participating to the pathogenesis of diverse neurodegenerative diseases. Under acute conditions, such as ischemic stroke, neuronal SOCE can either re-establish Ca2+ homeostasis or mediate Ca2+ overload, thus providing a non-excitotoxic mechanism of ischemic neuronal death. The dualistic role of SOCE in brain ischemia is further underscored by the evidence that it also participates to endothelial restoration and to the stabilization of intravascular thrombi. In Parkinson's disease (PD) models, loss of SOCE triggers ER stress and dysfunction/degeneration of dopaminergic neurons. Disruption of neuronal SOCE also underlies Alzheimer's disease (AD) pathogenesis, since both in genetic mouse models and in human sporadic AD brain samples, reduced SOCE contributes to synaptic loss and cognitive decline. Unlike the AD setting, in the striatum from Huntington's disease (HD) transgenic mice, an increased STIM2 expression causes elevated synaptic SOCE that was suggested to underlie synaptic loss in medium spiny neurons. Thus, pharmacological inhibition of SOCE is beneficial to synapse maintenance in HD models, whereas the same approach may be anticipated to be detrimental to cortical and hippocampal pyramidal neurons. On the other hand, up-regulation of SOCE may be beneficial during AD. These intriguing findings highlight the importance of further mechanistic studies to dissect the molecular pathways, and their corresponding targets, involved in synaptic dysfunction and neuronal loss during aging and neurodegenerative diseases.
Collapse
|
Review |
7 |
68 |
9
|
Sirabella R, Secondo A, Pannaccione A, Scorziello A, Valsecchi V, Adornetto A, Bilo L, Di Renzo G, Annunziato L. Anoxia-induced NF-kappaB-dependent upregulation of NCX1 contributes to Ca2+ refilling into endoplasmic reticulum in cortical neurons. Stroke 2009; 40:922-9. [PMID: 19164785 DOI: 10.1161/strokeaha.108.531962] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The 3 gene products of the Na(+)/Ca(2+) exchanger (NCX), viz, NCX1, NCX2, and NCX3, may play a pivotal role in the pathophysiology of brain ischemia. The aim of this study was to investigate the transductional and posttranslational mechanisms involved in the expression of these isoforms during oxygen and glucose deprivation and their role in endoplasmic reticulum Ca(2+) refilling in cortical neurons. METHODS NCX1, NCX2, and NCX3 transcript and protein expression was evaluated in primary cortical neurons by reverse transcriptase-polymerase chain reaction and Western blot. NCX currents (I(NCX)) and cytosolic Ca(2+) concentrations ([Ca(2+)](i)) were monitored by means of patch-clamp in whole-cell configuration and Fura-2AM single-cell video imaging, respectively. RESULTS Exposure of cortical neurons to 3 hours of oxygen and glucose deprivation yielded dissimilar effects on the 3 isoforms. First, it induced an upregulation in NCX1 transcript and protein expression. This change was exerted at the transcriptional level because the inhibition of nuclear factor kappa B translocation by small interfering RNA against p65 and SN-50 prevented oxygen and glucose deprivation-induced NCX1 upregulation. Second, it elicited a downregulation of NCX3 protein expression. This change, unlike NCX1, was exerted at the posttranscriptional level because it was prevented by the proteasome inhibitor MG-132. Finally, we found that it significantly increased I(NCX) both in the forward and reverse modes of operation and promoted an increase in ER Ca(2+) accumulation. Interestingly, such accumulation was prevented by the silencing of NCX1 and the NCX inhibitor CB-DMB that triggered caspase-12 activation. CONCLUSIONS These results suggest that nuclear factor kappa B-dependent NCX1 upregulation may play a fundamental role in Ca(2+) refilling in the endoplasmic reticulum, thus helping neurons to prevent endoplasmic reticulum stress during oxygen and glucose deprivation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
68 |
10
|
Maddalena F, Laudiero G, Piscazzi A, Secondo A, Scorziello A, Lombardi V, Matassa DS, Fersini A, Neri V, Esposito F, Landriscina M. Sorcin induces a drug-resistant phenotype in human colorectal cancer by modulating Ca(2+) homeostasis. Cancer Res 2011; 71:7659-69. [PMID: 22052463 DOI: 10.1158/0008-5472.can-11-2172] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ca(2+)-binding protein sorcin regulates intracellular calcium homeostasis and plays a role in the induction of drug resistance in human cancers. Recently, an 18 kDa mitochondrial isoform of sorcin was reported to participate in antiapoptosis in human colorectal cancer (CRC), but information remains lacking about the functional role of the more abundant 22 kDa isoform of sorcin expressed in CRC. We found the 22 kDa isoform to be widely expressed in human CRC cells, whether or not they were drug resistant. Its upregulation in drug-sensitive cells induced resistance to 5-fluorouracil, oxaliplatin, and irinotecan, whereas its downregulation sensitized CRC cells to these chemotherapeutic agents. Sorcin enhances the accumulation of Ca(2+) in the endoplasmic reticulum (ER), preventing ER stress, and, in support of this function, we found that the 22 kDa isoform of sorcin was upregulated under conditions of ER stress. In contrast, RNAi-mediated silencing of sorcin activated caspase-3, caspase-12, and GRP78/BiP, triggering apoptosis through the mitochondrial pathway. Our findings establish that CRC cells overexpress sorcin as an adaptive mechanism to prevent ER stress and escape apoptosis triggered by chemotherapeutic agents, prompting its further investigation as a novel molecular target to overcome MDR.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
66 |
11
|
Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagnani S, Di Renzo G, Annunziato L. Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 2000; 74:1505-13. [PMID: 10737607 DOI: 10.1046/j.1471-4159.2000.0741505.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In C6 glioma cells exposed to chemical hypoxia, an increase of extracellular lactate dehydrogenase (LDH) activity, cell death, and intracellular Ca2+ concentration ([Ca2+]i) occurred. Sodium nitroprusside (SNP), a nitric oxide donor and an iron-containing molecule, reduced chemical hypoxia-induced LDH release and cell death. These effects were counteracted by bepridil and by 5-(N-4-chlorobenzyl)-2',4'-dimethylbenzamil (CB-DMB), two specific inhibitors of the Na+-Ca2+ exchanger. SNP also increased the activity of the Na+-Ca2+ exchanger as a Na+ efflux pathway, stimulated by Na+-free conditions and evaluated by monitoring [Ca2+]i in single cells. In addition, SNP produced a further increase of chemical hypoxia-elicited [Ca2+]i elevation, and this effect was blocked by bepridil. Chemical hypoxia-evoked cell death and LDH release were counteracted by the ferricyanide moiety of the SNP molecule, K3Fe(CN)6, and by ferric chloride (FeCl3), and this effect was counteracted by CB-DMB. In addition, the iron ion chelator deferoxamine reversed the protective effect exerted by SNP on cell injury. Collectively, these findings suggest that the protective effect of SNP on C6 glioma cells exposed to chemical hypoxia is due to the activation of the Na+-Ca2+ exchanger operating as a Na+ efflux-Ca2+ influx pathway induced by iron present in the SNP molecule.
Collapse
|
|
25 |
55 |
12
|
Sisalli MJ, Secondo A, Esposito A, Valsecchi V, Savoia C, Di Renzo GF, Annunziato L, Scorziello A. Endoplasmic reticulum refilling and mitochondrial calcium extrusion promoted in neurons by NCX1 and NCX3 in ischemic preconditioning are determinant for neuroprotection. Cell Death Differ 2014; 21:1142-9. [PMID: 24632945 DOI: 10.1038/cdd.2014.32] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/15/2014] [Accepted: 02/04/2014] [Indexed: 01/12/2023] Open
Abstract
Ischemic preconditioning (IPC), an important endogenous adaptive mechanism of the CNS, renders the brain more tolerant to lethal cerebral ischemia. The molecular mechanisms responsible for the induction and maintenance of ischemic tolerance in the brain are complex and still remain undefined. Considering the increased expression of the two sodium calcium exchanger (NCX) isoforms, NCX1 and NCX3, during cerebral ischemia and the relevance of nitric oxide (NO) in IPC modulation, we investigated whether the activation of the NO/PI3K/Akt pathway induced by IPC could regulate calcium homeostasis through changes in NCX1 and NCX3 expression and activity, thus contributing to ischemic tolerance. To this aim, we set up an in vitro model of IPC by exposing cortical neurons to a 30-min oxygen and glucose deprivation (OGD) followed by 3-h OGD plus reoxygenation. IPC was able to stimulate NCX activity, as revealed by Fura-2AM single-cell microfluorimetry. This effect was mediated by the NO/PI3K/Akt pathway since it was blocked by the following: (a) the NOS inhibitors L-NAME and 7-Nitroindazole, (b) the IP3K/Akt inhibitors LY294002, wortmannin and the Akt-negative dominant, (c) the NCX1 and NCX3 siRNA. Intriguingly, this IPC-mediated upregulation of NCX1 and NCX3 activity may control calcium level within endoplasimc reticulum (ER) and mitochondria, respectively. In fact, IPC-induced NCX1 upregulation produced an increase in ER calcium refilling since this increase was prevented by siNCX1. Moreover, by increasing NCX3 activity, IPC reduced mitochondrial calcium concentration. Accordingly, the inhibition of NCX by CGP37157 reverted this effect, thus suggesting that IPC-induced NCX3-increased activity may improve mitochondrial function during OGD/reoxygenation. Collectively, these results indicate that IPC-induced neuroprotection may occur through the modulation of calcium homeostasis in ER and mitochondria through NO/PI3K/Akt-mediated NCX1 and NCX3 upregulation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
53 |
13
|
Scorziello A, Savoia C, Sisalli MJ, Adornetto A, Secondo A, Boscia F, Esposito A, Polishchuk EV, Polishchuk RS, Molinaro P, Carlucci A, Lignitto L, Di Renzo G, Feliciello A, Annunziato L. NCX3 regulates mitochondrial Ca(2+) handling through the AKAP121-anchored signaling complex and prevents hypoxia-induced neuronal death. J Cell Sci 2013; 126:5566-77. [PMID: 24101730 DOI: 10.1242/jcs.129668] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mitochondrial influx and efflux of Ca(2+) play a relevant role in cytosolic and mitochondrial Ca(2+) homeostasis, and contribute to the regulation of mitochondrial functions in neurons. The mitochondrial Na(+)/Ca(2+) exchanger, which was first postulated in 1974, has been primarily investigated only from a functional point of view, and its identity and localization in the mitochondria have been a matter of debate over the past three decades. Recently, a Li(+)-dependent Na(+)/Ca(2+) exchanger extruding Ca(2+) from the matrix has been found in the inner mitochondrial membrane of neuronal cells. However, evidence has been provided that the outer membrane is impermeable to Ca(2+) efflux into the cytoplasm. In this study, we demonstrate for the first time that the nuclear-encoded NCX3 isoform (1) is located on the outer mitochondrial membrane (OMM) of neurons; (2) colocalizes and immunoprecipitates with AKAP121 (also known as AKAP1), a member of the protein kinase A anchoring proteins (AKAPs) present on the outer membrane; (3) extrudes Ca(2+) from mitochondria through AKAP121 interaction in a PKA-mediated manner, both under normoxia and hypoxia; and (4) improves cell survival when it works in the Ca(2+) efflux mode at the level of the OMM. Collectively, these results suggest that, in neurons, NCX3 regulates mitochondrial Ca(2+) handling from the OMM through an AKAP121-anchored signaling complex, thus promoting cell survival during hypoxia.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
53 |
14
|
Canani RB, Cirillo P, Mallardo G, Buccigrossi V, Secondo A, Annunziato L, Bruzzese E, Albano F, Selvaggi F, Guarino A. Effects of HIV-1 Tat protein on ion secretion and on cell proliferation in human intestinal epithelial cells. Gastroenterology 2003; 124:368-76. [PMID: 12557143 DOI: 10.1053/gast.2003.50056] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Severe diarrhea and enteropathy of unknown origin are frequent in patients infected with human immunodeficiency type 1 virus (HIV-1). The HIV-1 transactivating factor protein (Tat) is a key factor in the pathogenesis of acquired immunodeficiency syndrome. We investigated whether Tat could directly induce ion secretion and cell damage in enterocytes. METHODS Electrical parameters (ion transport studies) were measured in Caco-2 cell monolayers and in human colonic mucosa specimens mounted in Ussing chambers. The effect of Tat on intestinal mucosa integrity was determined by monitoring the transepithelial electrical resistance of Caco-2 cell monolayers. (3)H-thymidine incorporation and cell count were used to evaluate the effect of Tat on cell growth. Intracellular calcium concentrations were measured at the single-cell level using microfluorometry technique. RESULTS Tat protein induced ion secretion in Caco-2 cells and in human colonic mucosa similar to that induced by bacterial enterotoxins. It also significantly prevented enterocyte proliferation. In both instances, the effect of Tat was maximum at concentrations within the range detected in the sera of HIV-1-infected patients. Anti-Tat antibodies inhibited both effects. Ion secretion and the antiproliferative effects were mediated by L-type Ca(2+) channels. An increase in intracellular calcium concentration in Caco-2 cells was found after addition of Tat. CONCLUSIONS These results indicate that Tat may be involved in HIV-1-related intestinal disease through direct interaction with enterocytes.
Collapse
|
|
22 |
51 |
15
|
Formisano L, Saggese M, Secondo A, Sirabella R, Vito P, Valsecchi V, Molinaro P, Di Renzo G, Annunziato L. The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol Pharmacol 2008; 73:727-37. [PMID: 18079274 DOI: 10.1124/mol.107.042549] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The proteins NCX1, NCX2, and NCX3 expressed on the plasma membrane of neurons play a crucial role in ionic regulation because they are the major bidirectional system promoting the efflux and influx of Na(+) and Ca(2+) ions. Here, we demonstrate that NCX1 and NCX3 proteins are novel additional targets for the survival action of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. Indeed, the doxycycline-dependent overexpression of constitutively active Akt1 in tetracycline (Tet)-Off PC-12 positive mutants and the exposure of Tet-Off PC-12 wild type to nerve growth factor induced an up-regulation of NCX1 and NCX3 proteins. NCX1 up-regulation induced by Akt1 activation occurred at the transcriptional level because NCX1 mRNA increased, and it was counteracted by cAMP response element-binding protein 1 inhibition through small interfering RNA strategy. In contrast, Akt1-induced NCX3 up-regulation recognized a post-transcriptional mechanism occurring at the proteasome level because 1) NCX3 transcript did not increase and 2) the proteasome inhibitor N-benzyloxycarbonyl (Z)-Leu-Leu-leucinal (MG-132) did not further enhance NCX3 protein levels in Akt1 active mutants as it would be expected if the ubiquitin-proteasome complex was not already blocked by Akt1 pathway. As expected, in PC-12 Tet-Off wild-type cells MG-132 enhanced NCX3 protein levels. This up-regulation produced an increased activity of NCX function. Furthermore, NCX1 and NCX3 up-regulation contributed to the survival action of Akt1 during chemical hypoxia because both the silencing of NCX1 or NCX3 and the pharmacological paninhibition of NCX isoforms reduced the prosurvival property of Akt1. Together, these results indicated that NCX1 and NCX3 represent novel additional molecular targets for the prosurvival action of PI3-K/Akt pathway.
Collapse
|
|
17 |
49 |
16
|
Caputo I, Secondo A, Lepretti M, Paolella G, Auricchio S, Barone MV, Esposito C. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells. PLoS One 2012; 7:e45209. [PMID: 23049776 PMCID: PMC3458012 DOI: 10.1371/journal.pone.0045209] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG) seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+) homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS We studied Ca(2+) homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+) from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+) from the endoplasmic reticulum (ER) and mitochondria, whereas peptide 57-68 mobilized Ca(2+) only from mitochondria. We also found that gliadin peptide-induced Ca(2+) mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS By inducing Ca(2+) mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
41 |
17
|
Annunziato L, Pignataro G, Boscia F, Sirabella R, Formisano L, Saggese M, Cuomo O, Gala R, Secondo A, Viggiano D, Molinaro P, Valsecchi V, Tortiglione A, Adornetto A, Scorziello A, Cataldi M, Di Renzo GF. ncx1, ncx2, and ncx3 gene product expression and function in neuronal anoxia and brain ischemia. Ann N Y Acad Sci 2007; 1099:413-26. [PMID: 17446481 DOI: 10.1196/annals.1387.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Over the last few years, although extensive studies have focused on the relevant function played by the sodium-calcium exchanger (NCX) during focal ischemia, a thorough understanding of its role still remains a controversial issue. We explored the consequences of the pharmacological inhibition of this antiporter with conventional pharmacological approach, with the synthetic inhibitory peptide, XIP, or with an antisense strategy on the extent of brain damage induced by the permanent occlusion of middle cerebral artery (pMCAO) in rats. Collectively, the results of these studies suggest that ncx1 and ncx3 genes could be play a major role to limit the severity of ischemic damage probably as they act to dampen [Na+]i and [Ca2+]i overload. This mechanism seems to be normally activated in the ischemic brain as we found a selective upregulation of NCX1 and NCX3 mRNA levels in regions of the brain surviving to an ischemic insult. Despite this transcript increase, NCX1, NCX2, and NCX3 proteins undergo an extensive proteolytic degradation in the ipsilateral cerebral hemisphere. All together these results suggest that a rescue program centered on an increase NCX function and expression could halt the progression of the ischemic damage. On the basis of this evidence we directed our attention to the understanding of the transductional and transcriptional pathways responsible for NCX upregulation. To this aim, we are studying whether the brain isoform of Akt, Akt1, which is a downstream effector of neurotrophic factors, such as NGF can, in addition to affecting the other prosurvival cascades, also exert its neuroprotective effect by modulating the expression and activity of ncx1, ncx2, and ncx3 gene products.
Collapse
|
Review |
18 |
40 |
18
|
Pannaccione A, Secondo A, Scorziello A, Calì G, Taglialatela M, Annunziato L. Nuclear factor-κB activation by reactive oxygen species mediates voltage-gated K+ current enhancement by neurotoxic β-amyloid peptides in nerve growth factor-differentiated PC-12 cells and hippocampal neurones. J Neurochem 2005; 94:572-86. [PMID: 15969743 DOI: 10.1111/j.1471-4159.2005.03075.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increased activity of plasma membrane K+ channels, leading to decreased cytoplasmic K+ concentrations, occurs during neuronal cell death. In the present study, we showed that the neurotoxic beta-amyloid peptide Abeta(25-35) caused a dose-dependent (0.1-10 microm) and time-dependent (> 12 h) enhancement of both inactivating and non-inactivating components of voltage-dependent K+ (VGK) currents in nerve growth factor-differentiated rat phaeochromocytoma (PC-12) cells and primary rat hippocampal neurones. Similar effects were exerted by Abeta(1-42), but not by the non-neurotoxic Abeta(35-25) peptide. Abeta(25-35) and Abeta(1-42) caused an early (15-20 min) increase in intracellular Ca(2+) concentration. This led to an increased production of reactive oxygen species (ROS), which peaked at 3 h and lasted for 24 h; ROS production seemed to trigger the VGK current increase as vitamin E (50 microm) blocked both the Abeta(25-35)- and Abeta(1-42)-induced ROS increase and VGK current enhancement. Inhibition of protein synthesis (cycloheximide, 1 microg/mL) and transcription (actinomycin D, 50 ng/mL) blocked Abeta(25-35)-induced VGK current enhancement, suggesting that this potentiation is mediated by transcriptional activation induced by ROS. Interestingly, the specific nuclear factor-kappaB inhibitor SN-50 (5 microm), but not its inactive analogue SN-50M (5 microm), fully counteracted Abeta(1-42)- or Abeta(25-35)-induced enhancement of VGK currents, providing evidence for a role of this family of transcription factors in regulating neuronal K+ channel function during exposure to Abeta.
Collapse
|
|
20 |
40 |
19
|
Liotti A, Cosimato V, Mirra P, Calì G, Conza D, Secondo A, Luongo G, Terracciano D, Formisano P, Beguinot F, Insabato L, Ulianich L. Oleic acid promotes prostate cancer malignant phenotype via the G protein-coupled receptor FFA1/GPR40. J Cell Physiol 2018; 233:7367-7378. [PMID: 29663374 DOI: 10.1002/jcp.26572] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related death in industrialized countries. Epidemiologic evidence suggests that obesity promotes aggressive PCa. Recently, a family of Free Fatty Acid (FFA) receptors (FFARs) has been identified and reported to affect several crucial biological functions of tumor cells such as proliferation, invasiveness, and apoptosis. Here we report that oleic acid (OA), one of the most prevalent FFA in human plasma, increases proliferation of highly malignant PC3 and DU-145 PCa cells. Furthermore, docetaxel cytotoxic action, the first-line chemotherapeutic agent for the treatment of androgen-independent PCa, was significantly reduced in the presence of OA, when measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, suggesting that this FFA plays also a role in chemoresistance. OA induced intracellular calcium increase, in part due to the store operated calcium entry (SOCE), measured by a calcium imaging technique. Moreover, PI3K/Akt signaling pathway was enhanced, as revealed by increased Akt phosphorylation levels. Intriguingly, attenuating the expression of FFA1/GPR40, a receptor for long chain FFA including OA, prevented the OA-induced effects. Of relevance, we found that FFA1/GPR40 is significantly overexpressed in tissue specimens of PCa, compared to benign prostatic hyperplasia tissues, at both mRNA and protein expression level, analyzed by Real Time RT-PCR and immunofluorescence experiments, respectively. Our data suggest that OA promotes an aggressive phenotype in PCa cells via FFA1/GPR40, calcium and PI3K/Akt signaling. Thus, FFA1/GPR40, might represent a potential useful prognostic biomarker and therapeutic target for the treatment of advanced PCa.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
40 |
20
|
Formisano L, Guida N, Valsecchi V, Pignataro G, Vinciguerra A, Pannaccione A, Secondo A, Boscia F, Molinaro P, Sisalli MJ, Sirabella R, Casamassa A, Canzoniero LMT, Di Renzo G, Annunziato L. NCX1 is a new rest target gene: role in cerebral ischemia. Neurobiol Dis 2012; 50:76-85. [PMID: 23069678 DOI: 10.1016/j.nbd.2012.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/12/2012] [Accepted: 10/05/2012] [Indexed: 01/01/2023] Open
Abstract
The Na(+)-Ca(2+) exchanger 1 (NCX1), a bidirectional transporter that mediates the electrogenic exchange of one calcium ion for three sodium ions across the plasma membrane, is known to be involved in brain ischemia. Since the RE1-silencing transcription factor (REST) is a key modulator of neuronal gene expression in several neurological conditions, we studied the possible involvement of REST in regulating NCX1 gene expression and activity in stroke. We found that: (1) REST binds in a sequence specific manner and represses through H4 deacetylation, ncx1 gene in neuronal cells by recruting CoREST, but not mSin3A. (2) In neurons and in SH-SY5Y cells REST silencing by siRNA and site-direct mutagenesis of REST consensus sequence on NCX1 brain promoter determined an increase in NCX1 promoter activity. (3) By contrast, REST overexpression caused a reduction in NCX1 protein expression and activity. (4) Interestingly, in rats subjected to transient middle cerebral artery occlusion (tMCAO) and in organotypic hippocampal slices or SH-SY5Y cells exposed to oxygen and glucose deprivation (OGD) plus reoxygenation (RX), the increase in REST was associated with a decrease in NCX1. However, this reduction was reverted by REST silencing. (5) REST knocking down, along with the deriving NCX1 overexpression in the deep V and VIb cortical layers caused a marked reduction in infarct volume after tMCAO. Double silencing of REST and NCX1 completely abolished neuroprotection induced by siREST administration. Collectively, these results demonstrate that REST, by regulating NCX1 expression, may represent a potential druggable target for the treatment of brain ischemia.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
38 |
21
|
Guida N, Laudati G, Anzilotti S, Secondo A, Montuori P, Di Renzo G, Canzoniero LMT, Formisano L. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death. Toxicol Appl Pharmacol 2015; 288:387-98. [PMID: 26307266 DOI: 10.1016/j.taap.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
38 |
22
|
Staiano RI, Granata F, Secondo A, Petraroli A, Loffredo S, Frattini A, Annunziato L, Marone G, Triggiani M. Expression and function of Na+/Ca2+ exchangers 1 and 3 in human macrophages and monocytes. Eur J Immunol 2009; 39:1405-18. [DOI: 10.1002/eji.200838792] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
16 |
36 |
23
|
Molinaro P, Cantile M, Cuomo O, Secondo A, Pannaccione A, Ambrosino P, Pignataro G, Fiorino F, Severino B, Gatta E, Sisalli MJ, Milanese M, Scorziello A, Bonanno G, Robello M, Santagada V, Caliendo G, Di Renzo G, Annunziato L. Neurounina-1, a novel compound that increases Na+/Ca2+ exchanger activity, effectively protects against stroke damage. Mol Pharmacol 2013; 83:142-56. [PMID: 23066092 DOI: 10.1124/mol.112.080986] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have demonstrated that the knockdown or knockout of the three Na(+)/Ca(2+) exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, worsens ischemic brain damage. This suggests that the activation of these antiporters exerts a neuroprotective action against stroke damage. However, drugs able to increase the activity of NCXs are not yet available. We have here succeeded in synthesizing a new compound, named neurounina-1 (7-nitro-5-phenyl-1-(pyrrolidin-1-ylmethyl)-1H-benzo[e][1,4]diazepin-2(3H)-one), provided with an high lipophilicity index and able to increase NCX activity. Ca(2+) radiotracer, Fura-2 microfluorimetry, and patch-clamp techniques revealed that neurounina-1 stimulated NCX1 and NCX2 activities with an EC(50) in the picomolar to low nanomolar range, whereas it did not affect NCX3 activity. Furthermore, by using chimera strategy and site-directed mutagenesis, three specific molecular determinants of NCX1 responsible for neurounina-1 activity were identified in the α-repeats. Interestingly, NCX3 became responsive to neurounina-1 when both α-repeats were replaced with the corresponding regions of NCX1. In vitro studies showed that 10 nM neurounina-1 reduced cell death of primary cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation. Moreover, in vitro, neurounina-1 also reduced γ-aminobutyric acid (GABA) release, enhanced GABA(A) currents, and inhibited both glutamate release and N-methyl-d-aspartate receptors. More important, neurounina-1 proved to have a wide therapeutic window in vivo. Indeed, when administered at doses of 0.003 to 30 μg/kg i.p., it was able to reduce the infarct volume of mice subjected to transient middle cerebral artery occlusion even up to 3 to 5 hours after stroke onset. Collectively, the present study shows that neurounina-1 exerts a remarkable neuroprotective effect during stroke and increases NCX1 and NCX2 activities.
Collapse
|
|
12 |
34 |
24
|
Cuomo O, Gala R, Pignataro G, Boscia F, Secondo A, Scorziello A, Pannaccione A, Viggiano D, Adornetto A, Molinaro P, Li XF, Lytton J, Di Renzo G, Annunziato L. A critical role for the potassium-dependent sodium-calcium exchanger NCKX2 in protection against focal ischemic brain damage. J Neurosci 2008; 28:2053-63. [PMID: 18305240 PMCID: PMC6671846 DOI: 10.1523/jneurosci.4912-07.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 12/24/2007] [Accepted: 01/06/2008] [Indexed: 11/21/2022] Open
Abstract
The superfamily of cation/Ca2+ plasma-membrane exchangers contains two branches, the K+-independent Na+-Ca2+ exchangers (NCXs) and the K+-dependent Na+-Ca2+ exchangers (NCKXs), widely expressed in mammals. NCKX2 is the major neuronally expressed isoform among NCKX members. Despite its importance in maintaining Na+, Ca2+, and K+ homeostasis in the CNS, the role of NCKX2 during cerebral ischemia, a condition characterized by an alteration of ionic concentrations, has not yet been investigated. The present study examines NCKX2 role in the development of ischemic brain damage in permanent middle cerebral artery occlusion (pMCAO) and transient middle cerebral artery occlusion. Furthermore, to evaluate the effect of nckx2 ablation on neuronal survival, nckx2-/- primary cortical neurons were subjected to oxygen glucose deprivation plus reoxygenation. NCKX2 mRNA and protein expression was evaluated in the ischemic core and surrounding ipsilesional areas, at different time points after pMCAO in rats. In ischemic core and in periinfarctual area, NCKX2 mRNA and protein expression were downregulated. In addition, NCKX2 knock-down by antisense oligodeoxynucleotide and NCKX2 knock-out by genetic disruption dramatically increased infarct volume. Accordingly, nckx2-/- primary cortical neurons displayed a higher vulnerability and a greater [Ca2+]i increase under hypoxic conditions, compared with nckx2+/+ neurons. In addition, NCKX currents both in the forward and reverse mode of operation were significantly reduced in nckx2-/- neurons compared with nckx2+/+ cells. Overall, these results indicate that NCKX2 is involved in brain ischemia, and it may represent a new potential target to be investigated in the study of the molecular mechanisms involved in cerebral ischemia.
Collapse
|
research-article |
17 |
33 |
25
|
Cataldi M, Lariccia V, Secondo A, di Renzo G, Annunziato L. The antiepileptic drug levetiracetam decreases the inositol 1,4,5-trisphosphate-dependent [Ca2+]I increase induced by ATP and bradykinin in PC12 cells. J Pharmacol Exp Ther 2005; 313:720-30. [PMID: 15644427 DOI: 10.1124/jpet.104.079327] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study explores the hypothesis that the new anti-epileptic drug levetiracetam (LEV) could interfere with the inositol 1,4,5-trisphosphate (IP(3))-dependent release of intracellular Ca(2+) initiated by G(q)-coupled receptor activation, a process that plays a role in triggering and maintaining seizures. We assessed the effect of LEV on the amplitude of [Ca(2+)](i) response to bradykinin (BK) and ATP in single Fura-2/acetoxymethyl ester-loaded PC12 rat pheochromocytoma cells, which express very high levels of LEV binding sites. LEV dose-dependently reduced the [Ca(2+)](i) increase, elicited either by 1 microM BK or by 100 microM ATP (IC(50), 0.39 +/- 0.01 microM for BK and 0.20 +/- 0.01 microM for ATP; Hill coefficients, 1.33 +/- 0.04 for BK and 1.38 +/- 0.06 for ATP). Interestingly, although the discharge of ryanodine stores by a process of calcium-induced calcium release also took place as part of the [Ca(2+)](i) response to BK, LEV inhibitory effect was mainly exerted on the IP(3)-dependent stores. In fact, the drug was still effective after the pharmacological blockade of ryanodine receptors. Furthermore, LEV did not affect Ca(2+) stored in the intracellular deposits since it did not reduce the amplitude of [Ca(2+)](i) response either to thapsigargin or to ionomycin. In conclusion, LEV inhibits Ca(2+) release from the IP(3)-sensitive stores without reducing Ca(2+) storage into these deposits. Because of the relevant implications of IP(3)-dependent Ca(2+) release in neuron excitability and epileptogenesis, this novel effect of LEV could provide a useful insight into the mechanisms underlying its antiepileptic properties.
Collapse
|
Comparative Study |
20 |
33 |