1
|
Putra A, Ridwan FB, Putridewi AI, Kustiyah AR, Wirastuti K, Sadyah NAC, Rosdiana I, Munir D. The Role of TNF-α induced MSCs on Suppressive Inflammation by Increasing TGF-β and IL-10. Open Access Maced J Med Sci 2018; 6:1779-1783. [PMID: 30455748 PMCID: PMC6236029 DOI: 10.3889/oamjms.2018.404] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND: Mesenchymal stem cells (MSCs) may serve as immunoregulators by producing various anti-inflammatory molecules. Under sufficient level of TNF-α, MSCs become activated and adopt immune-suppressive phenotype (MSCs type-2) by releasing various anti-inflammatory molecule including TGF-β and IL-10. However, the ability of MSC itself to produce IL-10 under TNF-α stimulation and the correlation of TGF-β production of MSCs to IL-10 level remains to be elucidated. AIM: In this study, MSCs were activated with various TNF-α doses to determine the increase of IL-10 and TGF-β level as well as its correlation. MATERIAL AND METHODS: This study used post-test only control group design, by using 3 study groups, consist of 1 control (C) and 2 treatments (T) (TNF-α = 5 and 10 ng/mL) with triplicate induced in MSC for 24 hours, then the levels of IL-10 and TGF-β were measured by using ELISA assay. RESULTS: The results of this study showed a significant increase of TGF-β and IL-10 levels (p < 0.05) at TNF-α 5 and 10 ng/mL dose of TNF-α. Moreover, there was a significant negative correlation between TGF-β and IL-10 level on 5 and 10 ng/mL dose TNF-α treatment. CONCLUSION: Based on our study, we conclude that the 5 ng/mL dose of TNF-α is a sufficient dose for MSCs to suppress the inflammatory milieu. The higher increase of TGF beta is due to the controlled inflammation by IL-10.
Collapse
|
Journal Article |
7 |
67 |
2
|
Murosaki T, Noguchi T, Kakugo A, Putra A, Kurokawa T, Furukawa H, Osada Y, Gong JP, Nogata Y, Matsumura K, Yoshimura E, Fusetani N. Antifouling activity of synthetic polymer gels against cyprids of the barnacle (Balanus amphitrite) in vitro. BIOFOULING 2009; 25:313-20. [PMID: 19191084 DOI: 10.1080/08927010902730516] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Barnacle (Balanus amphitrite) settlement on synthetic hydrogels with various chemical structures was tested in laboratory assays. The results demonstrated that cyprids settle less or not at all on hydrogels and PDMS elastomer compared with the polystyrene control. The low settlement on gels is most likely due to the 'easy release' of initially attached cyprids from the gel surfaces. This low adhesion of cyprids is independent of surface hydrophilicity or hydrophobicity, and of surface charge. The results also revealed that hydrogels can be categorized into two groups. One group showed an extremely strong antifouling (AF) performance that was independent of the elasticity (E) or swelling degree (q) of the gels. The second group showed relatively less strong AF performance that was E- or q-dependent. In the latter case, E, rather than the q, may be the more important factor for cyprid settlement.
Collapse
|
|
16 |
40 |
3
|
Putra A, Alif I, Hamra N, Santosa O, Kustiyah AR, Muhar AM, Lukman K. MSC-released TGF-β regulate α-SMA expression of myofibroblast during wound healing. J Stem Cells Regen Med 2020; 16:73-79. [PMID: 33414583 DOI: 10.46582/jsrm.1602011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Objective: Wound healing without fibrosis remains a clinical challenge and a new strategy to promote the optimal wound healing is needed. Mesenchymal stem cells (MSCs) can completely regenerate tissue injury due to the robust MSCs ability in controlling inflammation niche leading to granulation tissue formation, particularly through a release of various growth factors including transforming growth factor-β (TGF-β). In response to TGF-β stimulation, fibroblasts differentiate into myofibroblast, marked by alpha-smooth muscle actin (α-SMA) that leads to wound healing acceleration. On the other hand, sustained activation of TGF-β in wound areas may contribute to fibrosis-associated scar formation. The aim of this study was to evaluate the α-SMA expression of myofibroblast induced by MSC-released TGF-β during wound healing process. Materials and Methods: Twenty-four full-thickness excisional rat wound models were randomly divided into four groups: sham (Sh), Control (C), and MSCs treatment groups; topically treated by the MSCs at doses 2x106 cells (T1) and 1x106 cells (T2), respectively. While the control group was treated with NaCl. TGF-β level was determined using ELISA assay, α-SMA expression of myofibroblast was analyzed by immunofluorescence staining, and wound size measurement was calculated using a standard caliper. Results: This study showed a significant increase in TGF-β levels in all treatment groups on days 3 and 6. This finding was consistent with a significant increase of α-SMA expression of myofibroblast at day 6 and wound closure percentage, indicating that MSCs might promote an increase of wound closure. Conclusion: MSCs regulated the release of TGF-β to induce α-SMA expression of myofibroblast for accelerating an optimal wound healing.
Collapse
|
Journal Article |
5 |
32 |
4
|
Campbell DL, Price RM, Putra A, Valdés-Curiel A, Trypogeorgos D, Spielman IB. Magnetic phases of spin-1 spin-orbit-coupled Bose gases. Nat Commun 2016; 7:10897. [PMID: 27025562 PMCID: PMC4820996 DOI: 10.1038/ncomms10897] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/29/2016] [Indexed: 11/09/2022] Open
Abstract
Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin-orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
22 |
5
|
Darlan DM, Munir D, Putra A, Jusuf NK. MSCs-released TGFβ1 generate CD4 +CD25 +Foxp3 + in T-reg cells of human SLE PBMC. J Formos Med Assoc 2020; 120:602-608. [PMID: 32718891 DOI: 10.1016/j.jfma.2020.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND/PURPOSE Regulatory T-cell (Treg) defects may cause autoreactivity of both T and B cells, leading to autoimmune disease including systemic lupus erythematosus (SLE). The immune response defects in SLE are characterized by the decreased expression of CD4, CD25, and Foxp3, known as inducible Treg (iTreg). Therefore, restoring iTreg expression can reverse autoimmunity states into immune tolerances leading to normal immune responses. Mesenchymal stem cells (MSCs) have immunomodulatory properties to control inflammatory milieu, including in SLE inflammation by releasing TGFβ1, IL10, and PGE2, thus MSCs can potentially generate iTreg cells. However, the mechanisms of MSC-released TGFβ1 to promote iTreg generation in human SLE remains unclear. This study aims to analyze the role of MSC-released TGFβ1 in generating CD4+, CD25+, and Foxp3+ expression in iTreg cells from human SLE peripheral blood mononuclear cells (PBMCs). METHODS This study used a post-test control group design. MSCs were obtained from human umbilical cord blood and characterized according to their surface antigen expression and multilineage differentiation capacities. PBMCs isolated from SLE patients were divided into five groups, including sham, control, and three treatment groups. The treatment groups were treated by co-culturing MSCs to PBMCs with ratio of 1:1 (T1), 1:25 (T2), and 1:50 (T3) for 72 h incubation. The expression of CD4, CD25, and Foxp3 in Treg was analyzed by flow cytometry assay while TGFβ1 level was determined by Cytometric Bead Array (CBA). RESULTS This study showed that the percentage of CD4+CD25+Foxp3+ iTreg cells was significantly increased in T1 and T2. This finding was aligned with the significant increase of TGFβ1 level. CONCLUSION MSCs promote iTreg cells generation from human SLE PBMCs by releasing TGFβ1 to control SLE disease.
Collapse
|
Journal Article |
5 |
18 |
6
|
Putra A, Pertiwi D, Milla MN, Indrayani UD, Jannah D, Sahariyani M, Trisnadi S, Wibowo JW. Hypoxia-preconditioned MSCs Have Superior Effect in Ameliorating Renal Function on Acute Renal Failure Animal Model. Open Access Maced J Med Sci 2019; 7:305-310. [PMID: 30833992 PMCID: PMC6390148 DOI: 10.3889/oamjms.2019.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute renal failure (ARF) is a serious disease characterised by a rapid loss of renal functions due to nephrotoxic drug or ischemic insult. The clinical treatment approach such as dialysis techniques and continuous renal enhancement have grown rapidly during past decades. However, there is yet no significant effect in improving renal function. Hypoxia-preconditioned mesenchymal stem cells (HP-MSCs) have positive effects on the in vitro survival and stemness, in addition to angiogenic potential. AIM In this study, we aimed to analyse the effect of HP-MSCs administration in improving renal function, characterised by blood urea nitrogen (BUN) and creatinine level. METHODS A group of 15 male Wistar rats weighing 250 g to 300 g were used in this study (n = 5 for each group). Rats were randomly distributed into 3 groups: Vehicle control (Veh) as a control group, HP-MSCs and normoxia MSCs (N-MSCs) as the treatment group. Renal function was evaluated based on the BUN and creatinine levels using the colourimetric method on day 5 and 13. The histological analysis using HE staining was performed on day 13. RESULTS The result showed there is a significant decrease in BUN and creatinine level (p < 0.05). The histological analysis of renal tissue also showed a significant decrease between Veh and treatment group (p < 0.05). CONCLUSION Based on this study, we conclude that HP-MSCs have a superior beneficial effect than N-MSCs in improving renal function in an animal model of gentamicin-induced ARF.
Collapse
|
research-article |
6 |
13 |
7
|
Muhar AM, Putra A, Warli SM, Munir D. Hypoxia-Mesenchymal Stem Cells Inhibit Intra-Peritoneal Adhesions Formation by Upregulation of the IL-10 Expression. Open Access Maced J Med Sci 2019; 7:3937-3943. [PMID: 32165932 PMCID: PMC7061407 DOI: 10.3889/oamjms.2019.713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intra-peritoneal adhesions (IPAs) common occurre in post abdominal surgical. Athough many methods have been developed for controlling IPAs, including mesenchymal stem cells (MSCs) application, however, there is none completely preventing in due to the mesothelial structure may promote the prolonged inflammations leading. Nevertheless hypoxia-MSCs (H-MSCs) have more potent in controlling the inflammation than normoxia-MSCs (N-MSCs) by releasing several anti-inflamation particularly IL-10, however the H-MSCs application to inhibit IPAs remain unclear. AIM The aim of this study was to investigate the effectiveness of H-MSCs in preventing the AIPs event by releasing IL-10 on the ileum abrasion sutured omental patch as the animal model of peritoneal adhesion. METHODS Using 24 IPAs animal model were randomly divided into 4 groups: Sham (Sh), Control (C), H-MSCs at high dose (T1) and H-MSCs at low dose (T2). H-MSCs were incubated under hypoxic conditions (5% O2), 37°C and 5% CO2 for 24 hours. The expression level of IL-10 was performed using RT-PCR analysis. The macroscopic appearance of IPAs was evaluated using Nair's scale base on the absence/presence of adhesion, whereas the microscopic by Zuhlke's scale at Hematoxylin and eosin (H&E) staining. RESULTS This study showed a significanly increase in IL-10 expression (p < 0.05) at all T groups. In line with this, we also found a significant difference in IPAs between T groups and Control as well as a Sham (p < 0.05) either in the macroscopic or microscopic analysis. CONCLUSION H-MSCs has a robust ability in inhibiting severe IPAs characterized by the decreased of adhesion formation and the enhanced expression of IL-10.
Collapse
|
Journal Article |
6 |
13 |
8
|
Putra A, Iwase H, Yamaguchi D, Koizumi S, Maekawa Y, Matsubayashi M, Hashimoto T. In-situ observation of dynamic water behavior in polymer electrolyte fuel cell by combined method of Small-Angle Neutron Scattering and Neutron Radiography. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/247/1/012044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
15 |
13 |
9
|
Sungkar T, Putra A, Lindarto D, Sembiring RJ. Intravenous Umbilical Cord-derived Mesenchymal Stem Cells Transplantation Regulates Hyaluronic Acid and Interleukin-10 Secretion Producing Low-grade Liver Fibrosis in Experimental Rat. Med Arch 2021; 74:177-182. [PMID: 32801431 PMCID: PMC7405996 DOI: 10.5455/medarh.2020.74.177-182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Immunomodulation properties of mesenchymal stem cells have attracted tremendous attention that eventually could regress liver fibrosis process. Aim: The study aims to demonstrate the immunomodulation activities of Umbilical cord-derived Mesenchymal stem cells (UC-MSCs) affecting interleukin-10 (IL-10) and hyaluronic acid (HA) secretion post intraperitoneal injection of CCl4, potent hepatotoxin, induced liver fibrosis among experimental rats. Methods: There were 18 Sprague-Dawley (SD) rats divided into three treatment groups (G1 sham group, G2 untreated liver fibrosis group, and G3 UC-MSCs treated-group) and isolated in Stem Cell and Cancer Research Facility, Semarang, Indonesia. Blood examination was conducted after 3 and 14 days of UC-MSCs transplantation using sandwich based ELISA followed by the histopathological analysis of rat liver tissue. ANOVA and posthoc LSD tests were determined the significance against all groups based on their quantitative measurement. Results: UC-MSCs have been successfully extracted and isolated as well as positive with osteogenic differentiation (Alizarin dye). In further analysis, there were significant mean differences among all groups through the ANOVA test, both IL-10 and HA secretion, concurrent with low-grade liver fibrosis in G3. IL-10 elevates during the early phase of UC-MSCs transplantation, and HA significantly reduced on the 14th day of transplantation, it characterizes the liver fibrosis that has been attenuated. Conclusion: The transplantation of UC-MSCs has given an opportunity for the treatment of a wide range of chronic liver diseases through the immunomodulation properties via its paracrine effects that regulate specific cytokine to suppress fibrosis development.
Collapse
|
Journal Article |
4 |
12 |
10
|
Putra A, Rosdiana I, Darlan DM, Alif I, Hayuningtyas F, Wijaya I, Aryanti R, Makarim FR, Antari AD. Intravenous Administration is the Best Route of Mesenchymal Stem Cells Migration in Improving Liver Function Enzyme of Acute Liver Failure. Folia Med (Plovdiv) 2020. [PMID: 32337897 DOI: 10.3897/folmed.62.e47712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) migrate and transmigrate to acute liver failure (ALF) area due to vascular endothelial growth factor (VEGF) stimulation as an attractant molecule then actively giving the paracrine signaling and or differentiating into primary hepatocytes, however the best route of MSCs transplanted to liver injury area remains unclear. AIM In this study we compare intravenous (IV) and intraperitoneal (IP) route of MSCs administration by analyzing serum glutamic pyruvic transaminase (SGPT), serum glutamic-oxaloacetic transaminase (SGOT) and bilirubin level as improvement markers of liver function and VEGF as attractant-proliferation molecule on days 2 and 5. MATERIALS AND METHODS Eighteen male Sprague-Dawley rats weighting 200 g were used in this study. They were divided in three study groups: vehicle control, IP and IV groups. The IV group was treated by MSCs at dose 1×106 by lateral tail vein injection and IP group received 1×106 MSCs via IP injection. The level of SGPT, SGOT and bilirubin were measured by an automatic analyzer, the VEGF level using enzyme-linked immunosorbent assay (ELISA), while the CD73 expression was evaluated using immunohistochemistry. RESULTS This study showed that IV injection of MSCs was more efficient for increasing liver function than IP treatment group that confirmed by the observed significant decrease in SGPT, SGOT and bilirubin level on days 2 and 5 (p<0.001). This effect was most likely mediated by the significant increase of VEGF level (p<0.05) on days 2 and 5. CONCLUSION Our result conclude that an IV administration of MSCs was more efficacious than the IP administration for liver injury regeneration.
Collapse
|
Comparative Study |
5 |
9 |
11
|
Putra A, Rosdiana I, Darlan DM, Alif I, Hayuningtyas F, Wijaya I, Aryanti R, Makarim FR, Antari AD. Intravenous Administration is the Best Route of Mesenchymal Stem Cells Migration in Improving Liver Function Enzyme of Acute Liver Failure. Folia Med (Plovdiv) 2021; 62:52-58. [PMID: 32337897 DOI: 10.3897/folmed..e47712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/30/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) migrate and transmigrate to acute liver failure (ALF) area due to vascular endothelial growth factor (VEGF) stimulation as an attractant molecule then actively giving the paracrine signaling and or differentiating into primary hepatocytes, however the best route of MSCs transplanted to liver injury area remains unclear. AIM In this study we compare intravenous (IV) and intraperitoneal (IP) route of MSCs administration by analyzing serum glutamic pyruvic transaminase (SGPT), serum glutamic-oxaloacetic transaminase (SGOT) and bilirubin level as improvement markers of liver function and VEGF as attractant-proliferation molecule on days 2 and 5. MATERIALS AND METHODS Eighteen male Sprague-Dawley rats weighting 200 g were used in this study. They were divided in three study groups: vehicle control, IP and IV groups. The IV group was treated by MSCs at dose 1×106 by lateral tail vein injection and IP group received 1×106 MSCs via IP injection. The level of SGPT, SGOT and bilirubin were measured by an automatic analyzer, the VEGF level using enzyme-linked immunosorbent assay (ELISA), while the CD73 expression was evaluated using immunohistochemistry. RESULTS This study showed that IV injection of MSCs was more efficient for increasing liver function than IP treatment group that confirmed by the observed significant decrease in SGPT, SGOT and bilirubin level on days 2 and 5 (p<0.001). This effect was most likely mediated by the significant increase of VEGF level (p<0.05) on days 2 and 5. CONCLUSION Our result conclude that an IV administration of MSCs was more efficacious than the IP administration for liver injury regeneration.
Collapse
|
Journal Article |
4 |
8 |
12
|
Hermansyah D, Putra A, Muhar AM, Retnaningsih, Wirastuti K, Dirja BT. Mesenchymal Stem Cells Suppress TGF-β Release to Decrease α-SMA Expression in Ameliorating CCl4-Induced Liver Fibrosis. Med Arch 2021; 75:16-22. [PMID: 34012193 PMCID: PMC8116080 DOI: 10.5455/medarh.2021.75.16-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: Liver fibrosis (LF) is the excessive deposition of extracellular matrix (ECM), produced by overactivated hepatic stellate cells, following prolonged transforming growth factor-β (TGF-β) stimulation. The ability of mesenchymal stem cells (MSCs) to improve LF has been reported. However, the mechanisms of MSCs to ameliorate LF through suppressing TGF-β and α-smooth muscle actin (α-SMA) remains unclear. Aim: To investigate the effects of MSCs treatment on suppressing TGF-β levels and decreasing α-SMA expression in an LF model. Methods: In this study, wenty-four male Wistar rats were injected intraperitoneal (IP) with carbon tetrachloride (CCL4), twice weekly, for eight weeks, to induce LF. Rats were randomly assigned to six groups: Sham, Control, Sham-lo, Sham-hi, and MSC-treated groups, at doses of 1 x 106 (T1) and 2x106 (T2) cells. TGF-β levels were analyzed by enzyme-linked immunosorbent assay (ELISA), whereas α-SMA expression was determined by immunohistochemistry staining. Results: MSCs decreased the expression of TGF-β in T1 and T2 groups on day 3 and 14. The T2 group showed lower TGF-β levels than that in the T1 group. This finding was in line with the observed decrease in α-SMA expression and the number of collagen. Conclusion: MSCs treatment ameliorated LF by suppressing TGF-β production, leading to decreased α-SMA expression in a CCL4-induced LF animal model.
Collapse
|
Journal Article |
4 |
6 |
13
|
Putra A, Widyatmoko A, Ibrahim S, Amansyah F, Amansyah F, Berlian MA, Retnaningsih R, Pasongka Z, Sari FE, Rachmad B. Case series of the first three severe COVID-19 patients treated with the secretome of hypoxia-mesenchymal stem cells in Indonesia. F1000Res 2021; 10:228. [PMID: 35350705 PMCID: PMC8927740 DOI: 10.12688/f1000research.51191.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the outbreak of coronavirus disease 2019 (COVID-19), which has been rapidly spreading. Several guideline therapies have been proposed as a possible treatment for SARS-CoV-2, however, these therapies are not sufficient to treat a severe condition of SARS-CoV-2 infection characterised by the increase of D-dimer and C-reactive protein (CRP) levels, and patchy ground-glass opacities (GGOs). Secretome-mesenchymal stem cells (S-MSCs) produced by MSCs under hypoxia could excessively release several anti-inflammatory cytokines and growth factors to control the COVID-19 cytokine storm and accelerate lung injury improvement. This is the first study investigating the clinical outcomes of three severe COVID-19 patients admitted to the intensive care unit of three different hospitals in Indonesia treated with S-MSCs. The decrease of D-dimer and CRP level was reported for all patients treated with S-MSCs. This was in line with improvement of pulmonary radiology, blood gas level, and hematologic assessment. In conclusion, these cases suggest that S-MSCs could effectively control D-dimer, CRP level and GGOs of severe COVID-19 patients associated with recovered pulmonary function.
Collapse
|
|
4 |
6 |
14
|
Mukti AI, Ilyas S, Warli SM, Putra A, Rasyid N, Munir D, Siregar KB, Ichwan M. Umbilical Cord-Derived Mesenchymal Stem Cells Improve TGF-β, α-SMA and Collagen on Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats. Med Arch 2022; 76:4-11. [PMID: 35422561 PMCID: PMC8976889 DOI: 10.5455/medarh.2022.76.4-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022] Open
Abstract
Background A Erectile dysfunction (ED) is one of the well-known comorbidities in males with diabetes mellitus (DM), whose pathogenesis might be induced by dysregulation of corpus cavernosum smooth muscle cells. UC-MSCs are multipotent cells that attract considerable interest due to immunoregulatory properties and might be a potential strategy to regulate and recover the functional cells and tissues, including tissue improvement in DMED. Objective This study aims to determine the efficacy of UC-MSCs in improving the erectile function of DMED rats through analyzing the expression of TGF-β, α-SMA, and collagen. Methods Total number of 30 male Sprague-Dawley rats (6 to 8 weeks old) were randomly divided into four groups (negative control group, positive control group, T1 group, and T2 group). After 16 h fast, 24 rats were randomly selected and intraperitoneally injected with streptozotocin to induce DM. At 8 weeks after STZ injection, rats with DMED were identified by unresponsive erectile stimulation within 30 min. PC group received 500 μL; T1 rats treated with 500 μL PBS containing 1x106 UC-MSCs; T2 rats treated with 500 μL PBS containing 3x106 UC-MSCs. After MSCs treatment, the rats were sacrificed and the corpus cavernosum tissues were prepared for histological observations. Results This study resulted in the administration of UC-MSCs could downregulate the expression of TGF-β, α-SMA, and collagen leading to the improvement of DMED. Conclusion UC-MSCs improve the expression of TGF-β, α-SMA, and collagen on erectile dysfunction in streptozotocin-induced diabetic rats.
Collapse
|
research-article |
3 |
5 |
15
|
Putra A, Antari AD, Kustiyah AR, Intan YSN, Sadyah NAC, Wirawan N, Astarina S, Zubir N, Munir D. Mesenchymal stem cells accelerate liver regeneration in acute liver failure animal model. BIOMEDICAL RESEARCH AND THERAPY 2018. [DOI: 10.15419/bmrat.v5i11.498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Introduction: The massive hepatic necrosis of acute liver failure (ALF) results in a sudden loss of hepatic cells. Although most hepatocyte cells of ALF are completely lost, stem cell-derived circulating cells and endogenous progenitor cells rapidly regenerate them. Mesenchymal stem cells (MSCs) have a critical role in the regeneration of liver injury through regulating platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) levels. However, their fluctuating levels in the healing process and correlation to the decrease of liver function markers remain unclear. The aim of this study was to analyze the effects of MSCs in accelerating liver regeneration of ALF by measuring VEGF and PDGF levels on day 2 and 7, as well as SGPT and SGOT levels, and assessing histopathology appearance.
Methods: Using an ALF rat model, 12 animals were randomly assigned into two groups: umbilical cord (UC)-MSC injection (T1) and vehicle control (Veh). ELISA assay was employed to measure PDGF and VEGF levels, an automatic analyzer was used to assess serum glutamic pyruvic transaminase (SGPT) and serum glutamic oxaloacetic transaminase (SGOT), and hematoxylin and eosin (H&E) staining was used to evaluate morphological appearance.
Results: The study showed an significant (P<0.001) increase of PDGF and VEGF levels on the 2nd day, followed by a decrease on the 7th day, along with a decrease of SGPT and SGOT levels as well as the normality of histology appearance.
Conclusion: In conclusion, administration of MSCs may accelerate liver regeneration of ALF through PDGF and VEGF regulation.
Collapse
|
|
7 |
4 |
16
|
Restimulia L, Ilyas S, Munir D, Putra A, Madiadipoera T, Farhat F, Sembiring RJ, Ichwan M, Amalina ND, Alif I. The CD4+CD25+FoxP3+ Regulatory T Cells Regulated by MSCs Suppress Plasma Cells in a Mouse Model of Allergic Rhinitis. Med Arch 2021; 75:256-261. [PMID: 34759444 PMCID: PMC8563054 DOI: 10.5455/medarh.2021.75.256-261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Allergic Rhinitis (AR) is the most common immunological disease that has been associated with inflammatory responses and is characterized by sneezing. Previous studies found that AR's allergen exposure significantly induces plasma cells and reduces regulatory T (Treg) cells, a population that contributes to control AR. Therefore, upregulating Treg expression can regulate plasma cells leading to inhibit sneezing in AR. Mesenchymal stem cells (MSCs) are multipotent stem cells that have the immunoregulatory and antiinflammation ability by secreting various cytokines including IL-10 and TGF-β which potent as a promising therapeutic modality for allergic airway diseases, including AR. Objective: To investigate the role of MSCs in generating CD4+, CD25+, and Foxp3+ Regulatory T cells associated with suppressing plasma cell in AR model. Methods: In this study, fifteen male Wistar rats (6 to 8 weeks old) were randomly divided into three groups (control group, sham group, and MSCs treatment group). OVA nasal challenge was conducted daily from day 15 to 21, and MSCs (1x106) were administrated intraperitoneally to OVA-sensitized rats on day 21. Sneezing was observed from day 22 to 28. The rats were sacrificed on day 22 and day 28. The expression of CD4+ CD25+ Foxp3+ in Treg and plasma cells was analyzed by flow cytometry assay. Results: This study showed that the percentage of plasma cell and sneezing times significantly decreased in MSCs treatment. This finding was aligned with the significant increase of CD4+CD25+Foxp3+ Treg level. Conclusion: MSCs administration suppress plasma cells population and sneezing times by up regulating Treg to control AR.
Collapse
|
|
4 |
3 |
17
|
Putra A, Widyatmoko A, Ibrahim S, Amansyah F, Amansyah F, Berlian MA, Retnaningsih R, Pasongka Z, Sari FE, Rachmad B. Case series of the first three severe COVID-19 patients treated with the secretome of hypoxia-mesenchymal stem cells in Indonesia. F1000Res 2022; 10:228. [PMID: 35350705 DOI: 10.12688/f1000research.51191.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the outbreak of coronavirus disease 2019 (COVID-19), which has been rapidly spreading. Several guideline therapies have been proposed as a possible treatment for SARS-CoV-2, however, these therapies are not sufficient to treat a severe condition of SARS-CoV-2 infection characterised by the increase of D-dimer and C-reactive protein (CRP) levels, and patchy ground-glass opacities (GGOs). Secretome-mesenchymal stem cells (S-MSCs) produced by MSCs under hypoxia could excessively release several anti-inflammatory cytokines and growth factors to control the COVID-19 cytokine storm and accelerate lung injury improvement. This is the first study investigating the clinical outcomes of three severe COVID-19 patients admitted to the intensive care unit of three different hospitals in Indonesia treated with S-MSCs. The decrease of D-dimer and CRP level was reported for all patients treated with S-MSCs. This was in line with improvement of pulmonary radiology, blood gas level, and hematologic assessment. In conclusion, these cases suggest that S-MSCs could effectively control D-dimer, CRP level and GGOs of severe COVID-19 patients associated with recovered pulmonary function.
Collapse
|
Case Reports |
3 |
2 |
18
|
Ekasaputra VM, Putra A, Muhar AM, Varessa J, Cikita RB, Wijaya SAP, Nazar MA. Mesenchymal Stem Cell-injected Omental Patch More Effective Promoting Wound Healing in Bowel Perforation Animal Model. Med Arch 2020; 74:332-336. [PMID: 33424084 PMCID: PMC7780763 DOI: 10.5455/medarh.2020.74.332-336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Bowel perforation (BP) occurs as the complication of many gastrointestinal problems. Omental patch (OP) is one of the methods to place omentum flaps in the perforated area. Mesenchymal stem cells (MSCs) may increase regeneration process in all tissues. Aim: to demonstrate the role of MSC in accelerating of wound healing process by analyzing fibroblast and collagen appearance in perforated bowel conditions. Methods: Using a BP rabbit model, 18 rabbit were randomly assigned into three groups: combination of umbilical cord (UC)-MSCs injection and OP (T1), OP only (T2) and vehicle control (Veh). Hematoxylin-eosin staining and Masson’s trichrome staining were performed to analyze the level of fibroblast and collagen. Wound length were measured using standardized caliper. Results: The study showed a significant (P<0.05) increase of fibroblast and collagen amount on T1 and T2, in which T1 was higher than T2. This result was also followed by the decrease of wound length. Conclusion: The combination of MSCs and OP-sutured in perforated bowel are better to accelerate wound healing than OP only in BP cases.
Collapse
|
Journal Article |
5 |
2 |
19
|
Ikhsan R, Putra A, Munir D, Darlan DM, Suntoko B, Kustiyah AR, Alif I, Prasetio A. Mesenchymal Stem Cells Induce Regulatory T-cell Population in Human SLE. BANGLADESH JOURNAL OF MEDICAL SCIENCE 2020. [DOI: 10.3329/bjms.v19i4.46635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The mechanisms underlying peripheral disorders during systemic lupus erythematosus (SLE) were found to be shared with tolerance disorders and mediated by T-regulator (T-reg) cells. Mesenchymal stem cells (MSCs) may inhibit T-cell subset differentiation and induce the T-reg cell phenotype. However, the capacity of MSCs to promote functional T-reg cells in SLE patients remains unclear.
Objectives: This study aimed to analyze the capacity of MSCs to induce the production of functional CD4+ CD25+ Foxp3+ T-reg cells, in vitro, under co-culture conditions with human SLE cells.
Methods: This study used a pre- and post-test control group design. Peripheral blood mononuclear cells (PBMCs) were extracted from SLE patients at the Kariadi Hospital, and MSCs were derived from human umbilical cords (hUCs) The PBMC control group was treated with standard medium, and the treatment group was co-cultured with hUC-MSCs. After 24 hours of co-culture incubation, T-reg cells were removed from the PBMC pool, using magnetic-activated cell sorting (MACS), and the population was assessed using the trypan blue exclusion assay.
Results: A significant increase in the population of T-reg cells was observed (P < 0.001) after 24 hours of co-culture incubation with hUC-MSCs.
Conclusion: This study concluded that MSCs have the capacity to enhance the T-reg population in human SLE PBMCs.
Bangladesh Journal of Medical Science Vol.19(4) 2020 p.743-748
Collapse
|
|
5 |
2 |
20
|
Yustianingsih V, Sumarawati T, Putra A. Hypoxia enhances self-renewal properties and markers of mesenchymal stem cells. UNIVERSA MEDICINA 2019. [DOI: 10.18051/univmed.2019.v38.164-171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BackgroundMesenchymal stem cells (MSCs) are multipotent stromal cells that express CD73, CD90, and CD105 surface markers, but not CD14, CD45, CD34, CD11b, and HLA-DR. MSCs under hypoxic conditions have the essential role of maintaining the stemness capacity by releasing several growth factors into their medium, known as hypoxia conditioned medium (HCM). This study was performed to compare the effect of percentage of HCM to normoxic medium (NM) in increasing MSC proliferation marked by proliferation rate and surface marker expression.MethodsThis study was of post-test only control group design using human umbilical cord-MSCs (hUC-MSCs) as subjects. The HCM treatment group was obtained by culturing MSCs under 5% O2, whereas the NM control group was grown under 20% O2. The hUC-MSCs were divided into 4 groups with different dose ratios of HCM to NM (25%:75%; 50%:50%; 75%:25% for P1, P2 and P3, respectively and 100% of NM for the controls). All of these groups were maintained at 37oC and the data was collected after 72 hours incubation. MSC marker expression of CD73, CD90 and CD105 was analyzed using flow cytometry and MSC proliferation by trypan blue assay. ResultThere were significant differences in MSC marker expression of CD73, CD90 and CD105 and proliferation at all dose ratios of HCM to NM (p<0.05).ConclusionLow oxygen concentration promotes MSC proliferation and stemness thus it might be beneficial for maintaining the MSC physiologic niche in-vitro.
Collapse
|
|
6 |
2 |
21
|
Sazli BI, Lindarto D, Hasan R, Putra A, Pranoto A, Sembiring RJ, Ilyas S, Syafril S. Secretome of Hypoxia-Preconditioned Mesenchymal Stem Cells Enhance Angiogenesis in Diabetic Rats with Peripheral Artery Disease. Med Arch 2023; 77:90-96. [PMID: 37260802 PMCID: PMC10227841 DOI: 10.5455/medarh.2023.77.90-96] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/24/2023] [Indexed: 09/29/2023] Open
Abstract
Background Lower limb peripheral artery disease (PAD) is the main risk of diabetes mellitus which result to high mortality rate. Approximately, 50% of patients who receive several treatments have passed away or lost limbs at a year's follow-up. Secretome of hypoxia mesenchymal stem cells (S-MSCs) contains several active soluble molecules from hypoxia MSCs (H-MSCs) that capable inducing anti-inflammatory and vascular regeneration in PAD. Objective In this study, we investigated the therapeutic potential of S-MSCs in improving dynamic function and angiogenesis of PAD diabetic rats. Methods The PAD was established by the incision from the groin to the inner thigh and distal ligation of femoral arteries in rats with diabetes. Rats were administered with 200 µL and 400 µL S-MSCs that successfully filtrated using tangential flow filtration (TFF) system based on various molecular weight cut-off categories intravenously. ELISA assay was used to analyze the cytokines and growth factors contained in S-MSCs. Tarlov score were examined at day 1, 3, 5, 7, 10 and 14. The rats were sacrificed at day 14 and muscle tissues were collected for immunohistochemistry (IHC) and gene expression analysis. Results ELISA assay showed that S-MSCs provides abundant level of VEGF, PDGF, bFGF, IL-10 and TGFβ. In vivo administration of S-MSCs remarkably enhanced the Tarlov score. S-MSCs improved angiogenesis through enhancing VEGF gene expression and significantly increasing CD31 positive area in muscle tissue of PAD diabetic rats. Conclusion Our findings suggest that S-MSCs could improves dynamic function and angiogenesis in PAD diabetic rats.
Collapse
|
research-article |
2 |
2 |
22
|
Setiawan E, Purwanto B, Wasita B, Putra A. Locally injected Mesenchymal Stem Cells optimize angiogenesis by regulating VEGF and CD31 expression in duodenal perforation. Ann Med Surg (Lond) 2022; 82:104529. [PMID: 36268307 PMCID: PMC9577437 DOI: 10.1016/j.amsu.2022.104529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Duodenal perforation is considered as one of gastrointestinal emergency with high morbidity and mortality rate. The MSCs have the ability to improve wound healing by releasing several growth factors and anti-inflammatory cytokines to promote the angiogenesis process. This study aimed to investigate the role of MSCs in duodenal perforation wound healing. Methods MSCs were isolated from rat umbilical cord and injected into duodenal wound site at doses of 1.5x10 [(Putra et al., 2018) 66 cells for T1 group and 3x10 [(Putra et al., 2018) 66 cells for T2 group. The control group was treated by local injection of normal saline. The VEGF levels were measured by Western blot, while CD31 expression was analyzed using immunohistochemistry staining. All examinations were assessed on days 3 and 7. Results Results showed a significant increase in VEGF and CD31 expression on days 3 and 7 (p < 0,05). The VEGF level was significantly decreased on day 7 compared to day 3. Conclusion The administration of MSCs improved the angiogenesis process in duodenal perforation by enhancing VEGF and CD31 expression.
Duodenal perforation is considered as one of gastrointestinal emergency with high morbidity and mortality rate. The MSCs have the ability to improve wound healing by releasing several growth factors and anti-inflammatory cytokines to promote the angiogenesis process. This study aimed to investigate the role of MSCs in duodenal perforation wound healing. Results showed a significant increase in VEGF and CD31 expression on days 3 and 7. The administration of MSCs improved the angiogenesis process in duodenal perforation.
Collapse
|
|
3 |
2 |
23
|
Hermansyah D, Putra A, Munir D, Lelo A, Amalina ND, Alif I. Synergistic Effect of Curcuma longa Extract in Combination with Phyllanthus niruri Extract in Regulating Annexin A2, Epidermal Growth Factor Receptor, Matrix Metalloproteinases, and Pyruvate Kinase M1/2 Signaling Pathway on Breast Cancer Stem Cell. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM: This study aimed to investigate the synergistic effects of the combination between Curcuma longa extract (CL) and Phyllanthus niruri extract (PN) in inhibiting optimally the MDA-MB-231 breast cancer stem cells (BCSCs) growth and metastatic by exploring the target and molecular mechanism using integrative bioinformatics approaches and in vitro.
METHODS: CL and PN extracts were prepared by maceration method using ethanol 70%. The antiproliferative effect of CL and PN single and combination treatment was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay. The bioinformatic approach was performed to identify molecular targets, key proteins, and molecular mechanism of curcumin and phyllanthin as CL and PN secondary metabolite, respectively, targeted at stemness and migration pathway of BCSCs.
RESULTS: The in vitro study showed that CL and PN possess cytotoxic activity in time- and dose-dependent manner. The combination of CL and PN has a synergistic effect by modulating the sensitivity of cells. Using a bioinformatics approach, the annexin A2 (ANXA2), epidermal growth factor receptor (EGFR), matrix metalloproteinases (MMPs), and pyruvate kinase M1/2 (PKM) as potential targets of curcumin and phyllanthin correlated with metastatic inhibition of BC. In addition, molecular docking showed that curcumin and phyllanthin performed similar or better interaction to stemness differentiation regulator pathway particularly histone deacetylase 1, EGFR, Heat Shock Protein 90 Alpha Family Class B Member 1, Hypoxia Inducible Factor 1 Subunit Alpha, and MMP9.
CONCLUSION: Combination of CL and PN has potential for the treatment of metastatic BCSCs by targeting ANXA2, EGFR, MMPs, and PKM to resolve stemness and inhibit of BCSCs.
Collapse
|
|
4 |
1 |
24
|
Putra A, Suwiryo ZH, Muhar AM, Widyatmoko A, Rahmi FL. The Role of Mesenchymal Stem Cells in Regulating PDGF and VEGF during Pancreatic Islet Cells Regeneration in Diabetic Animal Model. Folia Med (Plovdiv) 2021; 63:875-883. [DOI: 10.3897/folmed.63.e57636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction: Diabetes is a heterogeneous group of metabolic diseases characterized by elevated blood glucose due to autoimmune disorder or a combination of insulin resistance and insulin deficiency. VEGF and PDGF are the main actors in the regeneration of damaged pancreatic tissue. However, the prolonged release of these molecules may induce fibrosis formation. Mesenchymal stem cells (MSCs) have a high potential to regenerate damaged pancreatic tissue by releasing PDGF and VEGF.
Aim: This study aimed to investigate the effect of MSCs on the levels of PDGF and VEGF on days 2 and 44 in diabetic mice and determine the number of pancreatic islet cells and blood glucose levels.
Materials and methods: This study used a post-control group design with animals divided into five groups: sham, control, and three treatment groups (P) which were given MSCs at doses of 1.5×105, 3×105, and 6×105 cells. The levels of PDGF, VEGF, and blood glucose were measured by enzyme-linked immunosorbent assay (ELISA), while the number of pancreatic islet cells was analyzed using H&E staining.
Results: This study showed a significant increase of VEGF and PDGF levels on day 2 and a significant increase in islet cell percentages on day 44 in line with the decreased blood glucose level. However, there was no difference between VEGF and PDGF levels on day 44.
Conclusions: MSCs regulate PDGF and VEGF levels in wound healing phases and remodel pancreatic islet β-cells regeneration to control blood glucose in diabetic model mice.
Collapse
|
|
4 |
1 |
25
|
Kuntardjo N, Dharmana E, Chodidjah C, Nasihun TR, Putra A. TNF-α-Activated MSC-CM Topical Gel Effective in Increasing PDGF Level, Fibroblast Density, and Wound Healing Process Compared to Subcutaneous Injection Combination. MAJALAH KEDOKTERAN BANDUNG 2019. [DOI: 10.15395/mkb.v51n1.1479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
|
6 |
1 |