1
|
Ben-Salem S, Al-Shamsi AM, John A, Ali BR, Al-Gazali L. A novel whole exon deletion in WWOX gene causes early epilepsy, intellectual disability and optic atrophy. J Mol Neurosci 2014; 56:17-23. [PMID: 25403906 DOI: 10.1007/s12031-014-0463-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 02/05/2023]
Abstract
Recent studies have implicated the WW domain-containing oxidoreductase encoding gene (WWOX) in a severe form of autosomal recessive neurological disorder. This condition showed an overlapping spectrum of clinical features including spinocerebellar ataxia associated with generalized seizures and delayed psychomotor development to growth retardation, spasticity, and microcephaly. We evaluated a child from a consanguineous Emirati family that presented at birth with growth retardation, microcephaly, epileptic seizures, and later developed spasticity and delayed psychomotor development. Screening for deletions and duplications using whole-chromosomal microarray analysis identified a novel homozygous microdeletion encompassing exon 5 of the WWOX gene. Analysis of parental DNA indicated that this deletion was inherited from both parents and lies within a large region of homozygosity. Sanger sequencing of the cDNA showed that the deletion resulted in exon 5 skipping leading to a frame-shift and creating a premature stop codon at amino acid position 212. Quantification of mRNA revealed striking low level of WWOX expression in the child and moderate level of expression in the mother compared to a healthy control. To the best of our knowledge, this is the first homozygous germline structural variation in WWOX gene resulting in truncated transcripts that were presumably subject to NMD pathway. Our findings extend the clinical and genetic spectrum of WWOX mutations and support a crucial role of this gene in neurological development.
Collapse
|
Case Reports |
11 |
36 |
2
|
Komara M, Al-Shamsi AM, Ben-Salem S, Ali BR, Al-Gazali L. A Novel Single-Nucleotide Deletion (c.1020delA) in NSUN2 Causes Intellectual Disability in an Emirati Child. J Mol Neurosci 2015; 57:393-9. [PMID: 26055038 DOI: 10.1007/s12031-015-0592-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/27/2015] [Indexed: 02/08/2023]
Abstract
Intellectual disability (ID) is a major public health burden on most societies with significant socioeconomic costs. It has been shown that genetic mutations in numerous genes are responsible for a proportion of hereditary forms of ID. NOP2/Sun transfer RNA (tRNA) methyltransferase family member 2 encoded by NSUN2 gene is a highly conserved protein and has been shown to cause autosomal recessive ID type 5 (MRT5). In this study, we recruited an Emirati consanguineous family with a patient diagnosed with ID. Whole-exome sequencing revealed a homozygous variant c.1020delA in NSUN2 gene. The variants segregated in an autosomal recessive mode of inheritance in the family. This variant is novel and causes a frameshift and premature stop codon. At the messenger RNA (mRNA) level, relative expression analysis showed a decreased level of NSUN2 mRNA in the affected child compared to a healthy individual. Mutation prediction analysis and clinical investigation confirmed the pathogenic nature of the identified variant. We therefore conclude that c.1020delA mutation in NSUN2 is most likely the cause of ID in our patient.
Collapse
|
Case Reports |
10 |
34 |
3
|
Ben-Salem S, Gleeson JG, Al-Shamsi AM, Islam B, Hertecant J, Ali BR, Al-Gazali L. Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay. Metab Brain Dis 2015; 30:687-94. [PMID: 25227173 PMCID: PMC4915861 DOI: 10.1007/s11011-014-9618-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/08/2014] [Indexed: 02/05/2023]
Abstract
Deficiency of Asparagine Synthetase (ASNSD, MIM 615574) is a very rare autosomal recessive disorder presenting with some brain abnormalities. Affected individuals have congenital microcephaly and progressive encephalopathy associated with severe intellectual disability and intractable seizures. The loss of function of the asparagine synthetase (ASNS, EC 6.3.5.4), particularly in the brain, is the major cause of this particular congenital microcephaly. In this study, we clinically evaluated an affected child from a consanguineous Emirati family presenting with congenital microcephaly and epileptic encephalopathy. In addition, whole-exome sequencing revealed a novel homozygous substitution mutation (c.1193A > C) in the ASNS gene. This mutation resulted in the substitution of highly conserved tyrosine residue by cysteine (p.Y398C). Molecular modeling analysis predicts hypomorphic and damaging effects of this mutation on the protein structure and altering its enzymatic activity. Therefore, we conclude that the loss of ASNS function is most likely the cause of this condition in the studied family. This report brings the number of reported families with this very rare disorder to five and the number of pathogenic mutations in the ASNS gene to four. This finding extends the ASNS pathogenic mutations spectrum and highlights the utility of whole-exome sequencing in elucidation the causes of rare recessive disorders that are heterogeneous and/or overlap with other conditions.
Collapse
|
Case Reports |
10 |
29 |
4
|
Ben-Salem S, Al-Shamsi AM, Gleeson JG, Ali BR, Al-Gazali L. Mutation spectrum of Joubert syndrome and related disorders among Arabs. Hum Genome Var 2014; 1:14020. [PMID: 27081510 PMCID: PMC4785524 DOI: 10.1038/hgv.2014.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 02/08/2023] Open
Abstract
Joubert syndrome (JS) is a rare autosomal recessive (AR), neurological condition characterized by dysgenesis of the cerebellar vermis with the radiological hallmark of molar tooth sign, oculomotor apraxia, recurrent hyperventilation and intellectual disability. Most cases display a broad spectrum of additional features, including polydactyly, retinal dystrophy and renal abnormalities, which define different subtypes of JS-related disorders (JSRDs). To date, 23 genes have been shown to cause JSRDs, and although most of the identified genes encode proteins involved in cilia function or assembly, the molecular mechanisms associated with ciliary signaling remain enigmatic. Arab populations are ethnically diverse with high levels of consanguinity (20–60%) and a high prevalence of AR disorders. In addition, isolated communities with very-high levels of inbreeding and founder mutations are common. In this article, we review the 70 families reported thus far with JS and JSRDs that have been studied at the molecular level from all the Arabic countries and compile the mutations found. We show that JS and the related JSRDs are genetically heterogeneous in Arabs, with 53 mutations in 15 genes. Thirteen of these mutations are potentially founder mutations for the region.
Collapse
|
Review |
11 |
27 |
5
|
Abdelrahman HA, Al-Shamsi AM, Ali BR, Al-Gazali L. A null variant in PUS3 confirms its involvement in intellectual disability and further delineates the associated neurodevelopmental disease. Clin Genet 2018; 94:586-587. [PMID: 30308082 DOI: 10.1111/cge.13443] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023]
|
Case Reports |
7 |
24 |
6
|
Akawi NA, Al-Jasmi F, Al-Shamsi AM, Ali BR, Al-Gazali L. LINS, a modulator of the WNT signaling pathway, is involved in human cognition. Orphanet J Rare Dis 2013; 8:87. [PMID: 23773660 PMCID: PMC3847167 DOI: 10.1186/1750-1172-8-87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/12/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inherited intellectual disability (ID) conditions are a group of genetically heterogeneous disorders that lead to variable degrees of cognition deficits. It has been shown that inherited ID can be caused by mutations in over 100 different genes and there is evidence for the presence of as yet unidentified genes in a significant proportion of patients. We aimed at identifying the defective gene underlying an autosomal recessive ID in two sibs of an Emirati family. METHODS A combined approach involving homozygosity mapping and whole-exome sequencing was used to identify the causative mutation. RNA analysis was performed to gain further insight into the pathogenic effect of the detected mutation. RESULTS We have identified a homozygous splicing mutation (c.1219_1222+1delAAAGG) in the LINS gene in the affected children. LINS is the human homologue of the Drosophila segment polarity gene lin that encodes an essential regulator of the wingless/Wnt signaling. The identified mutation alters the first consensus nucleotide of the 5' donor splice junction of intron 5 and the 3' end of exon 5. Transcript analysis revealed that this change leads to an exon skipping event resulting in direct splicing of exon 4 to exon 6. Another mutation in LINS has been described very briefly in an Iranian family with autosomal recessive ID and microcephaly. CONCLUSION Our study confirms that LINS, a modulator of the WNT pathway, is an indispensable gene to human cognition and this finding sheds further light on the importance of WNT signaling in human brain development and/or function.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
21 |
7
|
Gariballa N, Ben-Mahmoud A, Komara M, Al-Shamsi AM, John A, Ali BR, Al-Gazali L. A novel aberrant splice site mutation in COL27A1 is responsible for Steel syndrome and extension of the phenotype to include hearing loss. Am J Med Genet A 2017; 173:1257-1263. [PMID: 28322503 DOI: 10.1002/ajmg.a.38153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
Abstract
Steel syndrome is an autosomal recessive disease characterized by skeletal abnormalities and dysmorphic features. The first mutation associated with this syndrome was reported in Puerto Rican children. In this study, we identified a novel homozygous splice site variant in COL27A1 (c.3556-2A>G) in a consanguineous Emirati family with a child affected by Steel syndrome. In addition, the affected child had severe non-progressive sensorineural hearing loss not reported previously. The variant segregated in the family in an autosomal recessive manner and we show that the variant alters mRNA splicing. Furthermore, relative quantitative analysis revealed a marked reduction in gene expression in the proposita compared to healthy controls. Segregation analysis of heterozygous variants, related to hearing loss, identified by whole exome sequencing in the child (ILDR1: c.1159T>C, SYNE4: c.313G>C, and GPR98: c.18746T>G) excluded them from being responsible for the hearing loss in the proposita. In addition, the products of these genes are not interacting in the same pathway and have only been reported to cause deafness in an autosomal recessive manner. Therefore, we conclude that the novel splice-site variant identified in COL27A1 is the most likely cause for Steel syndrome in this family and that the hearing loss is part of this syndrome's phenotype.
Collapse
|
Case Reports |
8 |
15 |
8
|
Al-Shamsi AM, Ben-Salem S, Hertecant J, Al-Jasmi F. Transaldolase deficiency caused by the homozygous p.R192C mutation of the TALDO1 gene in four Emirati patients with considerable phenotypic variability. Eur J Pediatr 2015; 174:661-8. [PMID: 25388407 DOI: 10.1007/s00431-014-2449-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED Transaldolase deficiency is a heterogeneous disorder of carbohydrate metabolism characterized clinically by dysmorphic features, cutis laxa, hepatosplenomegaly, hepatic fibrosis, pancytopenia, renal and cardiac abnormalities, and urinary excretion of polyols. This report describes four Emirati patients with transaldolase deficiency caused by the homozygous p.R192C missense mutation in TALDO1 displaying wide phenotypic variability. The patients had variable clinical presentations including hepatosplenomegaly, pancytopenia, liver failure, proteinuria, hydrops fetalis, cardiomyopathy, and skin manifestations (e.g., dryness, cutis laxa, ichthyosis, telangiectasias, and hemangiomas). Biochemical analyses including urinary concentration of polyols were consistent with transaldolase deficiency. The mutation p.R192C was previously identified in an Arab patient, suggesting a founder effect in Arab populations. CONCLUSION The above findings support the premise that biallelic mutations in TALDO1 are responsible for transaldolase deficiency and confirm the broad phenotypic variability of this condition, even with the same genotype.
Collapse
|
Case Reports |
10 |
13 |
9
|
Ben-Salem S, Sobreira N, Akawi NA, Al-Shamsi AM, John A, Pramathan T, Valle D, Ali BR, Al-Gazali L. Gonadal mosaicism in ARID1B gene causes intellectual disability and dysmorphic features in three siblings. Am J Med Genet A 2016; 170A:156-161. [PMID: 26395437 PMCID: PMC5448135 DOI: 10.1002/ajmg.a.37405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023]
Abstract
The gene encoding the AT-rich interaction domain-containing protein 1B (ARID1B) has recently been shown to be one of the most frequently mutated genes in patients with intellectual disability (ID). The phenotypic spectrums associated with variants in this gene vary widely ranging for mild to severe non-specific ID to Coffin-Siris syndrome. In this study, we evaluated three children from a consanguineous Emirati family affected with ID and dysmorphic features. Genomic DNA from all affected siblings was analyzed using CGH array and whole-exome sequencing (WES). Based on a recessive mode of inheritance, homozygous or compound heterozygous variants shared among all three affected children could not be identified. However, further analysis revealed a heterozygous variant (c.4318C>T; p.Q1440*) in the three affected children in an autosomal dominant ID causing gene, ARID1B. This variant was absent in peripheral blood samples obtained from both parents and unaffected siblings. Therefore, we propose that the most likely explanation for this situation is that one of the parents is a gonadal mosaic for the variant. To the best of our knowledge, this is the first report of a gonadal mosaicism inheritance of an ARID1B variant leading to familial ID recurrence.
Collapse
|
Case Reports |
9 |
10 |
10
|
Al-Jezawi NK, Al-Shamsi AM, Suleiman J, Ben-Salem S, John A, Vijayan R, Ali BR, Al-Gazali L. Compound heterozygous variants in the multiple PDZ domain protein (MPDZ) cause a case of mild non-progressive communicating hydrocephalus. BMC MEDICAL GENETICS 2018; 19:34. [PMID: 29499638 PMCID: PMC5834892 DOI: 10.1186/s12881-018-0540-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/12/2018] [Indexed: 02/08/2023]
Abstract
Background Congenital hydrocephalus (CH) results from the accumulation of excessive amounts of cerebrospinal fluid (CSF) in the brain, often leading to severe neurological impairments. However, the adverse effects of CH can be reduced if the condition is detected and treated early. Earlier reports demonstrated that some CH cases are caused by mutations in L1CAM gene encoding the neural cell adhesion molecule L1. On the other hand, recent studies have implicated the multiple PDZ domain (MPDZ) gene in some severe forms of CH, inherited in an autosomal recessive pattern. Methods In this study, whole-exome and Sanger sequencing were performed on a 9 months old Emirati child clinically diagnosed by CH. In addition, in silico, cellular, and molecular assays have been conducted to confirm pathogenicity of the identified variants and to establish disease mechanism. Results Whole exome sequencing revealed two compound heterozygous novel variants (c.394G > A and c.1744C > G) in the affected child within the MPDZ gene. Segregation analysis revealed that each of the parents is heterozygous for one of the two variants and therefore passed that variant to their child. The outcome of the in silico and bioinformatics analyses came in line with the experimental data, suggesting that the two variants are most likely disease causing. Conclusions The compound heterozygous variants identified in this study are the most likely cause of CH in the affected child. The study further confirms MPDZ as a gene underlying some CH cases.
Collapse
|
Case Reports |
7 |
9 |
11
|
Ben-Salem S, Nara S, Al-Shamsi AM, Valle D, Ali BR, Al-Gazali L. New Arab family with cerebral dysgenesis, neuropathy, ichthyosis and keratoderma syndrome suggests a possible founder effect for the c.223delG mutation. J Dermatol 2015; 42:821-2. [PMID: 25958742 DOI: 10.1111/1346-8138.12917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
Case Reports |
10 |
8 |
12
|
Ben-Mahmoud A, Al-Shamsi AM, Ali BR, Al-Gazali L. Evaluating the Role of MAST1 as an Intellectual Disability Disease Gene: Identification of a Novel De Novo Variant in a Patient with Developmental Disabilities. J Mol Neurosci 2020; 70:320-327. [PMID: 31721002 DOI: 10.1007/s12031-019-01415-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intellectual disability (ID) is one of the most common developmental disorders characterized by a congenital limitation in intellectual functioning and adaptive behavior. More than 800 genes have been implicated so far in the pathogenesis of syndromic and non-syndromic ID conditions with the actual number is expected to be over two thousand. The advent of next-generation sequencing resulted in the identification of many novel ID genes with new genes are being reported on weekly basis. The level of evidence on ID genes varies with some of them being preliminary. MAST1 have been hinted at as being causative of ID but the evidence has been very sketchy. Extensive search of the literature identified three heterozygous de novo missense variants in MAST1 as possible causes of syndromic ID in three individuals where intellectual disability has been a major feature. Using exome sequencing, we identified a novel missense variant c.3539T>G, p.(Leu1180Arg) in MAST1 in an Emirati patient with intellectual disability, microcephaly, and dysmorphic features. In silico pathogenicity prediction analyses predict that all the four missense variants reported in this study are likely to be damaging. Immunostaining of cells expressing human MAST1 showed that majority large proportion of the expressed protein is colocalized the microtubule filaments in the cytoplasm. However, the identified variant c.3539T>G, p.(Leu1180Arg) as well as the other three variants seem to localize in a similar pattern to wild-type indicating a disease mechanism not involving mis-targeting. We, therefore, suggest that mutations in MAST1 should be considered as strong candidates for intellectual disability in humans.
Collapse
|
Case Reports |
5 |
7 |
13
|
Ben-Salem S, Al-Shamsi AM, Ali BR, Al-Gazali L. The mutational spectrum of the NF1 gene in neurofibromatosis type I patients from UAE. Childs Nerv Syst 2014; 30:1183-9. [PMID: 24413922 DOI: 10.1007/s00381-013-2352-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/30/2013] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Germline heterozygous mutations in the tumor suppresser NF1 gene cause a cancer predisposition syndrome known as neurofibromatosis type 1 (NF1). This disease is one of the most common multisystem disorders with an estimated incidence of 1 in 3,000 to 1 in 4,000 births. Clinically, NF1 patients are prone to develop "café au lait" spots, neurofibromas, Lisch nodules, freckling of the axillary, or inguinal region and optic nerve gliomas. MATERIALS AND METHODS In the present study, we report clinical and molecular findings of five unrelated patients and seven cases from four families with NF1 from UAE. To reveal the genetic defects underlying NF1 in our cohort of patients, we screened the whole coding and splice site regions of the NF1 gene. In addition, MLPA or CGH array has been used to screen for structural variations including deletions, indels, and complex rearrangements. RESULTS This resulted in the identification of five distinct novel mutations and two previously reported ones. These variations included three missense and one nonsense mutations, one single base, one dinucleotide, and one large deletion. CONCLUSION Four mutations were inherited, and the remaining were absent from both parents and therefore are "de novo" mutations. This analysis represents the spectrum of NF1 mutations in UAE and supports the premise of absence of hotspot mutations in the NF1 gene. Moreover, no obvious genotype-phenotype correlations were observed in our patients.
Collapse
|
|
11 |
6 |
14
|
Ben-Salem S, Hertecant J, Al-Shamsi AM, Ali BR, Al-Gazali L. Novel mutations in ADAMTSL2 gene underlying geleophysic dysplasia in families from United Arab Emirates. ACTA ACUST UNITED AC 2013; 97:764-9. [PMID: 24014090 DOI: 10.1002/bdra.23170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/11/2013] [Accepted: 07/04/2013] [Indexed: 02/05/2023]
|
|
12 |
6 |
15
|
Ben-Salem S, Robbins SM, Sobreira NLM, Lyon A, Al-Shamsi AM, Islam BK, Akawi NA, John A, Thachillath P, Hamed SA, Valle D, Ali BR, Al-Gazali L. Defect in phosphoinositide signalling through a homozygous variant in PLCB3 causes a new form of spondylometaphyseal dysplasia with corneal dystrophy. J Med Genet 2018; 55:122-130. [PMID: 29122926 PMCID: PMC8215682 DOI: 10.1136/jmedgenet-2017-104827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone dysplasias are a large group of disorders affecting the growth and structure of the skeletal system. METHODS In the present study, we report the clinical and molecular delineation of a new form of syndromic autosomal recessive spondylometaphyseal dysplasia (SMD) in two Emirati first cousins. They displayed postnatal growth deficiency causing profound limb shortening with proximal and distal segments involvement, narrow chest, radiological abnormalities involving the spine, pelvis and metaphyses, corneal clouding and intellectual disability. Whole genome homozygosity mapping localised the genetic cause to 11q12.1-q13.1, a region spanning 19.32 Mb with ~490 genes. Using whole exome sequencing, we identified four novel homozygous variants within the shared block of homozygosity. Pathogenic variants in genes involved in phospholipid metabolism, such as PLCB4 and PCYT1A, are known to cause bone dysplasia with or without eye anomalies, which led us to select PLCB3 as a strong candidate. This gene encodes phospholipase C β 3, an enzyme that converts phosphatidylinositol 4,5 bisphosphate (PIP2) to inositol 1,4,5 triphosphate (IP3) and diacylglycerol. RESULTS The identified variant (c.2632G>T) substitutes a serine for a highly conserved alanine within the Ha2' element of the proximal C-terminal domain. This disrupts binding of the Ha2' element to the catalytic core and destabilises PLCB3. Here we show that this hypomorphic variant leads to elevated levels of PIP2 in patient fibroblasts, causing disorganisation of the F-actin cytoskeleton. CONCLUSIONS Our results connect a homozygous loss of function variant in PLCB3 with a new SMD associated with corneal dystrophy and developmental delay (SMDCD).
Collapse
|
Case Reports |
7 |
2 |
16
|
Abdelrahman HA, Akawi N, Al-Shamsi AM, Ali A, Al-Jasmi F, John A, Hertecant J, Al-Gazali L, Ali BR. Bi-allelic null variant in matrix metalloproteinase-15, causes congenital cardiac defect, cholestasis jaundice, and failure to thrive. Clin Genet 2022; 101:403-410. [PMID: 34988996 DOI: 10.1111/cge.14107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023]
Abstract
Here, we delineate the phenotype of two siblings with a bi-allelic frameshift variant in MMP15 gene with congenital cardiac defects, cholestasis, and dysmorphism. Genome sequencing analysis revealed a recently reported homozygous frameshift variant (c.1058delC, p.Pro353Glnfs*102) in MMP15 gene that co-segregates with the phenotype in the family in a recessive mode of inheritance. Relative quantification of MMP15 mRNA showed evidence of degradation of the mutated transcript, presumably by nonsense mediated decay. Likewise, MMP15: p.Gly231Arg, a concurrently reported homozygous missense variant in another patient exhibiting a similar phenotype, was predicted to disrupt zinc ion binding to the MMP-15 enzyme catalytic domain, which is essential for substrate proteolysis, by structural modeling. Previous animal models and cellular findings suggested that MMP15 plays a crucial role in the formation of endocardial cushions. These findings confirm that MMP15 is an important gene in human development, particularly cardiac, and that its loss of function is likely to cause a severe disorder phenotype.
Collapse
|
|
3 |
2 |
17
|
Abdelrahman HA, Akawi N, Al-Shamsi AM, Al-Gazali L, Ali BR. Pontocerebellar Hypoplasia Type 9: A New Case with a Novel Mutation and Review of Literature. J Pediatr Genet 2024; 13:215-222. [PMID: 39086442 PMCID: PMC11288706 DOI: 10.1055/s-0042-1748018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Pontocerebellar hypoplasia type 9 (PCH-9) is a very rare autosomal recessive neurodegenerative disorder. Affected infants present early with severe developmental delay, spasticity, with the unique magnetic resonance imaging picture of thin corpus callosum, atrophied pons, and cerebellum. It is caused by loss of function mutations in the AMPD2 gene, encoding for the adenosine monophosphate deaminase enzyme-paralog 2. This gene is expressed in different somatic tissues with high level of expression in cerebellum and its encoded enzyme catalyzes a critical step in de novo biosynthesis of purines and its deficiency in the developing neurons severely affects neuronal differentiation and cell viability. We clinically evaluated an Emirati patient presented with severe developmental and growth delay, as well as corpus callosum agenesis and atrophy of brainstem and cerebellum. We performed exome sequencing, Sanger sequencing, and segregation analysis to identify the genetic cause of the phenotype, followed by in silico and in vitro analysis. We identified the novel variant (NM_004037.9:c.1471G > A) in AMPD2 gene leading to a single amino acid substitution (p.Gly491Arg) in adenosine monophosphate deaminase-2 enzyme. This variant is predicted to be pathogenic using several in silico tools, and resulted in a decrease in the enzyme function in the patient's polymorphonuclear cells by 82% (95% confidence interval: 73.3-91.7%, p = 0.029) compared with the control. This data establishes that the affected child is affected by PCH-9. Furthermore, we review all reported cases in literature to summarize the main clinical features of this rare disease.
Collapse
|
research-article |
1 |
|