1
|
Sánchez‐Grande A, Urgel JI, Cahlík A, Santos J, Edalatmanesh S, Rodríguez‐Sánchez E, Lauwaet K, Mutombo P, Nachtigallová D, Nieman R, Lischka H, de la Torre B, Miranda R, Gröning O, Martín N, Jelínek P, Écija D. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew Chem Int Ed Engl 2020; 59:17594-17599. [PMID: 32592432 PMCID: PMC7540677 DOI: 10.1002/anie.202006276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Indexed: 11/28/2022]
Abstract
We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.
Collapse
|
research-article |
5 |
32 |
2
|
Wäckerlin C, Cahlík A, Goikoetxea J, Stetsovych O, Medvedeva D, Redondo J, Švec M, Delley B, Ondráček M, Pinar A, Blanco-Rey M, Kolorenč J, Arnau A, Jelínek P. Role of the Magnetic Anisotropy in Atomic-Spin Sensing of 1D Molecular Chains. ACS NANO 2022; 16:16402-16413. [PMID: 36200735 DOI: 10.1021/acsnano.2c05609] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
One-dimensional metal-organic chains often possess a complex magnetic structure susceptible to modification by alteration of their chemical composition. The possibility to tune their magnetic properties provides an interesting playground to explore quasi-particle interactions in low-dimensional systems. Despite the great effort invested so far, a detailed understanding of the interactions governing the electronic and magnetic properties of the low-dimensional systems is still incomplete. One of the reasons is the limited ability to characterize their magnetic properties at the atomic scale. Here, we provide a comprehensive study of the magnetic properties of metal-organic one-dimensional (1D) coordination polymers consisting of 2,5-diamino-1,4-benzoquinonediimine ligands coordinated with Co or Cr atoms synthesized under ultrahigh-vacuum conditions on a Au(111) surface. A combination of integral X-ray spectroscopy with local-probe inelastic electron tunneling spectroscopy corroborated by multiplet analysis, density functional theory, and inelastic electron tunneling simulations enables us to obtain essential information about their magnetic structures, including the spin magnitude and orientation at the magnetic atoms, as well as the magnetic anisotropy.
Collapse
|
|
3 |
16 |
3
|
Doležal J, Merino P, Redondo J, Ondič L, Cahlík A, Švec M. Charge Carrier Injection Electroluminescence with CO-Functionalized Tips on Single Molecular Emitters. NANO LETTERS 2019; 19:8605-8611. [PMID: 31738569 PMCID: PMC7116301 DOI: 10.1021/acs.nanolett.9b03180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We investigate electroluminescence of single molecular emitters on NaCl on Ag(111) and Au(111) with submolecular resolution in a low-temperature scanning probe microscope with tunneling current, atomic force, and light detection capabilities. The role of the tip state is studied in the photon maps of a prototypical emitter, zinc phthalocyanine (ZnPc), using metal and CO-metal tips. CO-functionalization is found to have an impact on the resolution and contrast of the photon maps due to the localized overlap of the p-orbitals on the tip with the molecular orbitals of the emitter. The possibility of using the same CO-functionalized tip for tip-enhanced photon detection and high resolution atomic force is demonstrated. We study the electroluminescence of ZnPc, induced by charge carrier injection at sufficiently high bias voltages. We propose that the distinct level alignment of the ZnPc frontier orbitals with the Au(111) and Ag(111) Fermi levels governs the primary excitation mechanisms as the injection of electrons and holes from the tip into the molecule, respectively. These findings put forward the importance of the tip status in the photon maps and contribute to a better understanding of the photophysics of organic molecules on surfaces.
Collapse
|
research-article |
6 |
14 |
4
|
Hellerstedt J, Cahlík A, Švec M, de la Torre B, Moro-Lagares M, Chutora T, Papoušková B, Zoppellaro G, Mutombo P, Ruben M, Zbořil R, Jelinek P. On-surface structural and electronic properties of spontaneously formed Tb 2Pc 3 single molecule magnets. NANOSCALE 2018; 10:15553-15563. [PMID: 30087975 DOI: 10.1039/c8nr04215b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The single molecule magnet (SMM) bis(phthalocyaninato)terbium(iii) (TbPc2) has received significant and increasing attention as an exemplar system for realizing molecule-based spin electronics. Attaining higher nuclearity via multi-decker TbPc systems has remained an outstanding challenge, as known examples of Tb2Pc3 systems are only those containing Pc rings with substituents (e.g. alkyl, alkoxyl). Here we report on the spontaneous formation of Tb2Pc3 species from TbPc2 precursors via sublimation in ultrahigh vacuum (UHV) onto an Ag(111) surface. The presence of Tb2Pc3 molecules on the surface are inspected using scanning probe microscopy with submolecular resolution supported by density functional theory (DFT) calculations and additional chemical analysis. We observe the selective presence of a Kondo resonance (30 K) in the Tb2Pc3 species, that we attribute to differences in the orientation of the internal molecular ligands. Formation of triple-decker complexes offers new possibilities to study and control magnetic interactions not accessible with standard TbPc2 molecules.
Collapse
|
|
7 |
14 |
5
|
Wäckerlin C, Gallardo A, Mairena A, Baljozović M, Cahlík A, Antalík A, Brabec J, Veis L, Nachtigallová D, Jelínek P, Ernst KH. On-Surface Hydrogenation of Buckybowls: From Curved Aromatic Molecules to Planar Non-Kekulé Aromatic Hydrocarbons. ACS NANO 2020; 14:16735-16742. [PMID: 32687321 DOI: 10.1021/acsnano.0c04488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functionalization of surfaces with derivatives of Buckminsterfullerene fragment molecules seems to be a promising approach toward bottom-up fabrication of carbon nanotube modified electrode surfaces. The modification of a Cu(100) surface with molecules of the buckybowl pentaindenocorannulene has been studied by means of scanning tunneling microscopy, carbon monoxide-modified noncontact atomic force microscopy, time-of-flight secondary mass spectrometry, and quantum chemical calculations. Two different adsorbate modes are identified, in which the majority is oriented such that the bowl cavity points away from the surface and the convex side is partially immersed into a four-atom vacancy in the Cu(100) surface. A minority is oriented such that the convex side points away from the surface with the five benzo tabs oriented basically parallel to the surface. Thermal annealing leads to hydrogenation and planarization of the molecules in two steps under specific C-C bond cleavage. The benzo tabs of the convex side up species serve as a hydrogen source. The final product has an open-shell electron structure that is quenched on the surface.
Collapse
|
|
5 |
14 |
6
|
Sánchez‐Grande A, Urgel JI, Cahlík A, Santos J, Edalatmanesh S, Rodríguez‐Sánchez E, Lauwaet K, Mutombo P, Nachtigallová D, Nieman R, Lischka H, Torre B, Miranda R, Gröning O, Martín N, Jelínek P, Écija D. Diradical Organic One‐Dimensional Polymers Synthesized on a Metallic Surface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
5 |
12 |
7
|
Santhini VM, Wäckerlin C, Cahlík A, Ondráček M, Pascal S, Matěj A, Stetsovych O, Mutombo P, Lazar P, Siri O, Jelínek P. 1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angew Chem Int Ed Engl 2020; 60:439-445. [DOI: 10.1002/anie.202011462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/31/2022]
|
|
5 |
9 |
8
|
Hellerstedt J, Cahlík A, Stetsovych O, Švec M, Shimizu TK, Mutombo P, Klívar J, Stará IG, Jelínek P, Starý I. Aromatic Azide Transformation on the Ag(111) Surface Studied by Scanning Probe Microscopy. Angew Chem Int Ed Engl 2019; 58:2266-2271. [DOI: 10.1002/anie.201812334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 11/10/2022]
|
|
6 |
8 |
9
|
Frezza F, Schiller F, Cahlík A, Ortega JE, Barth JV, Arnau A, Blanco-Rey M, Jelínek P, Corso M, Piquero-Zulaica I. Electronic band structure of 1D π-d hybridized narrow-gap metal-organic polymers. NANOSCALE 2023; 15:2285-2291. [PMID: 36633266 DOI: 10.1039/d2nr05828f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One-dimensional (1D) metal-organic (MO) nanowires are captivating from fundamental and technological perspectives due to their distinctive magnetic and electronic properties. The solvent-free synthesis of such nanomaterials on catalytic surfaces provides a unique approach for fabricating low-dimensional single-layer materials with atomic precision and low amount of defects. A detailed understanding of the electronic structure of MO polymers such as band gap and dispersive bands is critical for their prospective implementation into nanodevices such as spin sensors or field-effect transistors. Here, we have performed the on-surface reaction of quinoidal ligands with single cobalt atoms (Co-QDI) on a vicinal Au(788) surface in ultra-high vacuum. This procedure promotes the growth and uniaxial alignment of Co-QDI MO chains along the surface atomic steps, while permitting the mapping of their electronic properties with space-averaging angle-resolved photoemission spectroscopy. In the direction parallel to the principal chain axis, a well-defined 1D band structure with weakly dispersive and dispersive bands is observed, confirming a pronounced electron delocalization. Low-temperature scanning tunneling microscopy/spectroscopy delves into the atomically precise structure of the nanowires and elucidates their narrow bandgap. These findings are supported with GW0 band structure calculations showing that the observed electronic bands emanate from the efficient hybridization of Co(3d) and molecular orbitals. Our work paves the way towards a systematic search of similar 1D π-d hybridized MO chains with tunable electronic and magnetic properties defined by the transition or rare earth metal atom of choice.
Collapse
|
|
2 |
6 |
10
|
Cahlík A, Hellerstedt J, Mendieta-Moreno JI, Švec M, Santhini VM, Pascal S, Soler-Polo D, Erlingsson SI, Výborný K, Mutombo P, Marsalek O, Siri O, Jelínek P. Significance Of Nuclear Quantum Effects In Hydrogen Bonded Molecular Chains. ACS NANO 2021; 15:10357-10365. [PMID: 34033457 DOI: 10.1021/acsnano.1c02572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In hydrogen-bonded systems, nuclear quantum effects such as zero-point motion and tunneling can significantly affect their material properties through underlying physical and chemical processes. Presently, direct observation of the influence of nuclear quantum effects on the strength of hydrogen bonds with resulting structural and electronic implications remains elusive, leaving opportunities for deeper understanding to harness their fascinating properties. We studied hydrogen-bonded one-dimensional quinonediimine molecular networks which may adopt two isomeric electronic configurations via proton transfer. Herein, we demonstrate that concerted proton transfer promotes a delocalization of π-electrons along the molecular chain, which enhances the cohesive energy between molecular units, increasing the mechanical stability of the chain and giving rise to distinctive electronic in-gap states localized at the ends. These findings demonstrate the identification of a class of isomeric hydrogen-bonded molecular systems where nuclear quantum effects play a dominant role in establishing their chemical and physical properties. This identification is a step toward the control of mechanical and electronic properties of low-dimensional molecular materials via concerted proton tunneling.
Collapse
|
|
4 |
3 |
11
|
Konečný M, Bartošík M, Mach J, Švarc V, Nezval D, Piastek J, Procházka P, Cahlík A, Šikola T. Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11987-11994. [PMID: 29557163 DOI: 10.1021/acsami.7b18041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The article shows how the dynamic mapping of surface potential (SP) measured by Kelvin probe force microscopy (KPFM) in combination with calculation by a diffusion-like equation and the theory based on the Brunauer-Emmett-Teller (BET) model of water condensation and electron hopping can provide the information concerning the resistivity of low conductive surfaces and their water coverage. This is enabled by a study of charge transport between isolated and grounded graphene sheets on a silicon dioxide surface at different relative humidity (RH) with regard to the use of graphene in ambient electronic circuits and especially in sensors. In the experimental part, the chemical vapor-deposited graphene is precisely patterned by the mechanical atomic force microscopy (AFM) lithography and the charge transport is studied through a surface potential evolution measured by KPFM. In the computational part, a quantitative model based on solving the diffusion-like equation for the charge transport is used to fit the experimental data and thus to find the SiO2 surface resistivity ranging from 107 to 1010 Ω and exponentially decreasing with the RH increase. Such a behavior is explained using the formation of water layers predicted by the BET adsorption theory and electron-hopping theory that for the SiO2 surface patterned by AFM predicts a high water coverage even at low RHs.
Collapse
|
|
7 |
3 |
12
|
Hellerstedt J, Cahlík A, Stetsovych O, Švec M, Shimizu TK, Mutombo P, Klívar J, Stará IG, Jelínek P, Starý I. Aromatic Azide Transformation on the Ag(111) Surface Studied by Scanning Probe Microscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
6 |
2 |
13
|
Hellerstedt J, Cahlík A, Stetsovych O, Švec M, Shimizu TK, Mutombo P, Klívar J, Stará IG, Jelínek P, Starý I. Cover Picture: Aromatic Azide Transformation on the Ag(111) Surface Studied by Scanning Probe Microscopy (Angew. Chem. Int. Ed. 8/2019). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/anie.201900409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
6 |
|
14
|
Hellerstedt J, Cahlík A, Stetsovych O, Švec M, Shimizu TK, Mutombo P, Klívar J, Stará IG, Jelínek P, Starý I. Titelbild: Aromatic Azide Transformation on the Ag(111) Surface Studied by Scanning Probe Microscopy (Angew. Chem. 8/2019). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
6 |
|
15
|
Santhini VM, Wäckerlin C, Cahlík A, Ondráček M, Pascal S, Matěj A, Stetsovych O, Mutombo P, Lazar P, Siri O, Jelínek P. 1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
4 |
|
16
|
Cahlík A, Liu D, Zengin B, Taskin M, Schwenk J, Natterer FD. A versatile platform for graphene nanoribbon synthesis, electronic decoupling, and spin polarized measurements. NANOSCALE ADVANCES 2023; 5:1722-1728. [PMID: 36926566 PMCID: PMC10012868 DOI: 10.1039/d2na00668e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at investigating their magnetic properties with a keen eye for spintronic applications. Although the synthesis of nano-graphenes is usually carried out on Au(111), the substrate is difficult to use for electronic decoupling and spin-polarized measurements. Using a binary alloy Cu3Au(111), we show possibilities for gold-like on-surface synthesis compatible with spin polarization and electronic decoupling known from copper. We prepare copper oxide layers, demonstrate the synthesis of GNRs, and grow thermally stable magnetic Co islands. We functionalize the tip of a scanning tunneling microscope with carbon-monoxide, nickelocene, or attach Co clusters for high-resolution imaging, magnetic sensing, or spin-polarized measurements. This versatile platform will be a valuable tool in the advanced study of magnetic nano-graphenes.
Collapse
|
research-article |
2 |
|
17
|
Liu D, Oppliger J, Cahlík A, Witteveen C, von Rohr FO, Natterer FD. A sacrificial magnet concept for field dependent surface science studies. MethodsX 2022; 10:101964. [PMID: 36578290 PMCID: PMC9791577 DOI: 10.1016/j.mex.2022.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
We demonstrate a straightforward approach to integrating a magnetic field into a low-temperature scanning tunneling microscope (STM) by adhering an NdFeB permanent magnet to a magnetizable sample plate. To render our magnet concept compatible with high-temperature sample cleaning procedures, we make the irreversible demagnetization of the magnet a central part of our preparation cycle. After sacrificing the magnet by heating it above its Curie temperature, we use a transfer tool to attach a new magnet in-situ prior to transferring the sample into the STM. We characterize the magnetic field created by the magnet using the Abrikosov vortex lattice of superconducting NbSe2. Excellent agreement between the distance dependent magnetic fields from experiments and simulations allows us to predict the magnitude and orientation of magnetic flux at any location with respect to the magnet and the sample plate. Our concept is an accessible solution for field-dependent surface science studies that require fields in the range of up to 400 mT and otherwise detrimental heating procedures.•Accessible magnetic field generation.•Selectable field strength and orientation.•Compatible with high-temperature sample preparation.
Collapse
|
research-article |
3 |
|
18
|
Cahlík A, Müller CC, Natterer FD. Clip-on lens for scanning tunneling luminescence microscopy. MethodsX 2024; 13:102828. [PMID: 39105095 PMCID: PMC11299554 DOI: 10.1016/j.mex.2024.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
We demonstrate and verify the in-situ addition of a collecting lens for electroluminescence experiments to an existing scanning tunneling microscope. We fabricate a simple clip-on lens that we reversibly attach at the sample plate via regular sample transfer tools to collimate the light emitted from a plasmonic tunneling junction to the viewport ordinarily used for optical access. The proximity of the lens to the tunneling junction allows us achieve good collection efficiencies, demonstrating the quick turnaround of converting an existing setup with optical access into a practical scanning luminescence microscope. We verify the function of the clip-on lens by measuring the bias dependent plasmon of Au, Ag, and spatial luminescence maps.•Reversible clip-on lens.•In-situ transfer.•Luminescence.
Collapse
|
research-article |
1 |
|
19
|
Cahlík A, Ondráček M, Wäckerlin C, Solé AP, Siri O, Švec M, Jelínek P. Light-Controlled Multiconfigurational Conductance Switching in a Single 1D Metal-Organic Wire. ACS NANO 2024; 18:9576-9583. [PMID: 38518264 PMCID: PMC10993641 DOI: 10.1021/acsnano.3c12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible switches in low-dimensional nanostructures persists. Our work demonstrates multiple, fully reversible plasmon-driven spin-crossover switches in a single π-d metal-organic chain suspended between two electrodes. The plasmonic nanocavity stimulated by external visible light allows for reversible spin crossover between low- and high-spin states of different cobalt centers within the chain. We show that the distinct spin configurations remain stable for minutes under cryogenic conditions and can be nonperturbatively detected by conductance measurements. This multiconfigurational plasmon-driven spin-crossover demonstration extends the available toolset for designing optoelectrical molecular devices based on SCO compounds.
Collapse
|
research-article |
1 |
|
20
|
Marques CA, Cahlík A, Zengin B, Kurosawa T, Natterer FD. Vacuum cleaving of superconducting niobium tips to optimize noise filtering and with adjustable gap size for scanning tunneling microscopy. MethodsX 2023; 11:102483. [PMID: 38034321 PMCID: PMC10685302 DOI: 10.1016/j.mex.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Superconducting (SC) tips for scanning tunneling microscopy (STM) can enhance a wide range of surface science studies because they offer exquisite energy resolution, allow the study of Josephson tunneling, or provide spatial contrast based on the local interaction of the SC tip with the sample. The appeal of a SC tip is also practical. An SC gap can be used to characterize and optimize the noise of a low-temperature apparatus. Unlike typical samples, SC tips can be made with less ordered materials, such as from SC polycrystalline wires or by coating a normal metal tip with a superconductor. Those recipes either require additional laboratory infrastructure or are carried out in ambient conditions, leaving an oxidized tip behind. Here, we revisit the vacuum cleaving of an Nb wire to prepare fully gapped tips in an accessible one-step procedure. To show their utility, we measure the SC gap of Nb on Au(111) to determine the base temperature of our microscope and to optimize its RF filtering. The deliberate coating of the Nb tip with Au fully suppresses the SC gap and we show how sputtering with Ar+ ions can be used to gradually recover the gap, promising tunability for tailored SC gaps sizes. • Oxide free superconducting STM tips • RF filter optimization.
Collapse
|
research-article |
2 |
|