Dostál Z, Zholobenko AV, Přichystalová H, Gottschalk B, Valentová K, Malli R, Modrianský M. Quercetin protects cardiomyoblasts against hypertonic cytotoxicity by abolishing intracellular Ca
2+ elevations and mitochondrial depolarisation.
Biochem Pharmacol 2024;
222:116094. [PMID:
38423187 DOI:
10.1016/j.bcp.2024.116094]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND AIM
Osmotic changes represent a burden for the body and their limitation would be beneficial. We hypothesized that ubiquitous natural compounds could guard against cytotoxic effects of osmotic stress. We evaluated the anti-hypertonic mechanism of quercetin and 2,3-dehydrosilybin in H9c2 cells in vitro.
EXPERIMENTAL PROCEDURE
Protective effect of both compounds was determined by neutral red assay, cell apoptosis was estimated by measuring caspase-3 activity and verified by western blot and annexin V assay. Phosphorylation level of selected proteins was also detected. Mitochondrial membrane potential was evaluated using dye JC-1. Ca2+ signals were evaluated using genetically encoded fluorescent Ca2+ biosensor GCaMP7f. Formation of reactive oxygen species was measured using an oxidant-sensing probe dihydrofluorescein diacetate.
KEY RESULTS
Quercetin protected H9c2 cells against hypertonic stress-induced cell death. We observed a significant increase in intracellular Ca2+ levels ([Ca2+]cyto) when cells originally placed in a hypertonic solution were returned to a normotonic environment. Quercetin was found to prevent this increase in [Ca2+]cyto and also the depolarization of mitochondrial membrane potential.
CONCLUSIONS AND IMPLICATIONS
Quercetin, but not 2,3-dehydrosilybin, reduced adverse effects of osmotic stress mainly by dampening the elevation of [Ca2+]cyto and mitochondrial Ca2+ overload. This may consequently prevent MPTP pore opening and activation of apoptosis.
Collapse