1
|
Mastrogiacomo M, Papadimitropoulos A, Cedola A, Peyrin F, Giannoni P, Pearce SG, Alini M, Giannini C, Guagliardi A, Cancedda R. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: Evidence for a coupling between bone formation and scaffold resorption. Biomaterials 2007; 28:1376-84. [PMID: 17134749 DOI: 10.1016/j.biomaterials.2006.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/09/2006] [Indexed: 11/28/2022]
Abstract
Resorbable porous ceramic constructs, based on silicon-stabilized tricalcium phosphate, were implanted in critical-size defects of sheep tibias, either alone or after seeding with bone marrow stromal cells (BMSC). Only BMSC-loaded ceramics displayed a progressive scaffold resorption, coincident with new bone deposition. To investigate the coupled mechanisms of bone formation and scaffold resorption, X-ray computed microtomography (muCT) with synchrotron radiation was performed on BMSC-seeded ceramic cubes. These were analyzed before and after implantation in immunodeficient mice for 2 or 6 months. With increasing implantation time, scaffold thickness significantly decreased while bone thickness increased. The muCT data evidenced that all scaffolds showed a uniform density distribution before implantation. Areas of different segregated densities were instead observed, in the same scaffolds, once seeded with cells and implanted in vivo. A detailed muX-ray diffraction analysis revealed that only in the contact areas between deposited bone and scaffold, the TCP component of the biomaterial decreased much faster than the HA component. This event did not occur at areas away from the bone surface, highlighting coupling and cell-dependency of the resorption and matrix deposition mechanisms. Moreover, in scaffolds implanted without cells, both the ceramic density and the TCP:HA ratio remained unchanged with respect to the pre-implantation analysis.
Collapse
|
|
18 |
107 |
2
|
Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S, Mastrogiacomo M, Peyrin F, Rustichelli F. Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 2007; 28:2505-24. [PMID: 17292959 DOI: 10.1016/j.biomaterials.2007.01.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
This review is presented of recent investigations concerning the structure of ceramic scaffolds and tissue-engineered bones and focused on two techniques based on X-ray radiation, namely microtomography (microCT) and microdiffraction. Bulk 3D information, with micro-resolution, is mainly obtained by microCT, whereas microdiffraction provides useful information on interfaces to the atomic scale, i.e. of the order of the nanometer. Since most of the reported results were obtained using synchrotron radiation, a brief description of the European Synchrotron Radiation Facility (ESRF) is presented, followed by a description of the two techniques. Then examples of microstructural investigations of scaffolds are reported together with studies on bone architecture. Finally, studies on ex vivo tissue-engineered bone and on bone microstructure in vivo are presented.
Collapse
|
Review |
18 |
75 |
3
|
Brun F, Massimi L, Fratini M, Dreossi D, Billé F, Accardo A, Pugliese R, Cedola A. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows. ACTA ACUST UNITED AC 2017; 3:4. [PMID: 28261542 PMCID: PMC5313567 DOI: 10.1186/s40679-016-0036-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022]
Abstract
When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.
Collapse
|
Journal Article |
8 |
71 |
4
|
Riekel C, Cedola A, Heidelbach F, Wagner K. Microdiffraction Experiments on Single Polymeric Fibers by Synchrotron Radiation. Macromolecules 1997. [DOI: 10.1021/ma960799s] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
28 |
66 |
5
|
Fratini M, Bukreeva I, Campi G, Brun F, Tromba G, Modregger P, Bucci D, Battaglia G, Spanò R, Mastrogiacomo M, Requardt H, Giove F, Bravin A, Cedola A. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord. Sci Rep 2015; 5:8514. [PMID: 25686728 PMCID: PMC4649670 DOI: 10.1038/srep08514] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/19/2015] [Indexed: 11/25/2022] Open
Abstract
Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
61 |
6
|
Müller M, Burghammer M, Flot D, Riekel C, Morawe C, Murphy B, Cedola A. Microcrystallography with an X-ray waveguide. J Appl Crystallogr 2000. [DOI: 10.1107/s0021889800009249] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A waveguide microdiffraction setup is described for an undulator beamline at the European Synchrotron Radiation Facility. The composite optics consists of a waveguide, which confines the beam vertically, and a horizontally focusing multilayer mirror. A beam size of about 0.1 × 3 µm (vertical × horizontal) at λ = 0.095 nm has been obtained. The sample stage comprises a three-axis gantry with micrometre precision and a three-axis piezo-scanner with about 0.1 µm repeatability. Diffraction experiments are demonstrated for selected inorganic and polymeric samples. Possibilities for scanning diffractometry and small-angle scattering experiments are discussed.
Collapse
|
|
25 |
57 |
7
|
Massimi L, Bukreeva I, Santamaria G, Fratini M, Corbelli A, Brun F, Fumagalli S, Maugeri L, Pacureanu A, Cloetens P, Pieroni N, Fiordaliso F, Forloni G, Uccelli A, Kerlero de Rosbo N, Balducci C, Cedola A. Exploring Alzheimer's disease mouse brain through X-ray phase contrast tomography: From the cell to the organ. Neuroimage 2018; 184:490-495. [PMID: 30240904 DOI: 10.1016/j.neuroimage.2018.09.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder associated with aberrant production of beta-amyloid (Aβ) peptide depositing in brain as amyloid plaques. While animal models allow investigation of disease progression and therapeutic efficacy, technology to fully dissect the pathological mechanisms of this complex disease at cellular and vascular levels is lacking. X-ray phase contrast tomography (XPCT) is an advanced non-destructive 3D multi-scale direct imaging from the cell through to the whole brain, with exceptional spatial and contrast resolution. We exploit XPCT to simultaneously analyse disease-relevant vascular and neuronal networks in AD mouse brain, without sectioning and staining. The findings clearly show the different typologies and internal structures of Aβ plaques, together with their interaction with patho/physiological cellular and neuro-vascular microenvironment. XPCT enables for the first time a detailed visualization of amyloid-angiopathy at capillary level, which is impossible to achieve with other approaches. XPCT emerges as added-value technology to explore AD mouse brain as a whole, preserving tissue chemistry and structure, enabling the comparison of physiological vs. pathological states at the level of crucial disease targets. In-vivo translation will permit to monitor emerging therapeutic approaches and possibly shed new light on pathological mechanisms of neurodegenerative diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
34 |
8
|
Komlev VS, Peyrin F, Mastrogiacomo M, Cedola A, Papadimitropoulos A, Rustichelli F, Cancedda R. Kinetics ofIn VivoBone Deposition by Bone Marrow Stromal Cells into Porous Calcium Phosphate Scaffolds: An X-Ray Computed Microtomography Study. ACTA ACUST UNITED AC 2006; 12:3449-58. [PMID: 17518681 DOI: 10.1089/ten.2006.12.3449] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In a typical bone tissue engineering application, osteogenic cells are harvested and seeded on a three-dimensional (3D) synthetic scaffold that acts as guide and stimulus for tissue growth, creating a tissue engineering construct or living biocomposite. Despite the large number of performed experiments in different laboratories, information on the kinetics of bone growth into the scaffolds is still scarce. Highly porous hydroxyapatite scaffolds were investigated before the implantation and after they were seeded with in vitro expanded bone marrow stromal cells (BMSC) and implanted for 8, 16, or 24 weeks in immunodeficient mice. Synchrotron x-ray computed microtomography (microCT) was used for qualitative and quantitative 3D characterization of the scaffold material and 3D evaluation of tissue engineered bone growth kinetics after in vivo implantation. Experiments were performed taking advantage of a dedicated set up at the European Synchrotron Radiation Facility (ESRF, Grenoble, France), which allowed quantitative imaging at a spatial resolution of about 5 microm. A peculiarity of these experiments was the fact that at first the data were obtained on the different pure scaffolds, then the same scaffolds were seeded by BMSC, implanted, and brought again to ESRF for investigating the formation of new bone. The volume fraction, average thickness, and distribution of the newly formed bone were evaluated as a function of the implantation time. New bone thickness increased from week 8 to week 16, but deposition of new bone was arrested from week 16 to week 24. Instead, mineralization of the newly deposited bone matrix continued up to week 24.
Collapse
|
|
19 |
32 |
9
|
Campi G, Ricci A, Guagliardi A, Giannini C, Lagomarsino S, Cancedda R, Mastrogiacomo M, Cedola A. Early stage mineralization in tissue engineering mapped by high resolution X-ray microdiffraction. Acta Biomater 2012; 8:3411-8. [PMID: 22676918 DOI: 10.1016/j.actbio.2012.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/20/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022]
Abstract
The specific routes of biomineralization in nature are here explored using a tissue engineering approach in which bone is formed in porous ceramic constructs seeded with bone marrow stromal cells and implanted in vivo. Unlike previous studies this model system reproduces mammalian bone formation, here investigated at high temporal resolution. Different mineralization stages were monitored at different distances from the scaffold interface so that their spatial analysis corresponded to temporal monitoring of the bone growth and mineralization processes. The micrometer spatial resolution achieved by our diffraction technique ensured highly accurate reconstruction of the different temporal mineralization steps and provided some hints to the challenging issue of the mineral deposit first formed at the organic-mineral interface. Our results indicated that in the first stage of biomineralization organic tissue provides bioavailable calcium and phosphate ions, ensuring a constant reservoir of amorphous calcium phosphate (ACP) during hydroxyapatite (HA) nanocrystal formation. In this regard we suggest a new role of ACP in HA formation, with a continuous organic-mineral transition assisted by a dynamic pool of ACP. After HA nanocrystals formed, the scaffold and collagen act as templates for nanocrystal arrangement on the microscopic and nanometric scales, respectively.
Collapse
|
Journal Article |
13 |
31 |
10
|
Bukreeva I, Campi G, Fratini M, Spanò R, Bucci D, Battaglia G, Giove F, Bravin A, Uccelli A, Venturi C, Mastrogiacomo M, Cedola A. Quantitative 3D investigation of Neuronal network in mouse spinal cord model. Sci Rep 2017; 7:41054. [PMID: 28112212 PMCID: PMC5253662 DOI: 10.1038/srep41054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/16/2016] [Indexed: 12/04/2022] Open
Abstract
The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a "database" for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.
Collapse
|
research-article |
8 |
31 |
11
|
Sandonà M, Cavioli G, Renzini A, Cedola A, Gigli G, Coletti D, McKinsey TA, Moresi V, Saccone V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int J Mol Sci 2023; 24:4306. [PMID: 36901738 PMCID: PMC10002075 DOI: 10.3390/ijms24054306] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.
Collapse
|
Review |
2 |
31 |
12
|
Mastrogiacomo M, Komlev VS, Hausard M, Peyrin F, Turquier F, Casari S, Cedola A, Rustichelli F, Cancedda R. Synchrotron Radiation Microtomography of Bone Engineered from Bone Marrow Stromal Cells. ACTA ACUST UNITED AC 2004; 10:1767-74. [PMID: 15684685 DOI: 10.1089/ten.2004.10.1767] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Osteoprogenitor cells expanded in vitro and associated with porous ceramic scaffolds have been proposed as bone substitutes. Animal models have been developed to test the efficacy of various cell populations and scaffolds in promoting bone repair. Qualitative analysis of the new bone formed within the ceramic scaffold is relatively easy by conventional histology. On the other hand, quantitative data are difficult to obtain. X-ray computed microtomography was used as a possible experimental technique to obtain quantitative data on the three-dimensional structure of newly formed bone and of remaining scaffold in implants after 8 weeks in vivo. Measurements were performed at the European Synchrotron Radiation Facility on beamline ID19 with a spatial resolution of about 5 microm. This study clearly indicates the possibility of nondestructive quantitative analysis of bone-engineered constructs. The technique appears suitable to compare different scaffolds (and possibly different cell populations) with regard to bone formation efficiency and reabsorbability of biomaterials in the immunodeficient mouse model.
Collapse
|
|
21 |
28 |
13
|
Cedola A, Campi G, Pelliccia D, Bukreeva I, Fratini M, Burghammer M, Rigon L, Arfelli F, Chang Chen R, Dreossi D, Sodini N, Mohammadi S, Tromba G, Cancedda R, Mastrogiacomo M. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys Med Biol 2013; 59:189-201. [DOI: 10.1088/0031-9155/59/1/189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
12 |
23 |
14
|
Campi G, Fratini M, Bukreeva I, Ciasca G, Burghammer M, Brun F, Tromba G, Mastrogiacomo M, Cedola A. Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater 2015; 23:309-316. [PMID: 26049151 DOI: 10.1016/j.actbio.2015.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/08/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023]
Abstract
The structure and organization of the Type I collagen microfibrils during mineral nanoparticle formation appear as the key factor for a deeper understanding of the biomineralization mechanism and for governing the bone tissue physical properties. In this work we investigated the dynamics of collagen packing during ex-vivo mineralization of ceramic porous hydroxyapatite implant scaffolds using synchrotron high resolution X-ray phase contrast micro-tomography (XPCμT) and synchrotron scanning micro X-ray diffraction (SμXRD). While XPCμT provides the direct 3D image of the collagen fibers network organization with micrometer spatial resolution, SμXRD allows to probe the structural statistical fluctuations of the collagen fibrils at nanoscale. In particular we imaged the lateral spacing and orientation of collagen fibrils during the anisotropic growth of mineral nanocrystals. Beyond throwing light on the bone regeneration multiscale process, this approach can provide important information in the characterization of tissue in health, aging and degeneration conditions. STATEMENT OF SIGNIFICANCE BONE grafts are the most common transplants after the blood transfusions. This makes the bone-tissue regeneration research of pressing scientific and social impact. Bone is a complex hierarchical structure, where the interplay of organic and inorganic mineral phases at different length scale (from micron to atomic scale) affect its functionality and health. Thus, the understanding of bone tissue regeneration requires to image its spatial-temporal evolution (i) with high spatial resolution and (ii) at different length scale. We exploited high spatial resolution X-ray Phase Contrast micro Tomography and Scanning micro X-ray Diffraction in order to get new insight on the engineered tissue formation mechanisms. This approach could open novel routes for the early detection of different degenerative conditions of tissue.
Collapse
|
Journal Article |
10 |
22 |
15
|
Ciasca G, Papi M, Businaro L, Campi G, Ortolani M, Palmieri V, Cedola A, De Ninno A, Gerardino A, Maulucci G, De Spirito M. Recent advances in superhydrophobic surfaces and their relevance to biology and medicine. BIOINSPIRATION & BIOMIMETICS 2016; 11:011001. [PMID: 26844980 DOI: 10.1088/1748-3190/11/1/011001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their technological applications for anti-wetting and self-cleaning materials. Very recently, researchers have shifted their interest to investigate whether superhydrophobic surfaces can be exploited to study biological systems. This research effort has stimulated the design and realization of new devices that allow us to actively organize, visualize and manipulate matter at both the microscale and nanoscale levels. Such precise control opens up wide applications in biomedicine, as it allows us to directly manipulate objects at the typical length scale of cells and macromolecules. This progress report focuses on recent biological and medical applications of superhydrophobicity. Particular regard is paid to those applications that involve the detection, manipulation and study of extremely small quantities of molecules, and to those that allow high throughput cell and biomaterial screening.
Collapse
|
Review |
9 |
20 |
16
|
Campi G, Cristofaro F, Pani G, Fratini M, Pascucci B, Corsetto PA, Weinhausen B, Cedola A, Rizzo AM, Visai L, Rea G. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles. NANOSCALE 2017; 9:17274-17283. [PMID: 29090300 DOI: 10.1039/c7nr05013e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The mineralization process is crucial to the load-bearing characteristics of the bone extracellular matrix. In this work, we have studied the spatiotemporal dynamics of mineral deposition by human bone marrow mesenchymal stem cells differentiating toward osteoblasts promoted by the presence of exogenous hydroxyapatite nanoparticles. At the molecular level, the added nanoparticles positively modulated the expression of bone-specific markers and enhanced calcified matrix deposition during osteogenic differentiation. The nucleation, growth and spatial arrangement of newly deposited hydroxyapatite nanocrystals have been evaluated using scanning micro X-ray diffraction and scanning micro X-ray fluorescence. As leading results, we have found the emergence of a complex scenario where the spatial organization and temporal evolution of the process exhibit heterogeneous and self-organizing dynamics. At the same time the possibility of controlling the differentiation kinetics, through the addition of synthetic nanoparticles, paves the way to empower the generation of more structured bone scaffolds in tissue engineering and to design new drugs in regenerative medicine.
Collapse
|
|
8 |
20 |
17
|
Massimi L, Fratini M, Bukreeva I, Brun F, Mittone A, Campi G, Spanò R, Mastrogiacomo M, de Rosbo NK, Bravin A, Uccelli A, Cedola A. Characterization of mouse spinal cord vascular network by means of synchrotron radiation X-ray phase contrast tomography. Phys Med 2016; 32:1779-1784. [PMID: 27743707 DOI: 10.1016/j.ejmp.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/24/2016] [Accepted: 09/22/2016] [Indexed: 11/29/2022] Open
Abstract
High resolution Synchrotron-based X-ray Phase Contrast Tomography (XPCT) allows the simultaneous detection of three dimensional neuronal and vascular networks without using contrast agents or invasive casting preparation. We show and discuss the different features observed in reconstructed XPCT volumes of the ex vivo mouse spinal cord in the lumbo-sacral region, including motor neurons and blood vessels. We report the application of an intensity-based segmentation method to detect and quantitatively characterize the modification in the vascular networks in terms of reduction in experimental visibility. In particular, we apply our approach to the case of the experimental autoimmune encephalomyelitis (EAE), i.e. human multiple sclerosis animal model.
Collapse
|
Journal Article |
9 |
15 |
18
|
Guagliardi A, Giannini C, Cedola A, Mastrogiacomo M, Ladisa M, Cancedda R. Toward the x-ray microdiffraction imaging of bone and tissue-engineered bone. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:423-42. [PMID: 19537948 DOI: 10.1089/ten.teb.2009.0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hierarchical structure of bone makes the X-ray microdiffraction scanning techniques one of the most effective tool to investigate the structural features of this tissue at different length scales: the atomic/nanometer scale of the X-ray scattering signals and the macroscopic scale of the scanned sample area. The potentiality of the microdiffraction approach has been verified also by investigations on tissue-engineered bone substitutes used to repair large hard bone defects. The aim of this review is to present the most representative and recent results obtained through high-resolution scanning microdiffraction techniques studying both natural and tissue-engineered bone. The rapid evolution of the instrumental set-ups and the advanced methods of data analysis are described. Recent examples in which X-ray microbeams were used for imaging quantitative features of natural bone tissue and engineered bone substitutes are presented along with the qualitative and quantitative information extracted from the two-dimensional patterns collected on bone samples and on ex vivo cell seeded bioceramic implants. Thanks to the microdiffraction approach, several aspects of the mechanisms leading to the generation of the new bone, coupled to the scaffold resorption in the tissue-engineered constructs, have been tentatively interpreted. The potential of X-ray microdiffraction as an imaging tool in the field of bone tissue engineering is discussed and the key role of high-spatial resolution, availability of automatic tools (for dealing with the huge amount of experimental data) and advanced analysis techniques is elucidated. Finally, future perspectives in the field are presented.
Collapse
|
Review |
15 |
14 |
19
|
Cedola A, Mastrogiacomo M, Burghammer M, Komlev V, Giannoni P, Favia A, Cancedda R, Rustichelli F, Lagomarsino S. Engineered bone from bone marrow stromal cells: a structural study by an advanced x-ray microdiffraction technique. Phys Med Biol 2006; 51:N109-16. [PMID: 16510946 DOI: 10.1088/0031-9155/51/6/n02] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanism of mineralized matrix deposition was studied in a tissue engineering approach in which bone tissue is formed when porous ceramic constructs are loaded with bone marrow stromal cells and implanted in vivo. We investigated the local interaction between the mineral crystals of the engineered bone and the biomaterial by means of microdiffraction, using a set-up based on an x-ray waveguide. We demonstrated that the newly formed bone is well organized inside the scaffold pore, following the growth model of natural bone. Combining wide angle (WAXS) and small angle (SAXS) x-ray scattering with high spatial resolution, we were able to determine the orientation of the crystallographic c-axis inside the bone crystals, and the orientation of the mineral crystals and collagen micro-fibrils with respect to the scaffold. In this work we analysed six samples and for each of them two pores were studied in detail. Similar results were obtained in all cases but we report here only the most significant sample.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
14 |
20
|
De Caro L, Cedola A, Giannini C, Bukreeva I, Lagomarsino S. In-line phase-contrast imaging for strong absorbing objects. Phys Med Biol 2008; 53:6619-37. [DOI: 10.1088/0031-9155/53/22/021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
17 |
13 |
21
|
Massimi L, Pieroni N, Maugeri L, Fratini M, Brun F, Bukreeva I, Santamaria G, Medici V, Poloni TE, Balducci C, Cedola A. Assessment of plaque morphology in Alzheimer's mouse cerebellum using three-dimensional X-ray phase-based virtual histology. Sci Rep 2020; 10:11233. [PMID: 32641715 PMCID: PMC7343834 DOI: 10.1038/s41598-020-68045-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/18/2020] [Indexed: 02/03/2023] Open
Abstract
Visualization and characterization of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β-amyloid deposits is a fundamental task in pre-clinical study of Alzheimer’s disease (AD) to assess its evolution and monitor the efficiency of new therapeutic strategies. While the cerebellum is one of the brain areas most underestimated in the context of AD, renewed interest in cerebellar lesions has recently arisen as they may link to motor and cognitive alterations. Thus, we quantitatively investigated three-dimensional plaque morphology in the cerebellum in APP/PS1 transgenic mouse, as a model of AD. In order to obtain a complete high-resolution three-dimensional view of the investigated tissue, we exploited synchrotron X-ray phase contrast tomography (XPCT), providing virtual slices with histology-matching resolution. We found the formation of plaques elongated in shape, and with a specific orientation in space depending on the investigated region of the cerebellar cortex. Remarkably, a similar shape is observed in human cerebellum from demented patients. Our findings demonstrate the capability of XPCT in volumetric quantification, supporting the current knowledge about plaque morphology in the cerebellum and the fundamental role of the surrounding tissue in driving their evolution. A good correlation with the human neuropathology is also reported.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
22
|
Bukreeva I, Mittone A, Bravin A, Festa G, Alessandrelli M, Coan P, Formoso V, Agostino RG, Giocondo M, Ciuchi F, Fratini M, Massimi L, Lamarra A, Andreani C, Bartolino R, Gigli G, Ranocchia G, Cedola A. Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography. Sci Rep 2016; 6:27227. [PMID: 27265417 PMCID: PMC4893689 DOI: 10.1038/srep27227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/16/2016] [Indexed: 11/24/2022] Open
Abstract
A collection of more than 1800 carbonized papyri, discovered in the Roman ‘Villa dei Papiri’ at Herculaneum is the unique classical library survived from antiquity. These papyri were charred during 79 A.D. Vesuvius eruption, a circumstance which providentially preserved them until now. This magnificent collection contains an impressive amount of treatises by Greek philosophers and, especially, Philodemus of Gadara, an Epicurean thinker of 1st century BC. We read many portions of text hidden inside carbonized Herculaneum papyri using enhanced X-ray phase-contrast tomography non-destructive technique and a new set of numerical algorithms for ‘virtual-unrolling’. Our success lies in revealing the largest portion of Greek text ever detected so far inside unopened scrolls, with unprecedented spatial resolution and contrast, all without damaging these precious historical manuscripts. Parts of text have been decoded and the ‘voice’ of the Epicurean philosopher Philodemus is brought back again after 2000 years from Herculaneum papyri.
Collapse
|
Journal Article |
9 |
13 |
23
|
Nigro S, Tafuri B, Urso D, De Blasi R, Frisullo ME, Barulli MR, Capozzo R, Cedola A, Gigli G, Logroscino G. Brain Structural Covariance Networks in Behavioral Variant of Frontotemporal Dementia. Brain Sci 2021; 11:brainsci11020192. [PMID: 33557411 PMCID: PMC7915789 DOI: 10.3390/brainsci11020192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Recent research on behavioral variant frontotemporal dementia (bvFTD) has shown that personality changes and executive dysfunctions are accompanied by a disease-specific anatomical pattern of cortical and subcortical atrophy. We investigated the structural topological network changes in patients with bvFTD in comparison to healthy controls. In particular, 25 bvFTD patients and 20 healthy controls underwent structural 3T MRI. Next, bilaterally averaged values of 34 cortical surface areas, 34 cortical thickness values, and six subcortical volumes were used to capture single-subject anatomical connectivity and investigate network organization using a graph theory approach. Relative to controls, bvFTD patients showed altered small-world properties and decreased global efficiency, suggesting a reduced ability to combine specialized information from distributed brain regions. At a local level, patients with bvFTD displayed lower values of local efficiency in the cortical thickness of the caudal and rostral middle frontal gyrus, rostral anterior cingulate, and precuneus, cuneus, and transverse temporal gyrus. A significant correlation was also found between the efficiency of caudal anterior cingulate thickness and Mini-Mental State Examination (MMSE) scores in bvFTD patients. Taken together, these findings confirm the selective disruption in structural brain networks of bvFTD patients, providing new insights on the association between cognitive decline and graph properties.
Collapse
|
Journal Article |
4 |
11 |
24
|
Mittone A, Fardin L, Di Lillo F, Fratini M, Requardt H, Mauro A, Homs-Regojo RA, Douissard PA, Barbone GE, Stroebel J, Romano M, Massimi L, Begani-Provinciali G, Palermo F, Bayat S, Cedola A, Coan P, Bravin A. Multiscale pink-beam microCT imaging at the ESRF-ID17 biomedical beamline. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1347-1357. [PMID: 32876610 DOI: 10.1107/s160057752000911x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Recent trends in hard X-ray micro-computed tomography (microCT) aim at increasing both spatial and temporal resolutions. These challenges require intense photon beams. Filtered synchrotron radiation beams, also referred to as `pink beams', which are emitted by wigglers or bending magnets, meet this need, owing to their broad energy range. In this work, the new microCT station installed at the biomedical beamline ID17 of the European Synchrotron is described and an overview of the preliminary results obtained for different biomedical-imaging applications is given. This new instrument expands the capabilities of the beamline towards sub-micrometre voxel size scale and simultaneous multi-resolution imaging. The current setup allows the acquisition of tomographic datasets more than one order of magnitude faster than with a monochromatic beam configuration.
Collapse
|
|
5 |
11 |
25
|
Nigro S, Tafuri B, Urso D, De Blasi R, Cedola A, Gigli G, Logroscino G. Altered structural brain networks in linguistic variants of frontotemporal dementia. Brain Imaging Behav 2021; 16:1113-1122. [PMID: 34755293 PMCID: PMC9107413 DOI: 10.1007/s11682-021-00560-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/31/2022]
Abstract
Semantic (svPPA) and nonfluent (nfvPPA) variants of primary progressive aphasia (PPA) have recently been associated with distinct patterns of white matter and functional network alterations in left frontoinsular and anterior temporal regions, respectively. Little information exists, however, about the topological characteristics of gray matter covariance networks in these two PPA variants. In the present study, we used a graph theory approach to describe the structural covariance network organization in 34 patients with svPPA, 34 patients with nfvPPA and 110 healthy controls. All participants underwent a 3 T structural MRI. Next, we used cortical thickness values and subcortical volumes to define subject-specific connectivity networks. Patients with svPPA and nfvPPA were characterized by higher values of normalized characteristic path length compared with controls. Moreover, svPPA patients had lower values of normalized clustering coefficient relative to healthy controls. At a regional level, patients with svPPA showed a reduced connectivity and impaired information processing in temporal and limbic brain areas relative to controls and nfvPPA patients. By contrast, local network changes in patients with nfvPPA were focused on frontal brain regions such as the pars opercularis and the middle frontal cortex. Of note, a predominance of local metric changes was observed in the left hemisphere in both nfvPPA and svPPA brain networks. Taken together, these findings provide new evidences of a suboptimal topological organization of the structural covariance networks in svPPA and nfvPPA patients. Moreover, we further confirm that distinct patterns of structural network alterations are related to neurodegenerative mechanisms underlying each PPA variant.
Collapse
|
|
4 |
11 |