1
|
Abstract
The vulnerability of cancer cells to nutrient deprivation and their dependency on specific metabolites are emerging hallmarks of cancer. Fasting or fasting-mimicking diets (FMDs) lead to wide alterations in growth factors and in metabolite levels, generating environments that can reduce the capability of cancer cells to adapt and survive and thus improving the effects of cancer therapies. In addition, fasting or FMDs increase resistance to chemotherapy in normal but not cancer cells and promote regeneration in normal tissues, which could help prevent detrimental and potentially life-threatening side effects of treatments. While fasting is hardly tolerated by patients, both animal and clinical studies show that cycles of low-calorie FMDs are feasible and overall safe. Several clinical trials evaluating the effect of fasting or FMDs on treatment-emergent adverse events and on efficacy outcomes are ongoing. We propose that the combination of FMDs with chemotherapy, immunotherapy or other treatments represents a potentially promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side effects.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
337 |
2
|
Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, Brandhorst S, Zucal C, Driehuis E, Ferrando L, Piacente F, Tagliafico A, Cilli M, Mastracci L, Vellone VG, Piazza S, Cremonini AL, Gradaschi R, Mantero C, Passalacqua M, Ballestrero A, Zoppoli G, Cea M, Arrighi A, Odetti P, Monacelli F, Salvadori G, Cortellino S, Clevers H, De Braud F, Sukkar SG, Provenzani A, Longo VD, Nencioni A. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020; 583:620-624. [PMID: 32669709 PMCID: PMC7881940 DOI: 10.1038/s41586-020-2502-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
231 |
3
|
Nencioni A, Grünebach F, Patrone F, Ballestrero A, Brossart P. Proteasome inhibitors: antitumor effects and beyond. Leukemia 2006; 21:30-6. [PMID: 17096016 DOI: 10.1038/sj.leu.2404444] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteasome inhibitors are emerging as effective drugs for the treatment of multiple myeloma and possibly certain subtypes of non-Hodgkin's lymphoma. Bortezomib (Velcade) is the first proteasome inhibitor proven to be clinically useful and will soon be followed by a second generation of small molecule inhibitors with improved pharmacological properties. Although it is now understood that certain types of malignancies have an exquisite dependence on a functional proteasome for their survival, the underlying reason(s) remain unclear as of now. In this context, addiction to nuclear factor-kappaB (NF-kappaB)-induced survival signals, activation of the unfolded protein response as well as a reduced proteasomal activity in differentiated plasma cells have all been proposed to justify proteasome inhibitors' activity in susceptible tissues. In addition to their anticancer properties, bortezomib and related drugs modulate inflammatory and immune responses by affecting function and survival of immune cells such as lymphocytes and dendritic cells. The present review offers an overview of the biological effects that have been involved in proteasome inhibitors' antitumor activity and suggests prospective future applications for these drugs based on their recently characterized anti-inflammatory and immunomodulatory effects.
Collapse
|
Review |
19 |
173 |
4
|
Nencioni A, Grünebach F, Zobywlaski A, Denzlinger C, Brugger W, Brossart P. Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1228-35. [PMID: 12133943 DOI: 10.4049/jimmunol.169.3.1228] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) are the most potent APCs known that play a key role for the initiation of immune responses. Ag presentation to T lymphocytes is likely a constitutive function of DC that continues during the steady state. This raises the question of which mechanism(s) determines whether the final outcome of Ag presentation will be induction of immunity or of tolerance. In this regard, the mechanisms controlling DC immunogenicity still remain largely uncharacterized. In this paper we report that the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma), which has anti-inflammatory properties, redirects DC toward a less stimulatory mode. We show that activation of PPAR-gamma during DC differentiation profoundly affects the expression of costimulatory molecules and of the DC hallmarker CD1a. PPAR-gamma activation in DC resulted in a reduced capacity to activate lymphocyte proliferation and to prime Ag-specific CTL responses. This effect might depend on the decreased expression of costimulatory molecules and on the impaired cytokine secretion, but not on increased IL-10 production, because this was reduced by PPAR-gamma activators. Moreover, activation of PPAR-gamma in DC inhibited the expression of EBI1 ligand chemokine and CCR7, both playing a pivotal role for DC migration to the lymph nodes. These effects were accompanied by down-regulation of LPS-induced nuclear localized RelB protein, which was shown to be important for DC differentiation and function. Our results suggest a novel regulatory pathway for DC function that could contribute to the regulated balance between immunity induction and self-tolerance maintenance.
Collapse
|
|
23 |
163 |
5
|
Bauer I, Grozio A, Lasigliè D, Basile G, Sturla L, Magnone M, Sociali G, Soncini D, Caffa I, Poggi A, Zoppoli G, Cea M, Feldmann G, Mostoslavsky R, Ballestrero A, Patrone F, Bruzzone S, Nencioni A. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J Biol Chem 2012; 287:40924-40937. [PMID: 23086953 PMCID: PMC3510797 DOI: 10.1074/jbc.m112.405837] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/09/2012] [Indexed: 11/06/2022] Open
Abstract
Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca(2+) responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca(2+) channel TRPM2. In turn, TRPM2 and Ca(2+) are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca(2+)-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca(2+)-mobilizing second messengers, in the regulation of Ca(2+)-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.
Collapse
|
research-article |
13 |
143 |
6
|
Bruzzone S, Fruscione F, Morando S, Ferrando T, Poggi A, Garuti A, D'Urso A, Selmo M, Benvenuto F, Cea M, Zoppoli G, Moran E, Soncini D, Ballestrero A, Sordat B, Patrone F, Mostoslavsky R, Uccelli A, Nencioni A. Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS One 2009; 4:e7897. [PMID: 19936064 PMCID: PMC2774509 DOI: 10.1371/journal.pone.0007897] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 10/22/2009] [Indexed: 12/22/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD(+) synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD(+) depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-gamma and TNF-alpha production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD(+)-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD(+) depletion. In addition, we relate defective IFN-gamma and TNF-alpha production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.
Collapse
|
research-article |
16 |
136 |
7
|
Carbone F, Nencioni A, Mach F, Vuilleumier N, Montecucco F. Pathophysiological role of neutrophils in acute myocardial infarction. Thromb Haemost 2013; 110:501-514. [PMID: 23740239 DOI: 10.1160/th13-03-0211] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/04/2013] [Indexed: 12/13/2022]
Abstract
The pathogenesis of acute myocardial infarction is known to be mediated by systemic, intraplaque and myocardial inflammatory processes. Among different immune cell subsets, compelling evidence now indicates a pivotal role for neutrophils in acute coronary syndromes. Neutrophils infiltrate coronary plaques and the infarcted myocardium and mediate tissue damage by releasing matrix-degrading enzymes and reactive oxygen species. In addition, neutrophils are also involved in post-infarction adverse cardiac remodelling and neointima formation after angioplasty. The promising results obtained in preclinical modelswith pharmacological approaches interfering with neutrophil recruitment or function have confirmed the pathophysiological relevance of these immune cells in acute coronary syndromes and prompted further studies of these therapeutic interventions. This narrative review will provide an update on the role of neutrophils in acute myocardial infarction and on the pharmacological means that were devised to prevent neutrophil-mediated tissue damage and to reduce post-ischaemic outcomes.
Collapse
|
Review |
12 |
130 |
8
|
Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A, Raffaelli N, De Flora A, Nencioni A, Bruzzone S. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 2013; 288:25938-25949. [PMID: 23880765 DOI: 10.1074/jbc.m113.470435] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
129 |
9
|
Nencioni A, Beck J, Werth D, Grünebach F, Patrone F, Ballestrero A, Brossart P. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin Cancer Res 2007; 13:3933-41. [PMID: 17606727 DOI: 10.1158/1078-0432.ccr-06-2903] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Histone deacetylases (HDAC) modulate gene transcription and chromatin assembly by modifying histones at the posttranscriptional level. HDAC inhibitors have promising antitumor activity and are presently explored in clinical studies. Cumulating evidence in animal models of immune disorders also suggests immunosuppressive properties for these small molecules, although the underlying mechanisms remain at present poorly understood. Here, we have evaluated the effects of two HDAC inhibitors currently in clinical use, sodium valproate and MS-275, on human monocyte-derived DCs. EXPERIMENTAL DESIGN DCs were generated from monocytes through incubation with granulocyte macrophage colony-stimulating factor and interleukin-4. DC maturation was induced by addition of polyinosinic-polycytidylic acid. DC phenotype, immunostimulatory capacity, cytokine secretion, and migratory capacity were determined by flow cytometry, mixed leukocyte reaction, ELISA, and Transwell migration assay, respectively. Nuclear translocation of RelB, IFN regulatory factor (IRF)-3, and IRF-8 were determined by immunoblotting. RESULTS HDAC inhibition skews DC differentiation by preventing the acquisition of the DC hallmark CD1a and by affecting the expression of costimulation and adhesion molecules. In addition, macrophage inflammatory protein-3beta/chemokine, motif CC, ligand 19-induced migration, immunostimulatory capacity, and cytokine secretion by DCs are also profoundly impaired. The observed defects in DC function on exposure to HDAC inhibitors seem to reflect the obstruction of signaling through nuclear factor-kappaB, IRF-3, and IRF-8. CONCLUSIONS HDAC inhibitors exhibit strong immunomodulatory properties in human DCs. Our results support the evaluation of HDAC inhibitors in inflammatory and autoimmune disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
123 |
10
|
Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: A reappraisal. Mech Ageing Dev 2019; 178:46-63. [DOI: 10.1016/j.mad.2019.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
|
|
6 |
122 |
11
|
Brown DN, Caffa I, Cirmena G, Piras D, Garuti A, Gallo M, Alberti S, Nencioni A, Ballestrero A, Zoppoli G. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer. Sci Rep 2016; 6:19435. [PMID: 26777065 PMCID: PMC4726025 DOI: 10.1038/srep19435] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
SQLE encodes squalene epoxidase, a key enzyme in cholesterol synthesis. SQLE has sporadically been reported among copy-number driven transcripts in multi-omics cancer projects. Yet, its functional relevance has never been subjected to systematic analyses. Here, we assessed the correlation of SQLE copy number (CN) and gene expression (GE) across multiple cancer types, focusing on the clinico-pathological associations in breast cancer (BC). We then investigated whether any biological effect of SQLE inhibition could be observed in BC cell line models. Breast, ovarian, and colorectal cancers showed the highest CN driven GE among 8,783 cases from 22 cancer types, with BC presenting the strongest one. SQLE overexpression was more prevalent in aggressive BC, and was an independent prognostic factor of unfavorable outcome. Through SQLE pharmacological inhibition and silencing in a panel of BC cell lines portraying the diversity of SQLE CN and GE, we demonstrated that SQLE inhibition resulted in a copy-dosage correlated decrease in cell viability, and in a noticeable increase in replication time, only in lines with detectable SQLE transcript. Altogether, our results pinpoint SQLE as a bona fide metabolic oncogene by amplification, and as a therapeutic target in BC. These findings could have implications in other cancer types.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
116 |
12
|
Wang C, Barnoud C, Cenerenti M, Sun M, Caffa I, Kizil B, Bill R, Liu Y, Pick R, Garnier L, Gkountidi OA, Ince LM, Holtkamp S, Fournier N, Michielin O, Speiser DE, Hugues S, Nencioni A, Pittet MJ, Jandus C, Scheiermann C. Dendritic cells direct circadian anti-tumour immune responses. Nature 2023; 614:136-143. [PMID: 36470303 PMCID: PMC9891997 DOI: 10.1038/s41586-022-05605-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime1,2. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models. Using immunodeficient mice as well as mice lacking lineage-specific circadian functions, we show that dendritic cells (DCs) and CD8+ T cells exert circadian anti-tumour functions that control melanoma volume. Specifically, we find that rhythmic trafficking of DCs to the tumour draining lymph node governs a circadian response of tumour-antigen-specific CD8+ T cells that is dependent on the circadian expression of the co-stimulatory molecule CD80. As a consequence, cancer immunotherapy is more effective when synchronized with DC functions, shows circadian outcomes in mice and suggests similar effects in humans. These data demonstrate that the circadian rhythms of anti-tumour immune components are not only critical for controlling tumour size but can also be of therapeutic relevance.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
113 |
13
|
Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grünebach F, Brossart P. Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood 2006; 108:551-8. [PMID: 16537813 DOI: 10.1182/blood-2005-08-3494] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence from the animal model suggests that proteasome inhibitors may have immunosuppressive properties; however, their effects on the human immune system remain poorly investigated. Here, we show that bortezomib, a proteasome inhibitor with anticancer activity, impairs several immune properties of human monocyte-derived dendritic cells (DCs). Namely, exposure of DCs to bortezomib reduces their phagocytic capacity, as shown by FITC-labeled dextran internalization and mannose-receptor CD206 down-regulation. DCs treated with bortezomib show skewed phenotypic maturation in response to stimuli of bacterial (lipopolysaccharide [LPS]) and endogenous sources (including TNF-alpha and CD40L), as well as reduced cytokine production and immunostimulatory capacity. LPS-induced CCL-2/MCP-1 and CCL5/RANTES secretions by DCs were prevented by DC treatment with bortezomib. Finally, CCR7 up-regulation in DCs exposed to LPS as well as migration toward CCL19/MIP-3beta were strongly impaired. As a suitable mechanism for these effects, bortezomib was found to down-regulate MyD88, an essential adaptor for TLR signaling, and to relieve LPS-induced activation of NF-kappaB, IRF-3, and IRF-8 and of the MAP kinase pathway. In summary, inhibition of DC function may represent a novel mechanism by which proteasome inhibitors exert immunomodulatory effects. These compounds could prove useful for tuning TLR signaling and for the treatment of inflammatory and immune-mediated disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
112 |
14
|
Nencioni A, Hua F, Dillon CP, Yokoo R, Scheiermann C, Cardone MH, Barbieri E, Rocco I, Garuti A, Wesselborg S, Belka C, Brossart P, Patrone F, Ballestrero A. Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood 2004; 105:3255-62. [PMID: 15613543 DOI: 10.1182/blood-2004-10-3984] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibitors exhibit antitumor activity against malignancies of different histology. Yet, the mechanisms underlying this effect are poorly understood. Recent evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, possibly reducing their cytotoxicity. These include the Bcl-2 family member Mcl-1, whose down-regulation has been proposed to initiate apoptosis in response to genotoxic stimuli. In this study, we found that proteasome inhibitors release cyotochrome c and second mitochondria-derived activator of caspase (SMAC)/Diablo and trigger the subsequent apoptotic cascade in spite of concomitant Mcl-1 increase. However, our data indicate that subtraction of Mcl-1 during apoptosis, although not required for early release of proapoptotic factors, is probably relevant in speeding up cell demise, since RNA interference-mediated Mcl-1 silencing is lethal in lymphoma cells. Consistent with this, the cytotoxic effects of proteasome inhibitors are enhanced when Mcl-1 increase is impeded. Thus, this study identifies Mcl-1 accumulation as an unwanted molecular consequence of exposure to proteasome inhibitors, which slows down their proapoptotic effects. Pharmacologic or genetic approaches targeting Mcl-1, including therapeutic RNAi, may increase the effectiveness of these compounds.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
99 |
15
|
Piacente F, Caffa I, Ravera S, Sociali G, Passalacqua M, Vellone VG, Becherini P, Reverberi D, Monacelli F, Ballestrero A, Odetti P, Cagnetta A, Cea M, Nahimana A, Duchosal M, Bruzzone S, Nencioni A. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair. Cancer Res 2017; 77:3857-3869. [PMID: 28507103 DOI: 10.1158/0008-5472.can-16-3079] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/06/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
Abstract
In the last decade, substantial efforts have been made to identify NAD+ biosynthesis inhibitors, specifically against nicotinamide phosphoribosyltransferase (NAMPT), as preclinical studies indicate their potential efficacy as cancer drugs. However, the clinical activity of NAMPT inhibitors has proven limited, suggesting that alternative NAD+ production routes exploited by tumors confer resistance. Here, we show the gene encoding nicotinic acid phosphoribosyltransferase (NAPRT), a second NAD+-producing enzyme, is amplified and overexpressed in a subset of common types of cancer, including ovarian cancer, where NAPRT expression correlates with a BRCAness gene expression signature. Both NAPRT and NAMPT increased intracellular NAD+ levels. NAPRT silencing reduced energy status, protein synthesis, and cell size in ovarian and pancreatic cancer cells. NAPRT silencing sensitized cells to NAMPT inhibitors both in vitro and in vivo; similar results were obtained with the NAPRT inhibitor 2-hydroxynicotinic acid. Reducing NAPRT levels in a BRCA2-deficient cancer cell line exacerbated DNA damage in response to chemotherapeutics. In conclusion, NAPRT-dependent NAD+ biosynthesis contributes to cell metabolism and to the DNA repair process in a subset of tumors. This knowledge could be used to increase the efficacy of NAMPT inhibitors and chemotherapy. Cancer Res; 77(14); 3857-69. ©2017 AACR.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
86 |
16
|
Montecucco F, Bauer I, Braunersreuther V, Bruzzone S, Akhmedov A, Lüscher TF, Speer T, Poggi A, Mannino E, Pelli G, Galan K, Bertolotto M, Lenglet S, Garuti A, Montessuit C, Lerch R, Pellieux C, Vuilleumier N, Dallegri F, Mage J, Sebastian C, Mostoslavsky R, Gayet-Ageron A, Patrone F, Mach F, Nencioni A. Inhibition of nicotinamide phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial infarction. Antioxid Redox Signal 2013; 18:630-641. [PMID: 22452634 PMCID: PMC3549207 DOI: 10.1089/ars.2011.4487] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 01/16/2023]
Abstract
AIMS Nicotinamide phosphoribosyltransferase (Nampt) is a key enzyme for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, and recent evidence indicates its role in inflammatory processes. Here, we investigated the potential effects of pharmacological Nampt inhibition with FK866 in a mouse myocardial ischemia/reperfusion model. In vivo and ex vivo mouse myocardial ischemia/reperfusion procedures were performed. RESULTS Treatment with FK866 reduced myocardial infarct size, neutrophil infiltration, and reactive oxygen species (ROS) generation within infarcted hearts in vivo in a mouse model of ischemia and reperfusion. The benefit of FK866 was not shown in the Langendorff model (ex vivo model of working heart without circulating leukocytes), suggesting a direct involvement of these cells in cardiac injury. Sera from FK866-treated mice showed reduced circulating levels of the neutrophil chemoattractant CXCL2 and impaired capacity to prime migration of these cells in vitro. The release of CXCL8 (human homolog of murine chemokine CXCL2) by human peripheral blood mononuclear cells (PBMCs) and Jurkat cells was also reduced by FK866, as well as by sirtuin (SIRT) inhibitors and SIRT6 silencing, implying a pivotal role for this NAD(+)-dependent deacetylase in the production of this chemokine. INNOVATION The pharmacological inhibition of Nampt might represent an effective approach to reduce neutrophilic inflammation- and oxidative stress-mediated tissue damage in early phases of reperfusion after a myocardial infarction. CONCLUSIONS Nampt inhibition appears as a new strategy to dampen CXCL2-induced neutrophil recruitment and thereby reduce neutrophil-mediated tissue injury in mice.
Collapse
|
research-article |
12 |
80 |
17
|
Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, Sociali G, Franceschi C, Ballestrero A, Bruzzone S, Rio AD, Nencioni A. Discovery of Novel and Selective SIRT6 Inhibitors. J Med Chem 2014; 57:4796-804. [DOI: 10.1021/jm500487d] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
|
11 |
80 |
18
|
Carbone F, Liberale L, Bonaventura A, Vecchiè A, Casula M, Cea M, Monacelli F, Caffa I, Bruzzone S, Montecucco F, Nencioni A. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr Physiol 2017; 7:603-621. [PMID: 28333382 DOI: 10.1002/cphy.c160029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine-enzyme, which was described as to play bioactivities both in the intracellular and in the extracellular environment. However, while the functions of intracellular NAMPT (iNAMPT) are well known, much less is known on extracellular NAMPT (eNAMPT), also called visfatin or pre-B cell colony-enhancing factor. iNAMPT catalyzes the rate-limiting step in the NAD+ biosynthesis pathway from nicotinamide. Its inhibition severely reduces intracellular NAD+ levels, achieving anti-inflammatory and anti-cancer effects. eNAMPT can be detected in the human circulation and in many extracellular environments. Studies show that eNAMPT can act as a growth factor, as an enzyme, and as a cytokine, but its true mechanism of secretion and its physiological functions are still debated. Increased levels of eNAMPT have been associated with different metabolic disorders and cancers. eNAMPT was demonstrated to modulate the pathways involved in the pathophysiology of obesity, diabetes, atherosclerosis, and cardiovascular events by regulating the oxidative stress response, apoptosis, and inflammation. In cancer, eNAMPT was shown to play a pivotal role in modulating cancer cell metabolism, in promoting epithelial-to-mesenchymal transition and in shaping the tumor microenvironment. In line with these functions, circulating eNAMPT levels are frequently increased in cancer patients. Given these pleiotropic roles of eNAMPT in human disease, this protein has attracted attention as a therapeutic target. In this narrative review, we will discuss recent evidence on eNAMPT-driven signalling, highlighting the emerging pathophysiological roles of this protein in different disorders and the potential therapeutic opportunities linked to its targeting. © 2017 American Physiological Society. Compr Physiol 7:603-621, 2017.
Collapse
|
Review |
8 |
79 |
19
|
Dillon CP, Sandy P, Nencioni A, Kissler S, Rubinson DA, Van Parijs L. Rnai as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 2005; 67:147-73. [PMID: 15709955 DOI: 10.1146/annurev.physiol.67.040403.130716] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past four years RNA interference (RNAi) has exploded onto the research scene as a new approach to manipulate gene expression in mammalian systems. More recently, RNAi has garnered much interest as a potential therapeutic strategy. In this review, we briefly summarize the current understanding of RNAi biology and examine how RNAi has been used to study the genetic basis of physiological and disease processes in mammalian systems. We also explore some of the new developments in the use of RNAi for disease therapy and highlight the key challenges that currently limit its application in the laboratory, as well as in the clinical setting.
Collapse
|
Review |
20 |
78 |
20
|
Cea M, Cagnetta A, Adamia S, Acharya C, Tai YT, Fulciniti M, Ohguchi H, Munshi A, Acharya P, Bhasin MK, Zhong L, Carrasco R, Monacelli F, Ballestrero A, Richardson P, Gobbi M, Lemoli RM, Munshi N, Hideshima T, Nencioni A, Chauhan D, Anderson KC. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood 2016; 127:1138-50. [PMID: 26675349 PMCID: PMC4778164 DOI: 10.1182/blood-2015-06-649970] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is characterized by a highly unstable genome, with aneuploidy observed in nearly all patients. The mechanism causing this karyotypic instability is largely unknown, but recent observations have correlated these abnormalities with dysfunctional DNA damage response. Here, we show that the NAD(+)-dependent deacetylase SIRT6 is highly expressed in MM cells, as an adaptive response to genomic stability, and that high SIRT6 levels are associated with adverse prognosis. Mechanistically, SIRT6 interacts with the transcription factor ELK1 and with the ERK signaling-related gene. By binding to their promoters and deacetylating H3K9 at these sites, SIRT6 downregulates the expression of mitogen-activated protein kinase (MAPK) pathway genes, MAPK signaling, and proliferation. In addition, inactivation of ERK2/p90RSK signaling triggered by high SIRT6 levels increases DNA repair via Chk1 and confers resistance to DNA damage. Using genetic and biochemical studies in vitro and in human MM xenograft models, we show that SIRT6 depletion both enhances proliferation and confers sensitization to DNA-damaging agents. Our findings therefore provide insights into the functional interplay between SIRT6 and DNA repair mechanisms, with implications for both tumorigenesis and the treatment of MM.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
77 |
21
|
Bellora F, Castriconi R, Dondero A, Pessino A, Nencioni A, Liggieri G, Moretta L, Mantovani A, Moretta A, Bottino C. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol 2014; 44:1814-22. [PMID: 24510590 DOI: 10.1002/eji.201344130] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/23/2013] [Accepted: 02/03/2014] [Indexed: 11/08/2022]
Abstract
We analyzed the functional outcome of the interaction between tumor-associated macrophages (TAMs) and natural killer (NK) cells. TAMs from ascites of ovarian cancer patients displayed an alternatively activated functional phenotype (M2) characterized by a remarkably high frequency and surface density of membrane-bound IL-18. Upon TLR engagement, TAMs acquired a classically activated functional phenotype (M1), released immunostimulatory cytokines (IL-12, soluble IL-18), and efficiently triggered the cytolytic activity of NK cells. TAMs also induced the release of IFN-γ from NK cells, which however was significantly lower compared with that induced by in vitro-polarized M2 cells. Most tumor-associated NK cells displayed a CD56(bright) , CD16(neg) or CD56(bright) , CD16(dim) phenotype, and very poor cytolytic activities, despite an increased expression of the activation marker CD69. They also showed downregulation of DNAM-1, 2B4, and NTB-A activating receptors, and an altered chemokine receptor repertoire. Importantly however, when appropriately stimulated, NK cells from the patients, including those cells isolated from ascites, efficiently killed autologous TAMs that expressed low, "nonprotective" levels of HLA class I molecules. Overall, our data show the existence of a complex tumor microenvironment in which poorly cytolytic/immature NK cells deal with immunosuppressive tumor-educated macrophages.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
77 |
22
|
Bruzzone S, Ameri P, Briatore L, Mannino E, Basile G, Andraghetti G, Grozio A, Magnone M, Guida L, Scarfì S, Salis A, Damonte G, Sturla L, Nencioni A, Fenoglio D, Fiory F, Miele C, Beguinot F, Ruvolo V, Bormioli M, Colombo G, Maggi D, Murialdo G, Cordera R, De Flora A, Zocchi E. The plant hormone abscisic acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipocytes and myoblasts. FASEB J 2012; 26:1251-1260. [PMID: 22075645 DOI: 10.1096/fj.11-190140] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The plant hormone abscisic acid (ABA) is released from glucose-challenged human pancreatic β cells and stimulates insulin secretion. We investigated whether plasma ABA increased during oral and intravenous glucose tolerance tests (OGTTs and IVGTTs) in healthy human subjects. In all subjects undergoing OGTTs (n=8), plasma ABA increased over basal values (in a range from 2- to 9-fold). A positive correlation was found between the ABA area under the curve (AUC) and the glucose AUC. In 4 out of 6 IVGTTs, little or no increase of ABA levels was observed. In the remaining subjects, the ABA increase was similar to that recorded during OGTTs. GLP-1 stimulated ABA release from an insulinoma cell line and from human islets, by ∼10- and 2-fold in low and high glucose, respectively. Human adipose tissue also released ABA in response to high glucose. Nanomolar ABA stimulated glucose uptake, similarly to insulin, in rat L6 myoblasts and in murine 3T3-L1 cells differentiated to adipocytes, by increasing GLUT-4 translocation to the plasma membrane. Demonstration that a glucose load in humans is followed by a physiological rise of plasma ABA, which can enhance glucose uptake by adipose tissues and muscle cells, identifies ABA as a new mammalian hormone involved in glucose metabolism.
Collapse
|
|
13 |
76 |
23
|
Grünebach F, Müller MR, Nencioni A, Brossart P. Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther 2003; 10:367-74. [PMID: 12601391 DOI: 10.1038/sj.gt.3301901] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells playing a central role in the induction of antigen-specific cytotoxic T-lymphocytes (CTL). We analyzed the efficiency of tumor RNA transfection into DC using different sources of RNA as well as delivery strategies including electroporation, lipofection and CD71-receptor-based delivery. To evaluate the sensitivity of these approaches, we utilized in vitro transcribed enhanced green fluorescence protein (EGFP)-RNA and whole tumor RNA from EGFP-transfected renal cell carcinoma cell line N43. We demonstrate that electroporation was the most effective way yielding about 30% EGFP positive cells while less than 1% of DC expressed EGFP using the transferrin receptor transfection system. Delivery of RNA with liposomes resulted in 17.5% of EGFP positive cells depending on the RNA amount. However, when these approaches were applied to transduce DC with RNA derived from the A498 cell line for T-cell priming, tumor-specific CTL could be induced using all delivery strategies suggesting that this technology has the potential to induce cytotoxic T-cell response even when low level of antigen is delivered. Furthermore, we demonstrate that amplification of whole tumor messenger RNA (mRNA) as well as the use of total instead of purified mRNA can be utilized for stimulating tumor-specific CTL responses.
Collapse
|
|
22 |
74 |
24
|
Nencioni A, Grünebach F, Schmidt SM, Müller MR, Boy D, Patrone F, Ballestrero A, Brossart P. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 2007; 65:191-9. [PMID: 18055210 DOI: 10.1016/j.critrevonc.2007.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 10/04/2007] [Accepted: 10/12/2007] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy aims at eliciting an immune response directed against tumor antigens to help fight off residual tumor cells and thereby improve survival and quality of life of cancer patients. Different immunotherapeutic approaches share the use of dendritic cells (DCs) to present tumor-associated antigens to T-lymphocytes. Ex vivo generated DCs can be loaded with antigens and re-infused to the patients, or they can be used for ex vivo expansion of antitumor lymphocytes. Alternatively, methods exist to target antigens to DCs in vivo without need for ex vivo cell manipulations. The clinical studies have shown that DC administration to patients is safe and induces antigen-specific immunity. However, it seldom elicits objective clinical responses in patients with advanced-stage malignancies. Novel insights into DC and lymphocyte regulation are expected to lead to more effective vaccines in the near future. Meanwhile, efforts are directed at identifying the most appropriate clinical targets for active specific immunotherapies. Data suggests that vaccinations may indeed be beneficial when given in the adjuvant setting rather than to treat metastatic cancers. These issues are discussed here together with an overview of the DC-based antitumor immunotherapy studies.
Collapse
|
Review |
18 |
70 |
25
|
Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, Mastracci L, Boero S, Montecucco F, Sociali G, Lasigliè D, Damonte P, Grozio A, Mannino E, Poggi A, D'Agostino VG, Monacelli F, Provenzani A, Odetti P, Ballestrero A, Bruzzone S, Nencioni A. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem 2014; 289:34189-34204. [PMID: 25331943 PMCID: PMC4256351 DOI: 10.1074/jbc.m114.594721] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/07/2014] [Indexed: 11/06/2022] Open
Abstract
Boosting NAD(+) biosynthesis with NAD(+) intermediates has been proposed as a strategy for preventing and treating age-associated diseases, including cancer. However, concerns in this area were raised by observations that nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in mammalian NAD(+) biosynthesis, is frequently up-regulated in human malignancies, including breast cancer, suggesting possible protumorigenic effects for this protein. We addressed this issue by studying NAMPT expression and function in human breast cancer in vivo and in vitro. Our data indicate that high NAMPT levels are associated with aggressive pathological and molecular features, such as estrogen receptor negativity as well as HER2-enriched and basal-like PAM50 phenotypes. Consistent with these findings, we found that NAMPT overexpression in mammary epithelial cells induced epithelial-to-mesenchymal transition, a morphological and functional switch that confers cancer cells an increased metastatic potential. However, importantly, NAMPT-induced epithelial-to-mesenchymal transition was found to be independent of NAMPT enzymatic activity and of the NAMPT product nicotinamide mononucleotide. Instead, it was mediated by secreted NAMPT through its ability to activate the TGFβ signaling pathway via increased TGFβ1 production. These findings have implications for the design of therapeutic strategies exploiting NAD(+) biosynthesis via NAMPT in aging and cancer and also suggest the potential of anticancer agents designed to specifically neutralize extracellular NAMPT. Notably, because high levels of circulating NAMPT are found in obese and diabetic patients, our data could also explain the increased predisposition to cancer of these subjects.
Collapse
|
research-article |
11 |
66 |