1
|
Rønn LC, Ralets I, Hartz BP, Bech M, Berezin A, Berezin V, Møller A, Bock E. A simple procedure for quantification of neurite outgrowth based on stereological principles. J Neurosci Methods 2000; 100:25-32. [PMID: 11040363 DOI: 10.1016/s0165-0270(00)00228-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms controlling formation and remodelling of neuronal extensions are of considerable interest for the understanding of neuronal development and plasticity. Determination of neurite outgrowth in cell culture is a widely used approach to investigate these phenomena. This is generally done by a time consuming tracing of individual neurites and their branches. We have used stereological principles to determine the length of neurites. The total neuritic length per cell was estimated by counting the number of intersections between neurites and test lines of an unbiased counting frame superimposed on images of cell cultures obtained by conventional computer-assisted microscopy. The absolute length, L, of neurites per cell was subsequently estimated from the number of neurite intersections, I, per cell by means of the equation L=(pid/2)I describing the relationship between the number of neurite intersections and the vertical distance, d, between the test lines used. When measuring neurite outgrowth from PC12 cells and primary hippocampal neurons, data obtained by counting neuritic intersections correlated statistically significantly with data obtained using a conventional tracing technique. However, information was acquired more efficiently using the stereological approach. Thus, using the described set-up, the stereological procedure was approximately five times less time consuming than the conventional method based on neurite tracing. The study shows that stereological estimation of neuritic length provides a precise and efficient method for the study of neurite outgrowth in cultures of primary neurons and cell lines.
Collapse
|
|
25 |
134 |
2
|
Berezin A. Metabolic memory phenomenon in diabetes mellitus: Achieving and perspectives. Diabetes Metab Syndr 2016; 10:S176-S183. [PMID: 27025794 DOI: 10.1016/j.dsx.2016.03.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/05/2016] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) exhibits raised prevalence worldwide. There is a large body of evidence regarding the incidence of DM closely associates with cardiovascular (CV) complications. In this context, hyperglycaemia, oxidant stress, and inflammation are key factors that contribute in CV events and disease in type1 and type 2 DM, even when metabolic control was optimal and/or intensive glycemic control was implemented. It has been suggested that the effect of poor metabolic control or even transient episodes of hyperglycemia in DM associates in particularly with worsening ability of endogenous vasoreparative systems that are mediated epigenetic changes in several cells (progenitor cells, stem cells, mononuclears, immune cells), and thereby lead to so called "vascular glycemic memory" or "metabolic memory". Both terms are emphasized the fact that prior glucose control has sustained effects that persist even after return to more usual glycemic control. The mechanisms underlying the cellular "metabolic memory" induced by high glucose remain unclear. The review is discussed pathophysiology and clinical relevance of "metabolic" memory phenomenon in DM. The role of oxidative stress, inflammation, and epigenetics in DM and its vascular complications are highlighted. The effects of several therapeutic approaches are discussed.
Collapse
|
Review |
9 |
91 |
3
|
Berezin AE, Berezin AA. Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. DISEASE MARKERS 2020; 2020:1215802. [PMID: 32626540 PMCID: PMC7306098 DOI: 10.1155/2020/1215802] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.
Collapse
|
Review |
5 |
72 |
4
|
Berezin A, Zulli A, Kerrigan S, Petrovic D, Kruzliak P. Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases. Clin Biochem 2015; 48:562-568. [PMID: 25697107 DOI: 10.1016/j.clinbiochem.2015.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
Endothelial-derived microparticles (EMPs) are a novel biological marker of endothelium injury and vasomotion disorders that are involved in pathogenesis of cardiovascular, metabolic, and inflammatory diseases. Circulating levels of EMPs are thought to reflect a balance between cell stimulation, proliferation, apoptosis, and cell death. Increased EMPs may be defined in several cardiovascular diseases, such as stable and unstable coronary artery disease, acute and chronic heart failure, hypertension, arrhythmias, thromboembolism, asymptomatic atherosclerosis as well as renal failure, metabolic disorders (including type two diabetes mellitus, abdominal obesity, metabolic syndrome, insulin resistance) and dyslipidemia. This review highlights the controversial opinions regarding impact of circulating EMPs in major cardiovascular and metabolic diseases and summarizes the perspective implementation of the EMPs in risk stratification models.
Collapse
|
Review |
10 |
66 |
5
|
Berezin A. Neutrophil extracellular traps: The core player in vascular complications of diabetes mellitus. Diabetes Metab Syndr 2019; 13:3017-3023. [PMID: 30030160 DOI: 10.1016/j.dsx.2018.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is the most important metabolic disease with major threat for public health and increased risk of premature death. The prevalence of DM steadily rises in developing and developed countries achieving the epidemic level. Manifestation and progression of DM corresponds to developing vasculopathies, such as retinopathy, micro- and macro angiopathies, which negatively influence on clinical outcomes and quality-of-life. Although there are remarkable differences in the prevalence of vasculopathy in various types of DM, hyperglycemia and lipotoxicity are discussed as a major factors contributing to vascular complications partly through inducing neutrophil extracellular trap (NET). The NET or NETosis is unique form of cell death, which is an important core component of innate immune system. The review is dedicated the role of NET as a link between endothelium, inflammation and thrombosis that is crucial for development of DM-induced vasculopathy. It has suggested that NET formation could be not just a target for the DM care, but also a biomarker for stratification of DM patients at higher risk of vascular complications.
Collapse
|
Review |
6 |
48 |
6
|
Berezin AE, Berezin AA, Lichtenauer M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. DISEASE MARKERS 2021; 2021:6644631. [PMID: 33520013 PMCID: PMC7819753 DOI: 10.1155/2021/6644631] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a global medical problem that characterizes poor prognosis and high economic burden for the health system and family of the HF patients. Although modern treatment approaches have significantly decreased a risk of the occurrence of HF among patients having predominant coronary artery disease, hypertension, and myocarditis, the mortality of known HF continues to be unacceptably high. One of the most important symptoms of HF that negatively influences tolerance to physical exercise, well-being, social adaptation, and quality of life is deep fatigue due to HF-related myopathy. Myopathy in HF is associated with weakness of the skeletal muscles, loss of myofibers, and the development of fibrosis due to microvascular inflammation, metabolic disorders, and mitochondrial dysfunction. The pivotal role in the regulation of myocardial and skeletal muscle rejuvenation, attenuation of muscle metabolic homeostasis, and protection against ischemia injury and apoptosis belongs to myokines. Myokines are defined as a wide spectrum of active molecules that are directly synthesized and released by both cardiac and skeletal muscle myocytes and regulate energy homeostasis in autocrine/paracrine manner. In addition, myokines have a large spectrum of pleiotropic capabilities that are involved in the pathogenesis of HF including cardiac remodeling, muscle atrophy, and cardiac cachexia. The aim of the narrative review is to summarize the knowledge with respect to the role of myokines in adverse cardiac remodeling, myopathy, and clinical outcomes among HF patients. Some myokines, such as myostatin, irisin, brain-derived neurotrophic factor, interleukin-15, fibroblast growth factor-21, and growth differential factor-11, being engaged in the regulation of the pathogenesis of HF-related myopathy, can be detected in peripheral blood, and the evaluation of their circulating levels can provide new insights to the course of HF and stratify patients at higher risk of poor outcomes prior to sarcopenic stage.
Collapse
|
Review |
4 |
38 |
7
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin-angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
|
Review |
5 |
34 |
8
|
Berezin A. Epigenetics in heart failure phenotypes. BBA CLINICAL 2016; 6:31-37. [PMID: 27335803 PMCID: PMC4909708 DOI: 10.1016/j.bbacli.2016.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/29/2022]
Abstract
Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF.
Collapse
|
Review |
9 |
32 |
9
|
Walmod PS, Foley A, Berezin A, Ellerbeck U, Nau H, Bock E, Berezin V. Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:220-37. [PMID: 9678666 DOI: 10.1002/(sici)1097-0169(1998)40:3<220::aid-cm2>3.0.co;2-h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Valproic acid (VPA) is an established human teratogen that causes neural tube defects in 1-2% of human foetuses exposed to the drug during early pregnancy. In this study, individual cell motility was evaluated using short- and long-term time-lapse video-recording and computer assisted image analysis, and it was found that VPA and selected VPA-analogues inhibited individual cell motility of L-cells in a dose-dependent manner. The compounds caused a decrease in the root-mean-square speed, S, and in the rate of diffusion, R, but an increase in the time of persistence in direction, P. Using short-term recordings and measurements of mean-cell speed, the reduction in the motile behaviour was shown to correlate with the teratogenic potency of the tested compounds. The observed effects of VPA on cell motility was independent of the employed L-cell clone, and could be reproduced in cells containing the neuronal marker NCAM and in the neuronal cell line N2a. Furthermore, the observed effect was independent of culture substratum, being observed for L-cells grown on fibronectin as well as on plastic. Immunofluorescence microscopy revealed that VPA-treatment of mouse L-cells caused a redistribution of F-actin and of a series of focal adhesion proteins, indicating that the effect of VPA on cell motility may be causally related to increased cell-substratum interactions or to alterations in the organisation or dynamics of the actin cytoskeleton.
Collapse
|
|
25 |
32 |
10
|
Berezin AE, Berezin AA. Extracellular Endothelial Cell-Derived Vesicles: Emerging Role in Cardiac and Vascular Remodeling in Heart Failure. Front Cardiovasc Med 2020; 7:47. [PMID: 32351973 PMCID: PMC7174683 DOI: 10.3389/fcvm.2020.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles play a pivotal role in numerous physiological (immune response, cell-to-cell cooperation, angiogenesis) and pathological (reparation, inflammation, thrombosis/coagulation, atherosclerosis, endothelial dysfunction) processes. The development of heart failure is strongly associated with endothelial dysfunction, microvascular inflammation, alteration in tissue repair, and cardiac and vascular remodeling. It has been postulated that activated endothelial cell-derived vesicles are not just transfer forms of several active molecules (such as regulatory peptides, coagulation factors, growth factors, active molecules, hormones that are embedded onto angiogenesis, tissue reparation, proliferation, and even prevention from ischemia/hypoxia), but are instead involved in direct myocardial and vascular damage due to regulation of epigenetic responses of the tissue. These responses are controlled by several factors, such as micro-RNAs, that are transferred inside extracellular vesicles from mother cells to acceptor cells and are transductors of epigenetic signals. Finally, it is not a uniform opinion whether different phenotypes of heart failure are the result of altered cardiac and vascular reparation due to certain epigenetic responses, which are yielded by co-morbidities, such as diabetes mellitus and obesity. The aim of the review is to summarize knowledge regarding the role of various types of extracellular endothelial cell-derived vesicles in the regulation of cardiac and vascular remodeling in heart failure.
Collapse
|
Review |
5 |
32 |
11
|
Hartmann-Petersen R, Walmod PS, Berezin A, Berezin V, Bock E. Individual cell motility studied by time-lapse video recording: influence of experimental conditions. CYTOMETRY 2000; 40:260-70. [PMID: 10918277 DOI: 10.1002/1097-0320(20000801)40:4<260::aid-cyto2>3.0.co;2-j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Eukaryotic cell motility plays a key role during development, wound healing, and tumour invasion. Computer-assisted image analysis now makes it a realistic task to quantify individual cell motility of a large number of cells. However, the influence of culture conditions before and during measurements has not been investigated systematically. METHODS We have evaluated intraassay and interassay variations in determinations of cellular speed of fibroblastoid L929 cells and investigated the effects of a series of physical and biological parameters on the motile behavior of this cell line. Cellular morphology and organization of filamentous actin were assessed by means of phase-contrast and confocal laser scanning microscopy and compared to the corresponding motility data. RESULTS Cell dissociation procedure, seeding density, time of cultivation, and substrate concentration were shown to affect cellular speed significantly. pH and temperature of the medium most profoundly influenced cell motility and morphology. Thus, the mean cell speed was 40% lower at pH 7.25 than at pH 7.6; at 29 degrees C, it was approximately four times lower than at 39 degrees C. CONCLUSION Of the parameters evaluated, cell motility was most strongly affected by changes in pH and temperature. In general, changes in cell speed were accompanied by alterations in cell morphology and organization of filamentous actin, although no consistent phenotypic characteristics could be demonstrated for cells exhibiting high cell speed.
Collapse
|
|
25 |
26 |
12
|
Kawa A, Stahlhut M, Berezin A, Bock E, Berezin V. A simple procedure for morphometric analysis of processes and growth cones of neurons in culture using parameters derived from the contour and convex hull of the object. J Neurosci Methods 1998; 79:53-64. [PMID: 9531460 DOI: 10.1016/s0165-0270(97)00165-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Morphometric estimation of neuronal processes is currently laborious and time-consuming, since the individual processes (axons and dendrites) have to be traced manually. In order to facilitate the measurement of cellular processes, we have tested a series of parameters derived from the contour and the convex hull of an object and estimated to which extent they reflect process length and number. The parameters included the area, perimeter and form factor of the object and convex hull, their ratios as well as object length, breadth, width, length/width and spreading index. Some new parameters derived from the contour and convex hull of the object, were also computed: process index (the number of areas contained within the convex hull outside the object contour), process domain (the total area contained within the convex hull outside the object contour), their ratio and the square root of the process domain (SR process domain). In total, 18 parameters were estimated. Populations of motoneurons, growth cones of cerebellar granule cells and N2a neuroblastoma cells were utilized due to their diversity in morphological features. The processes of each object were drawn by hand to establish the actual length and number. Total process length per object correlated strongly with object perimeter, process domain and SR process domain. The number of processes per object correlated well with perimeter ratio, process index and form factor, whereas object length, convex hull perimeter and spreading index correlated acceptably with the average process length. Using these parameters for the evaluation of neurite outgrowth in developing of hippocampal neurons in vitro, variables such as object perimeter, process domain and SR process domain were found to be very well suited for estimation of the total length of neurites. We conclude that based on the contour and convex hull of an object it is possible to calculate a series of parameters which may substitute direct measurements of process length.
Collapse
|
|
27 |
24 |
13
|
Berezin AE, Berezin AA. Biomarkers in Heart Failure: From Research to Clinical Practice. Ann Lab Med 2023; 43:225-236. [PMID: 36544334 PMCID: PMC9791010 DOI: 10.3343/alm.2023.43.3.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this narrative review is to summarize contemporary evidence on the use of circulating cardiac biomarkers of heart failure (HF) and to identify a promising biomarker model for clinical use in personalized point-of-care HF management. We discuss the reported biomarkers of HF classified into clusters, including myocardial stretch and biomechanical stress; cardiac myocyte injury; systemic, adipocyte tissue, and microvascular inflammation; cardiac fibrosis and matrix remodeling; neurohumoral activation and oxidative stress; impaired endothelial function and integrity; and renal and skeletal muscle dysfunction. We focus on the benefits and drawbacks of biomarker-guided assistance in daily clinical management of patients with HF. In addition, we provide clear information on the role of alternative biomarkers and future directions with the aim of improving the predictive ability and reproducibility of multiple biomarker models and advancing genomic, transcriptomic, proteomic, and metabolomic evaluations.
Collapse
|
Review |
2 |
24 |
14
|
Berezin AA. Two- and three-dimensional Kronig-Penney model with delta -function-potential wells of zero binding energy. PHYSICAL REVIEW. B, CONDENSED MATTER 1986; 33:2122-2124. [PMID: 9938543 DOI: 10.1103/physrevb.33.2122] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
|
39 |
19 |
15
|
Berezin AE, Berezin AA. Impaired function of fibroblast growth factor 23 / Klotho protein axis in prediabetes and diabetes mellitus: Promising predictor of cardiovascular risk. Diabetes Metab Syndr 2019; 13:2549-2556. [PMID: 31405675 DOI: 10.1016/j.dsx.2019.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The discovery of clear molecular mechanisms of early cardiac and vascular complications in patients with prediabetes and known diabetes mellitus are core element of stratification at risk with predictive model creation further. Previous clinical studies have shown a pivotal role of impaired signaling axis of fibroblast growth factor 23 (FGF23), FGF23 receptor isoforms and its co-factor Klotho protein in cardiovascular (CV) complications in prediabetes and diabetes. Although there were data received in clinical studies, which confirmed a causative role of altered function of FGF-23/Klotho protein axis in manifestation of CV disease in prediabetes and type 2 diabetes mellitus (T2DM), the target therapy of these diseases directing on improvement of metabolic profiles, systemic and adipokine-relating inflammation by beneficial restoring of dysregulation in FGF-23/Klotho protein axis remain to be not fully clear. The aim of the review was to summarize findings regarding the role of impaired FGF-23/Klotho protein axis in developing CV complications in patients with prediabetes and type 2 diabetes mellitus. It has been elucidated that elevated levels of FGF-23 and deficiency of Klotho protein in peripheral blood are predictors of CV disease and CV outcomes in patients with (pre) diabetes, while predictive values of dynamic changes of the concentrations of these biomarkers require to be elucidated in detail in the future.
Collapse
|
Review |
6 |
17 |
16
|
Berezina TA, Obradovic Z, Boxhammer E, Berezin AA, Lichtenauer M, Berezin AE. Adropin Predicts Chronic Kidney Disease in Type 2 Diabetes Mellitus Patients with Chronic Heart Failure. J Clin Med 2023; 12:2231. [PMID: 36983232 PMCID: PMC10059962 DOI: 10.3390/jcm12062231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Adropin is a multifunctional secreted protein, which is involved in the metabolic modulation of the heart-brain-kidney axis in heart failure (HF). The aim of the study was to detect the plausible predictive value of serum levels of adropin for chronic kidney disease (CKD) grades 1-3 in type 2 diabetes mellitus (T2DM) patients with chronic HF. We enrolled 417 T2DM individuals with chronic HF and subdivided them into two groups depending on the presence of CKD. The control group was composed of 25 healthy individuals and 30 T2DM patients without HF and CKD. All eligible patients underwent an ultrasound examination. Adropin was detected by ELISA in blood samples at the study baseline. We found that adropin levels in T2DM patients without HF and CKD were significantly lower than in healthy volunteers, but they were higher than in T2DM patients with known HF. The optimal cut-off point for adropin levels was 2.3 ng/mL (area under the curve [AUC] = 0.86; 95% CI = 0.78-0.95; sensitivity = 81.3%, specificity = 77.4%). The multivariate logistic regression adjusted for albuminuria/proteinuria showed that serum levels of adropin <2.30 ng/mL (OR = 1.55; p = 0.001) independently predicted CKD. Conclusions: Low levels of adropin in T2DM patients with chronic CH seem to be an independent predictor of CKD at stages 1-3.
Collapse
|
research-article |
2 |
15 |
17
|
Topf A, Mirna M, Ohnewein B, Jirak P, Kopp K, Fejzic D, Haslinger M, Motloch LJ, Hoppe UC, Berezin A, Lichtenauer M. The Diagnostic and Therapeutic Value of Multimarker Analysis in Heart Failure. An Approach to Biomarker-Targeted Therapy. Front Cardiovasc Med 2020; 7:579567. [PMID: 33344515 PMCID: PMC7746655 DOI: 10.3389/fcvm.2020.579567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Heart failure is a pathophysiological state, which is still associated with high morbidity and mortality despite established therapies. Diverse well-known biomarkers fail to assess the variety of individual pathophysiology in the context of heart failure. Methods: An analysis of prospective, multimarker-specific therapeutic approaches to heart failure based on studies in current literature was performed. A total of 159 screened publications in the field of biomarkers in heart failure were hand-selected and found to be eligible for this study by a team of experts. Results: Established biomarkers of the inflammatory axis, matrix remodeling, fibrosis and oxidative stress axis, as well as potential therapeutic interventions were investigated. Interaction with end organs, such as cardio-hepatic, cardio-renal and cardio-gastrointestinal interactions show the complexity of the syndrome and could be of further therapeutic value. MicroRNAs are involved in a wide variety of physiologic and pathophysiologic processes in heart failure and could be useful in diagnostic as well as therapeutic setting. Conclusion: Based on our analysis by a biomarker-driven approach in heart failure therapy, patients could be treated more specifically in long term with a consideration of different aspects of heart failure. New studies evaluating a multimarker - based therapeutic approach could lead in a decrease in the morbidity and mortality of heart failure patients.
Collapse
|
Review |
5 |
14 |
18
|
Berezin AA, Lichtenauer M, Boxhammer E, Stöhr E, Berezin AE. Discriminative Value of Serum Irisin in Prediction of Heart Failure with Different Phenotypes among Patients with Type 2 Diabetes Mellitus. Cells 2022; 11:2794. [PMID: 36139374 PMCID: PMC9496790 DOI: 10.3390/cells11182794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that circulating levels of irisin are prognostic factors in heart failure (HF), but no data are available on the predictive role of irisin in patients with type 2 diabetes mellitus (T2DM) and different phenotypes of HF. The aim of the study was to investigate whether serum levels of irisin predict HF in T2DM patients. We prospectively included 183 participants with T2DM aged 41 to 62 years (30 non-HF patients and 153 HF patients) and 25 healthy volunteers in the study and evaluated clinical data, hemodynamics and biomarkers (N-terminal pro-brain natriuretic peptide (NT-proBNP) and irisin). Serum levels of irisin < 8.30 ng/mL were found to be a better indicator of HF with reduced ejection fraction (HFrEF) than irisin ≥ 8.30 ng/mL, but the predictive cut-off point for NT-proBNP remained the same as for HF with mildly reduced ejection fraction (HFmrEF). Serum levels of irisin < 10.4 ng/mL significantly improved the predictive ability of NT-proBNP for HF with preserved ejection fraction (HFpEF). In conclusion, we found that decreased serum levels of irisin significantly predicted HFpEF, rather than HFmrEF and HFrEF, in T2DM patients. This finding may open a new approach to HF risk stratification in T2DM patients.
Collapse
|
research-article |
3 |
14 |
19
|
Berezin AE, Berezin AA. Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification-A Narrative Review. Diabetes Ther 2020; 11:1271-1291. [PMID: 32430864 PMCID: PMC7261294 DOI: 10.1007/s13300-020-00835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this narrative review is to update the current knowledge on the differential choice of circulating cardiac biomarkers in patients with prediabetes and established type 2 diabetes mellitus (T2DM). There are numerous circulating biomarkers with unconfirmed abilities to predict clinical outcomes in pre-DM and DM individuals; the prognostication ability of the cardiac biomarkers reported here has been established, and they are still being studied. The conventional cardiac biomarkers, such as natriuretic peptides (NPs), soluble suppressor tumorigenisity-2, high-sensitivity circulating cardiac troponins and galectin-3, were useful to ascertain cardiovascular (CV) risk. Each cardiac biomarker has its strengths and weaknesses that affect the price of usage, specificity, sensitivity, predictive value and superiority in face-to-face comparisons. Additionally, there have been confusing reports regarding their abilities to be predictably relevant among patients without known CV disease. The large spectrum of promising cardiac biomarkers (growth/differential factor-15, heart-type fatty acid-binding protein, cardiotrophin-1, carboxy-terminal telopeptide of collagen type 1, apelin and non-coding RNAs) is discussed in the context of predicting CV diseases and events in patients with known prediabetes and T2DM. Various reasons have been critically discussed related to the variable findings regarding biomarker-based prediction of CV risk among patients with metabolic disease. It was found that NPs and hs-cTnT are still the most important tools that have an affordable price as well as high sensitivity and specificity to predict clinical outcomes among patients with pre-DM and DM in routine clinical practice, but other circulating biomarkers need to be carefully investigated in large trials in the future.
Collapse
|
Review |
5 |
14 |
20
|
Berezin AA, Obradovic Z, Fushtey IM, Berezina TA, Novikov EV, Schmidbauer L, Lichtenauer M, Berezin AE. The Impact of SGLT2 Inhibitor Dapagliflozin on Adropin Serum Levels in Men and Women with Type 2 Diabetes Mellitus and Chronic Heart Failure. Biomedicines 2023; 11:457. [PMID: 36830993 PMCID: PMC9953100 DOI: 10.3390/biomedicines11020457] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND adropin plays a protective role in cardiac remodeling through supporting energy metabolism and water homeostasis and suppressing inflammation. Low circulating levels of adropin were positively associated with the risk of cardiovascular diseases and type 2 diabetes mellitus (T2DM). We hypothesized that sodium-glucose linked transporter 2 (SGLT2) inhibitor dapagliflosin might represent cardiac protective effects in T2DM patients with known chronic HF through the modulation of adropin levels. METHODS we prospectively enrolled 417 patients with T2DM and HF from an entire cohort of 612 T2DM patients. All eligible patients were treated with the recommended guided HF therapy according to their HF phenotypes, including SGLT2 inhibitor dapagliflozin 10 mg, daily, orally. Anthropometry, clinical data, echocardiography/Doppler examinations, and measurements of biomarkers were performed at the baseline and over a 6-month interval of SGLT2 inhibitor administration. RESULTS in the entire group, dapagliflozin led to an increase in adropin levels by up to 26.6% over 6 months. In the female subgroup, the relative growth (Δ%) of adropin concentrations was sufficiently higher (Δ% = 35.6%) than that in the male subgroup (Δ% = 22.7%). A multivariate linear regression analysis of the entire group showed that the relative changes (Δ) in the left ventricular (LV) ejection fraction (LVEF), left atrial volume index (LAVI), and E/e' were significantly associated with increased adropin levels. In the female subgroup, but not in the male subgroup, ΔLVEF (p = 0.046), ΔLAVI (p = 0.001), and ΔE/e' (p = 0.001) were independent predictive values for adropin changes. CONCLUSION the levels of adropin seem to be a predictor for the favorable modification of hemodynamic performances during SGLT2 inhibition, independent ofN-terminal brain natriuretic pro-peptide levels.
Collapse
|
research-article |
2 |
12 |
21
|
Abstract
I suggest a hypothetic explanation of recently found 'memory effect' in water (water 'remembers' the presence of some biologically active molecules even when they are diluted to levels less then one molecule per total volume). My explanation is based on isotopic diversity water, namely that some positional correlations of stable isotope (H, D, 16O, 17O and 18O) might work as 'templates' of the originally dissolved molecules. These isotopic correlations are equivalent to the choice of a particular isotopic pattern out of the highly degenerate manyfold of potentially available patterns. This pattern is further reproduced at each next dilution level by some sort of 'locking-in' mechanism. Among possible physical candidates for such locking-in action is the polaronic self-stabilization in non-linear media.
Collapse
|
|
35 |
10 |
22
|
Berezin AA, Lichtenauer M, Boxhammer E, Fushtey IM, Berezin AE. Serum Levels of Irisin Predict Cumulative Clinical Outcomes in Heart Failure Patients With Type 2 Diabetes Mellitus. Front Physiol 2022; 13:922775. [PMID: 35651870 PMCID: PMC9149086 DOI: 10.3389/fphys.2022.922775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023] Open
Abstract
Background: The aim of this study was to investigate the role of serum irisin level in predicting clinical outcome in heart failure (HF) patients with type 2 diabetes mellitus (T2DM). Methods: 153 T2DM patients with HF aged 41-62 years were prospectively recruited for the study. Serum levels of irisin and NT-proBNP were measured by ELISA. Laboratory tests including HbA1c, fasting glucose, blood creatinine, insulin, lipids and creatinine with estimation of GFR were performed along with echocardiography at baseline. The observation period was 56 weeks. Results: We identified 76 composite cardiovascular (CV) outcomes, which included CV death and death from all causes, resuscitated cardiac death, non-fatal/fatal acute myocardial infarction or stroke, and HF hospitalization. Therefore, the entire patient cohort was divided into 2 groups with (n = 76) and without (n = 77) composite CV outcomes. We found that the concentrations of NT-proBNP were higher in HF patients with T2DM who had a CV composite outcome than in patients without CV composite outcome (p = 0.001). In contrast, the relationship was exactly reversed for irisin, as HF and T2DM patients with CV composite outcome had significantly lower irisin levels (p = 0.001). Unadjusted multivariate Cox regression analyses showed that LVEF < 40%, LAVI > 39 ml/m2, NT-proBNP > 2,250 pmol/ml, and irisin < 6.50 ng/ml were the strongest predictors of CV outcomes in HF patients with T2DM. After adjustment for LVEF, serum levels of NT-proBNP and irisin remained independent predictors of end points. Furthermore, divergence of Kaplan-Meier curves pointed out that patients with NT-proBNP > 2,250 pmol/ml and irisin < 6.50 ng/ml had worse prognosis than those with any other compartment of the bomarkers' levels. Conclusion: Adding irisin to NT-proBNP significantly improved discriminative value of the whole model. HF patients with T2DM had significantly worse clinical outcomes when showing the constellation NT-proBNP > 2,250 pmol/ml and irisin < 6.50 ng/ml, respectively, in comparison to patients with opposite trends for both biomarkers.
Collapse
|
research-article |
3 |
10 |
23
|
Berezin AA, Obradovic Z, Novikov EV, Boxhammer E, Lichtenauer M, Berezin AE. Interplay between Myokine Profile and Glycemic Control in Type 2 Diabetes Mellitus Patients with Heart Failure. Diagnostics (Basel) 2022; 12:2940. [PMID: 36552947 PMCID: PMC9776539 DOI: 10.3390/diagnostics12122940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) remains a powerful predictor of progressive heart failure (HF), but it is not clear whether altered glycemic control interferes with HF progression via an impaired profile of circulating myokines. The aim was to investigate plausible effects of glucose control on a myokine signature in T2DM patients affected by chronic HF. We selected 372 T2DM patients from the local database and finally included 314 individuals suffering from chronic HF and subdivided them into two groups according to glycosylated hemoglobin (HbA1c) levels (<6.9% and ≥7.0%). Echocardiography and Doppler examinations along with biomarker measurements were performed at the baseline of the study. The results showed that irisin levels were significantly lower in patients with HbA1c ≥ 7.0% than in those with HbAc1 < 6.9%, whereas concentrations of apelin, myostatin and adropin did not significantly differ between these two groups. We also identified numerous predictors of poor glycemic control, but only N-terminal brain natriuretic propeptide (odds ratio [OR] = 1.07; 95% confidence interval [CI] = 1.02−1.10, p = 0.04) and irisin (OR = 1.09; 95% CI = 1.04−1.17, p = 0.001) remained independent predictors of the dependent variable. In conclusion, we found that decreased levels of irisin were associated with poor glycemic control in T2DM patients with HF regardless of clinical conditions and other biomarkers.
Collapse
|
research-article |
3 |
10 |
24
|
|
|
41 |
10 |
25
|
Berezin AA. Positron trapping by the negatively charged F-aggregate colour centres and the binding energy of the Fe+', Me+' and Re+' centres in alkali-halide crystals. ACTA ACUST UNITED AC 2001. [DOI: 10.1088/0022-3719/12/10/001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
24 |
9 |