1
|
Ruhs S, Nolze A, Hübschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 2017; 234:T107-T124. [PMID: 28348113 DOI: 10.1530/joe-16-0659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family and classically functions as a ligand-dependent transcription factor. It is involved in water-electrolyte homeostasis and blood pressure regulation but independent from these effects also furthers inflammation, fibrosis, hypertrophy and remodeling in cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions within minutes that do not require transcription or translation and that occur not only in classical MR epithelial target organs like kidney and colon but also in nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects can be mediated by classical MR and its crosstalk with different signaling cascades. Near the plasma membrane, the MR seems to be associated with caveolin and striatin as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone effects. GPER1 has also been named a putative novel MR. There is a close interaction and functional synergism between the genomic and the nongenomic signaling so that nongenomic signaling can lead to long-term effects and support genomic actions. Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance for modulating genomic aldosterone effects and may provide additional targets for intervention.
Collapse
|
Review |
8 |
51 |
2
|
Bretschneider M, Busch B, Mueller D, Nolze A, Schreier B, Gekle M, Grossmann C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. FASEB J 2016; 30:1610-22. [PMID: 26728178 DOI: 10.1096/fj.15-271254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022]
Abstract
Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
21 |
3
|
Nolze A, Schneider J, Keil R, Lederer M, Hüttelmaier S, Kessels MM, Qualmann B, Hatzfeld M. FMRP regulates actin filament organization via the armadillo protein p0071. RNA (NEW YORK, N.Y.) 2013; 19:1483-96. [PMID: 24062571 PMCID: PMC3851716 DOI: 10.1261/rna.037945.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Loss of fragile X mental retardation protein (FMRP) causes synaptic dysfunction and intellectual disability. FMRP is an RNA-binding protein that controls the translation or turnover of a subset of mRNAs. Identifying these target transcripts is an important step toward understanding the pathology of the disease. Here, we show that FMRP regulates actin organization and neurite outgrowth via the armadillo protein p0071. In mouse embryonic fibroblasts (MEFs) lacking FMRP (Fmr1-), the actin cytoskeleton was markedly reorganized with reduced stress fibers and F-actin/G-actin ratios compared to fibroblasts re-expressing the protein. FMRP interfered with the translation of the p0071 mRNA in a 3'-UTR-dependent manner. Accordingly, FMRP-depleted cells revealed elevated levels of p0071 protein. The knockdown of p0071 in Fmr1- fibroblasts restored stress fibers and an elongated cell shape, thus rescuing the Fmr1- phenotype, whereas overexpression of p0071 in Fmr1+ cells mimicked the Fmr1- phenotype. Moreover, p0071 and FMRP regulated neurite outgrowth and branching in a diametrically opposed way in agreement with the negative regulation of p0071 by FMRP. These results identify p0071 as an important and novel FMRP target and strongly suggest that impaired actin cytoskeletal functions mediated by an excess of p0071 are key aspects underlying the fragile X syndrome.
Collapse
|
research-article |
12 |
21 |
4
|
Grossmann C, Almeida-Prieto B, Nolze A, Alvarez de la Rosa D. Structural and molecular determinants of mineralocorticoid receptor signalling. Br J Pharmacol 2021; 179:3103-3118. [PMID: 34811739 DOI: 10.1111/bph.15746] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity.
Collapse
|
Review |
4 |
20 |
5
|
Rauschner M, Lange L, Hüsing T, Reime S, Nolze A, Maschek M, Thews O, Riemann A. Impact of the acidic environment on gene expression and functional parameters of tumors in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:10. [PMID: 33407762 PMCID: PMC7786478 DOI: 10.1186/s13046-020-01815-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.
Collapse
|
Journal Article |
4 |
17 |
6
|
Polovic M, Dittmar S, Hennemeier I, Humpf HU, Seliger B, Fornara P, Theil G, Azinovic P, Nolze A, Köhn M, Schwerdt G, Gekle M. Identification of a novel lncRNA induced by the nephrotoxin ochratoxin A and expressed in human renal tumor tissue. Cell Mol Life Sci 2018; 75:2241-2256. [PMID: 29282485 PMCID: PMC11105410 DOI: 10.1007/s00018-017-2731-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Long non-coding RNAs represent a fraction of the transcriptome that is being increasingly recognized. For most of them no function has been allocated so far. Here, we describe the nature and function of a novel non-protein-coding transcript, named WISP1-AS1, discovered in human renal proximal tubule cells exposed to the carcinogenic nephrotoxin ochratoxin A. WISP1-AS1 overlaps parts of the fourth intron and fifth exon of the Wnt1-inducible signaling pathway protein 1 (WISP1) gene. The transcript is 2922 nucleotides long, transcribed in antisense direction and predominantly localized in the nucleus. WISP1-AS1 is expressed in all 20 samples of a human tissue RNA panel with the highest expression levels detected in uterus, kidney and adrenal gland. Its expression was confirmed in primary tissues of human kidneys. In addition, WISP1-AS1 is expressed at higher levels in renal cell carcinoma (RCC) cell lines compared to primary proximal tubule cells as well as in RCC lesions than in the adjacent healthy control tissue from the same patient. Using specific gapmer antisense oligonucleotides to prevent its upregulation, we show that WISP1-AS1 (1) does not influence the mRNA expression of WISP1, (2) affects transcriptional regulation by Egr-1 and E2F as revealed by RNA-sequencing, enrichment analysis and reporter assays, and (3) modulates the apoptosis-necrosis balance. In summary, WISP1-AS1 is a novel lncRNA with modulatory transcriptional function and the potential to alter the cellular phenotype in situations of stress or oncogenic transformation. However, its precise mode of action and impact on cellular functions require further investigations.
Collapse
|
research-article |
7 |
15 |
7
|
Stern C, Schreier B, Nolze A, Rabe S, Mildenberger S, Gekle M. Knockout of vascular smooth muscle EGF receptor in a mouse model prevents obesity-induced vascular dysfunction and renal damage in vivo. Diabetologia 2020; 63:2218-2234. [PMID: 32548701 PMCID: PMC7476975 DOI: 10.1007/s00125-020-05187-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Obesity causes type 2 diabetes leading to vascular dysfunction and finally renal end-organ damage. Vascular smooth muscle (VSM) EGF receptor (EGFR) modulates vascular wall homeostasis in part via serum response factor (SRF), a major regulator of VSM differentiation and a sensor for glucose. We investigated the role of VSM-EGFR during obesity-induced renovascular dysfunction, as well as EGFR-hyperglycaemia crosstalk. METHODS The role of VSM-EGFR during high-fat diet (HFD)-induced type 2 diabetes was investigated in a mouse model with inducible, VSM-specific EGFR-knockout (KO). Various structural and functional variables as well as transcriptome changes, in vivo and ex vivo, were assessed. The impact of hyperglycaemia on EGFR-induced signalling and SRF transcriptional activity and the underlying mechanisms were investigated at the cellular level. RESULTS We show that VSM-EGFR mediates obesity/type 2 diabetes-induced vascular dysfunction, remodelling and transcriptome dysregulation preceding renal damage and identify an EGFR-glucose synergism in terms of SRF activation, matrix dysregulation and mitochondrial function. EGFR deletion protects the animals from HFD-induced endothelial dysfunction, creatininaemia and albuminuria. Furthermore, we show that HFD leads to marked changes of the aortic transcriptome in wild-type but not in KO animals, indicative of EGFR-dependent SRF activation, matrix dysregulation and mitochondrial dysfunction, the latter confirmed at the cellular level. Studies at the cellular level revealed that high glucose potentiated EGFR/EGF receptor 2 (ErbB2)-induced stimulation of SRF activity, enhancing the graded signalling responses to EGF, via the EGFR/ErbB2-ROCK-actin-MRTF pathway and promoted mitochondrial dysfunction. CONCLUSIONS/INTERPRETATION VSM-EGFR contributes to HFD-induced vascular and subsequent renal alterations. We propose that a potentiated EGFR/ErbB2-ROCK-MRTF-SRF signalling axis and mitochondrial dysfunction underlie the role of EGFR. This advanced working hypothesis will be investigated in mechanistic depth in future studies. VSM-EGFR may be a therapeutic target in cases of type 2 diabetes-induced renovascular disease. DATA AVAILABILITY The datasets generated during and/or analysed during the current study are available in: (1) share_it, the data repository of the academic libraries of Saxony-Anhalt ( https://doi.org/10.25673/32049.2 ); and (2) in the gene expression omnibus database with the study identity GSE144838 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144838 ). Graphical abstract.
Collapse
|
research-article |
5 |
13 |
8
|
Nolze A, Köhler C, Ruhs S, Quarch K, Strätz N, Gekle M, Grossmann C. Calcineurin (PPP3CB) regulates angiotensin II-dependent vascular remodelling by potentiating EGFR signalling in mice. Acta Physiol (Oxf) 2021; 233:e13715. [PMID: 34228904 DOI: 10.1111/apha.13715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/08/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
AIM This study investigates the role of calcineurin for angiotensin II (AngII)-induced vascular remodelling with the help of a mouse model lacking the catalytic beta subunit of calcineurin (PPP3CB KO). METHODS Wildtype (WT) and PPP3CB KO mice were treated for 4 weeks with AngII followed by assessment of blood pressure, histological evaluation of aortas and mRNA analysis of aortic genes PPP3CB-dependently regulated by AngII. Primary murine vascular smooth muscle cells (VSMCs) were used for qPCR, ELISA and Western Blot experiments as well as wound healing and cell proliferation assays. RESULTS Upon AngII treatment, PPP3CB KO mice showed less aortic media thickening, lumen dilation and systolic blood pressure compared to WT mice. Next-generation sequencing data of aortic tissue indicated an increase in extracellular matrix components (EMCs), cell migration and cell proliferation. A PPP3CB-dependent increase in EMC was confirmed by qPCR in aorta and VSMCs. PPP3CB-dependent stimulation of VSMC migration could be verified by wound healing assays but markers of enhanced cell proliferation were only detectable in aortic tissue of WT mice but not in isolated WT or KO VSMCs. We could demonstrate in VSMCs with pharmacological inhibitors that PPP3CB leads to enhanced heparin-binding EGF-like growth factor (HB-EGF) secretion, epidermal growth factor receptor (EGFR) activation and consecutive stimulation of transforming growth factor β(TGFβ) and connective tissue growth factor (CTGF) signalling that enhances collagen expression. CONCLUSION AngII-induced vascular remodelling involves PPP3CB, which leads to enhanced EMC production, VSMC migration and sustained increase in systolic blood pressure via HBEGF/EGFR-TGFβ-CTGF signalling.
Collapse
|
Journal Article |
4 |
8 |
9
|
Gadasheva Y, Nolze A, Grossmann C. Posttranslational Modifications of the Mineralocorticoid Receptor and Cardiovascular Aging. Front Mol Biosci 2021; 8:667990. [PMID: 34124152 PMCID: PMC8193679 DOI: 10.3389/fmolb.2021.667990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
During aging, the cardiovascular system is especially prone to a decline in function and to life-expectancy limiting diseases. Cardiovascular aging is associated with increased arterial stiffness and vasoconstriction as well as left ventricular hypertrophy and reduced diastolic function. Pathological changes include endothelial dysfunction, atherosclerosis, fibrosis, hypertrophy, inflammation, and changes in micromilieu with increased production of reactive oxygen and nitrogen species. The renin-angiotensin-aldosterone-system is an important mediator of electrolyte and blood pressure homeostasis and a key contributor to pathological remodeling processes of the cardiovascular system. Its effects are partially conveyed by the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, whose activity increases during aging and cardiovascular diseases without correlating changes of its ligand aldosterone. There is growing evidence that the MR can be enzymatically and non-enzymatically modified and that these modifications contribute to ligand-independent modulation of MR activity. Modifications reported so far include phosphorylation, acetylation, ubiquitination, sumoylation and changes induced by nitrosative and oxidative stress. This review focuses on the different posttranslational modifications of the MR, their impact on MR function and degradation and the possible implications for cardiovascular aging and diseases.
Collapse
|
Review |
4 |
6 |
10
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
|
Review |
2 |
|
11
|
Mohib MM, Rabe S, Nolze A, Rooney M, Ain Q, Zipprich A, Gekle M, Schreier B. Eplerenone, a mineralocorticoid receptor inhibitor, reduces cirrhosis associated changes of hepatocyte glucose and lipid metabolism. Cell Commun Signal 2024; 22:614. [PMID: 39707386 DOI: 10.1186/s12964-024-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recent studies suggest a contribution of intrahepatic mineralocorticoid receptor (MR) activation to the development of cirrhosis. As MR blockade abrogates the development of cirrhosis and hypoxia, common during the development of cirrhosis, can activate MR in hepatocytes. But, the impact of non-physiological hepatic MR activation is unknown. In this study, we investigate the impact of hypoxia-induced hepatocyte MR activation as a relevant factor in cirrhosis. METHODS RNA sequencing followed by gene ontology term enrichment analysis was performed on liver samples from rats treated for 12 weeks with or without CCl4 and for the last four weeks with or without eplerenone (MR antagonist). We investigated if these changes can be mimicked by hypoxia in a human hepatocyte cell line (HepG2 cells) and in primary rat hepatocytes (pRH). In order to evaluate the functional cellular importance, hepatocyte lipid accumulation, glucose consumption, lactate production and mitochondrial function were analyzed. RESULTS In cirrhotic liver tissue genes annotated to the GOterm "Monocarboxylic acid metabolic process" (PPARα, PDK4, AMACR, ABCC2, Lipin1) are downregulated. This effect is reversed by the MR antagonist eplerenone in vivo. The alterations are partially mimicked by hypoxia in rat and human hepatocytes in tissue culture. Furthermore, the reduction of mRNA and protein expression of PPARα, PDK4, AMACR, ABCC2 and Lipin1 during hypoxia is prevented by eplerenone in rat and human hepatocytes. Aldosterone, the endogenous MR agonist, did not affect the expression of those proteins in hepatocytes. As those proteins are key regulators of hepatocyte energy homeostasis, we analyzed if hypoxia affected glucose consumption, lactate production and lipid accumulation in HepG2 cells in a MR-mediated manner. All three parameters were affected by hypoxia and were partially normalized by eplerenone. CONCLUSION Our findings suggest that non-physiological MR activation plays a role in the dysregulation of glucose and lipid metabolism in hepatocytes. This leads to an increase in apoptosis, probably resulting in a proinflammatory micromilieu of the hepatic tissue. The enhanced deposition of extracellular matrix contributes to the development of cirrhosis. Therefore, MR antagonists may have therapeutic potential in the treatment of early stages of liver disease due to their direct action in the liver.
Collapse
|
|
1 |
|