1
|
Taheri Y, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Ezzat SM, Merghany RM, Shaheen S, Azmi L, Prakash Mishra A, Sener B, Kılıç M, Sen S, Acharya K, Nasiri A, Cruz-Martins N, Tsouh Fokou PV, Ydyrys A, Bassygarayev Z, Daştan SD, Alshehri MM, Calina D, Cho WC. Urtica dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4024331. [PMID: 35251206 PMCID: PMC8894011 DOI: 10.1155/2022/4024331] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.
Collapse
|
Review |
3 |
43 |
2
|
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, Ydyrys A, Hano C, Calina D, Cho WC. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother 2022; 154:113555. [PMID: 36027610 DOI: 10.1016/j.biopha.2022.113555] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 01/01/2023] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.
Collapse
|
Review |
3 |
39 |
3
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
|
Review |
2 |
29 |
4
|
Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 2023; 21:89. [PMID: 37127651 PMCID: PMC10152593 DOI: 10.1186/s12964-023-01109-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Collapse
|
Review |
2 |
29 |
5
|
Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, Ozdemir B, Sevindik M, Kaplan DN, Selamoglu Z, Ydyrys A, Anitha T, Kumar M, Sharifi-Rad J, Butnariu M. Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2488804. [PMID: 34795782 PMCID: PMC8595006 DOI: 10.1155/2021/2488804] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.
Collapse
|
Review |
4 |
29 |
6
|
Posadino AM, Giordo R, Pintus G, Mohammed SA, Orhan IE, Fokou PVT, Sharopov F, Adetunji CO, Gulsunoglu-Konuskan Z, Ydyrys A, Armstrong L, Sytar O, Martorell M, Razis AFA, Modu B, Calina D, Habtemariam S, Sharifi-Rad J, Cho WC. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed Pharmacother 2023; 163:114866. [PMID: 37182516 DOI: 10.1016/j.biopha.2023.114866] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.
Collapse
|
Review |
2 |
25 |
7
|
Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023; 12:1068778. [PMID: 36698404 PMCID: PMC9869248 DOI: 10.3389/fonc.2022.1068778] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Bromelain is a key enzyme found in pineapple (Ananas comosus (L.) Merr.); a proteolytic substance with multiple beneficial effects for human health such as anti-inflammatory, immunomodulatory, antioxidant and anticarcinogenic, traditionally used in many countries for its potential therapeutic value. The aim of this updated and comprehensive review focuses on the potential anticancer benefits of bromelain, analyzing the cytotoxic, apoptotic, necrotic, autophagic, immunomodulating, and anti-inflammatory effects in cancer cells and animal models. Detailed information about Bromelain and its anticancer effects at the cellular, molecular and signaling levels were collected from online databases such as PubMed/MedLine, TRIP database, GeenMedical, Scopus, Web of Science and Google Scholar. The results of the analyzed studies showed that Bromelain possesses corroborated pharmacological activities, such as anticancer, anti-edema, anti-inflammatory, anti-microbial, anti-coagulant, anti-osteoarthritis, anti-trauma pain, anti-diarrhea, wound repair. Nonetheless, bromelain clinical studies are scarce and still more research is needed to validate the scientific value of this enzyme in human cancer diseases.
Collapse
|
review-article |
2 |
16 |
8
|
Islam MT, Sarkar C, Hossain R, Bhuia MS, Mardare I, Kulbayeva M, Ydyrys A, Calina D, Habtemariam S, Kieliszek M, Sharifi-Rad J, Cho WC. Therapeutic strategies for rheumatic diseases and disorders: targeting redox imbalance and oxidative stress. Biomed Pharmacother 2023; 164:114900. [PMID: 37216707 DOI: 10.1016/j.biopha.2023.114900] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatic diseases and disorders (RDDs) are a group of chronic autoimmune diseases that are collectively called "multicausal diseases". They have resulted from predisposing genetic profiles and exposure to a range of environmental, occupational and lifestyle risk factors. Other causative factors include bacterial and viral attacks, sexual habits, trauma, etc. In addition, numerous studies reported that redox imbalance is one of the most serious consequences of RDDs. For example, rheumatoid arthritis (RA) as a classic example of chronic RDDs is linked to oxidative stress. This paper summarizes the contributions of redox imbalance to RDDs. The findings suggest that establishing direct or indirect therapeutic strategies for RDDs requires a more in-depth understanding of the redox dysregulation in these diseases. For example, the recent awareness of the roles of peroxiredoxins (Prdxs, e.g. Prdx2, Prdx3) in RDDs provided one potential route of therapeutic intervention of these pathologies. Changes in stressful lifestyles and dietary habits may also provide additional benefits in the management of RDDs. Future studies should be directed to explore molecular interactions in redox regulations associated with RDDS and potential therapeutic interventions.
Collapse
|
Review |
2 |
12 |
9
|
Ydyrys A, Zhaparkulova N, Aralbaeva A, Mamataeva A, Seilkhan A, Syraiyl S, Murzakhmetova M. Systematic Analysis of Combined Antioxidant and Membrane-Stabilizing Properties of Several Lamiaceae Family Kazakhstani Plants for Potential Production of Tea Beverages. PLANTS 2021; 10:plants10040666. [PMID: 33808498 PMCID: PMC8065620 DOI: 10.3390/plants10040666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
One of the most important compounds that exhibit a wide range of biological activities with especially strong antioxidant action are plant polyphenols. In the course of the experiment, the dose-dependent effects of polyphenols-rich extracts isolated from the Lamiaceae family Kazakhstani plants were studied on the processes of lipid peroxidation and on the degree of erythrocytes hemolysis. The activity of aqueous-ethanolic extracts from dried parts of plants, such as Origanum vulgare, Ziziphora bungeana, Dracocephalum integrifolium, Mentha piperita, Leonurus turkestanicus, Thymus serpyllum, and Salvia officinalis, was studied in a Wistar rat model. Lipid peroxidation (LPO) in liver microsomes was assessed by measuring malondialdehyde content in the form of thiobarbituric acid-reacting substances (TBARS). Estimation of osmotic resistance of isolated erythrocytes was evaluated based on hemoglobin absorbance. The amount of total phenolics in the extracts was measured using the Folin-Ciocalteu reagent method. Based on the results, Thymus serpyllum extract exhibited a significantly higher antioxidant activity (IC50 = 3.3 ± 0.7) compared to other plant extracts. Accordingly, among the extracts studied, those from Salvia officinalis, Thymus serpyllum, and Origanum vulgare show the most pronounced membrane-stabilizing activity. Antioxidant and antihemolytic properties of green tea and Origanum vulgare extract mixtures were similar to that of each individual plant extract. Similar results were obtained when the green tea extract was mixed with Mentha piperita, Ziziphora bungeana, and Dracocephalum integrifolium extracts, indicating no discernible synergistic interaction.
Collapse
|
Journal Article |
4 |
8 |
10
|
Rajkovic J, Novakovic R, Grujic-Milanovic J, Ydyrys A, Ablaikhanova N, Calina D, Sharifi-Rad J, Al-Omari B. An updated pharmacological insight into calotropin as a potential therapeutic agent in cancer. Front Pharmacol 2023; 14:1160616. [PMID: 37138852 PMCID: PMC10149670 DOI: 10.3389/fphar.2023.1160616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Calotropin is a pharmacologically active compound isolated from milkweed plants like Calotropis procera, Calotropis gigantea, and Asclepias currasavica that belong to the Asclepiadaceae family. All of these plants are recognised as medical traditional plants used in Asian countries. Calotropin is identified as a highly potent cardenolide that has a similar chemical structure to cardiac glycosides (such as digoxin and digitoxin). During the last few years, cytotoxic and antitumor effects of cardenolides glycosides have been reported more frequently. Among cardenolides, calotropin is identified as the most promising agent. In this updated and comprehensive review, we aimed to analyze and discuss the specific mechanisms and molecular targets of calotropin in cancer treatment to open new perspectives for the adjuvant treatment of different types of cancer. The effects of calotropin on cancer have been extensively studied in preclinical pharmacological studies in vitro using cancer cell lines and in vivo in experimental animal models that have targeted antitumor mechanisms and anticancer signaling pathways. The analyzed information from the specialized literature was obtained from scientific databases until December 2022, mainly from PubMed/MedLine, Google Scholar, Scopus, Web of Science, and Science Direct databases using specific MeSH search terms. The results of our analysis demonstrate that calotropin can be a potential chemotherapeutic/chemopreventive adjunctive agent in cancer pharmacotherapeutic management.
Collapse
|
Review |
2 |
2 |
11
|
Tussupbekova G, Тuleukhanov S, Ablaikhanova N, Kim Y, Abdrassulova Z, Kulbaeva М, Zhussupova A, Ydyrys A. Study of the chronic toxicity of the “Virospan” drug. INTERNATIONAL JOURNAL OF BIOLOGY AND CHEMISTRY 2018. [DOI: 10.26577/ijbch-2018-2-331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
7 |
2 |
12
|
Kudaibergen AA, Dyusebaeva MA, Ydyrys A, Feng Y, Jenis J. Investigation of chemical constituents of medicinal Plant Spiraea Hypericifolia L. INTERNATIONAL JOURNAL OF BIOLOGY AND CHEMISTRY 2019. [DOI: 10.26577/ijbch-2019-1-i17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
6 |
1 |
13
|
Nakan U, Bieerkehazhi S, Tolkyn B, Mun GA, Assanov M, Nursultanov ME, Rakhmetullayeva RK, Toshtay K, Negim ES, Ydyrys A. Synthesis, Characterization and Antibacterial Application of Copolymers Based on N, N-Dimethyl Acrylamide and Acrylic Acid. MATERIALS 2021; 14:ma14206191. [PMID: 34683781 PMCID: PMC8540520 DOI: 10.3390/ma14206191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Hydrogel copolymers based on N,N-dimethyl acrylamide (DMA) and acrylic acid (AAc) were synthesized using a solution polymerization technique with different monomer ratios and ammonium persulfate as an initiator. This paper investigates the thermal stability, physical and chemical properties of the hydrogel copolymer. Testing includes Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and elemental analysis (CHNS). The copolymer composition was determined by elemental analysis, and the reactivity ratios of monomers were calculated through linearization methods such as Fineman–Ross (FR), inverted Fineman–Ross (IFR), Kelen–Tudos (KT) and Mayo–Lewis (ML). Good agreement was observed between the results of all four methods. The ratio of r1 and r2 were 0.38 (r1) and 1.45 (r2) (FR), 0.38 (r1) and 1.46 (r2) (IFR), 0.38 (r1) and 1.43 (r2) (KT), and 0.38 (r1) and 1.45 (r2) (ML). Hydrogel copolymers exhibited good thermal stability, and SEM showed three-dimensional porous structures. Antibiotic-free and antibiotic-loaded hydrogels demonstrated antimicrobial properties against both Gram-positive and Gram-negative bacteria. As the ratio of DMA in hydrogel copolymer increased, the activity of copolymer against bacteria enhanced. The results indicated that these hydrogels have the potential to be used as antibacterial materials.
Collapse
|
|
4 |
1 |
14
|
Baidaulet T, Tuleuhanov S, Ablaikhanova N, Ydyrys A, Baishanbo A. Effects of Almaty city ecological factors on students blood indices at Al-Farabi Kazakh National University. INTERNATIONAL JOURNAL OF BIOLOGY AND CHEMISTRY 2017. [DOI: 10.26577/2218-7979-2017-10-1-42-49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
8 |
1 |
15
|
Yerzhebayeva RS, Bazylova TA, Babissekova DI, Amangeldiyeva AA, Tajibayev DG, Ydyrys A. Studying a Spring Triticale Collection for Resistance to Leaf and Stem Rusts using Allele-Specific Markers. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452720060043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
4 |
1 |
16
|
Iqbal MJ, Rashid U, Javed Z, Hamid Z, Imran K, Kabeer A, Raza S, Almarhoon ZM, Reiner Ž, Bagiu IC, Bagiu RV, Sarac I, Sharifi-Rad J, Ydyrys A, Daştan SD, Butnariu M, Cho WC. Biosynthesized silver nanoparticles and miR34a mimics mediated activation of death receptor in MCF-7 human breast cancer cell lines. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractNano-biotechnology-based clinical applications to cure health-related issues have gained huge attention among the scientific community and hold great promise to limit cancer metastasis. In this study, green-derived silver nanoparticles were synthesized by using leaf extract of Litchi chinensis. Characterization of biosynthesized silver nanoparticles was performed by using UV–Vis spectroscopy, FTIR, XRD, EDS, and SEM analysis. The clinical application of green-drive nanoparticles was investigated by using MCF-7 cancer cell lines. MCF-7 breast cancer cell lines were analyzed against three different treatments. (i) Silver nanoparticles (AgNPs), (ii) miR34a mimics and (iii) Co-delivery of AgNPs and miR34a mimics. Cell viability was determined by MTT assay and, extraction of mRNA and cDNA synthesis were performed after successful cellular transfection. qRT-PCR was done for expression analysis of DR4 and DR5 upon exogenous delivery of all 3 treatments. Results indicate that L. chinensis leaves have a significant amount of phenolic and flavonoid contents and also possess massive antioxidant activity. The diameter of nanoparticles was observed in the range of 41–55 nm. It was concluded that green-derived silver nanoparticles can be a potential contributing agent for cancer prevention and are reported to upregulate the expression of DR4 and DR5 by 0.8-folds and 3.7-folds, respectively.
Collapse
|
|
3 |
|
17
|
Sekerova T, Tileubayeva Z, Ydyrys A, Aitzhanova M, Bakirova K, Mutlu M, Admanova G. Assessing Kazakhstani wheat varieties by yield indicators and resistance to rust. INTERNATIONAL JOURNAL OF BIOLOGY AND CHEMISTRY 2021. [DOI: 10.26577/ijbch.2021.v14.i1.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
4 |
|
18
|
Ydyrys S, Ydyrys A, Tazhibaeva K, Baidaulet T, Dossymbetova S, Baktybayeva L, Inelova Z, Kulbayeva M. Using Bio-humus for greening technology and saving bioresources in arid region. J Biotechnol 2019. [DOI: 10.1016/j.jbiotec.2019.05.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
6 |
|
19
|
Amirova A, Dossymbetova S, Rysbayeva Y, Usenbekov B, Tolegen A, Ydyrys A. Multiple Plant Regeneration from Embryogenic Calli of Paulownia tomentosa (Thunb.) Steud. PLANTS 2022; 11:plants11081020. [PMID: 35448749 PMCID: PMC9027930 DOI: 10.3390/plants11081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022]
Abstract
The aim of this paper was to study the effect of plant growth regulators on callus induction and in vitro morphogenesis using various explants of Paulownia tomentosa to develop an efficient plant regeneration protocol. Different plant organ sections (leaves, apical shoot tips, petals, nodes, and internodes) were cultured as explants to identify the best in vitro explants responsive to callus induction and plant regeneration. Explants were cultivated on MS media supplemented with different concentrations of plant growth regulators (TDZ (Thidiazuron), BAP (6-Benzylaminopurine), kinetin, and NAA (1-Naphthaleneacetic acid). It was discovered that the addition of TDZ and NAA stimulated the induction of somatic embryogenesis. It was discovered that the MS medium with the combination of plant growth regulators BAP (35.5 µM) and NAA (5.4 µM) with the addition of 30.0 g/L maltose, 500.0 mg/L casein hydrolysate, and 250.0 mg/L L-proline was optimal for callus induction and multiple plant regeneration. The study of the regenerative capacity of various explants of Paulownia tomentosa in vitro showed that plant regeneration depends on the type of explant, and occurs in both ways, indirectly, through the formation of callus tissues and directly on the explant, without callus formation. As a result of this study, the efficient reproducible protocol of embryogenic callus formation and multiple shoot induction in vitro of Paulownia tomentosa was developed. This system provides a clear increase in the frequency of plant regeneration from 36.3 ± 3.4% to 38.6 ± 2.3% per embryogenic callus from leaves and apical shoot tips, respectively.
Collapse
|
|
3 |
|
20
|
Prasher P, Sharma M, Singh SK, Gulati M, Chellappan DK, Rajput R, Gupta G, Ydyrys A, Kulbayeva M, Abdull Razis AF, Modu B, Sharifi-Rad J, Dua K. Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms. Front Chem 2023; 11:1164477. [PMID: 37090250 PMCID: PMC10117651 DOI: 10.3389/fchem.2023.1164477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Spermidine is a naturally occurring polyamine compound found in semen. It is also found in several plant sources and boasts a remarkable biological profile, particularly with regards to its anticancer properties. Spermidine specifically interferes with the tumour cell cycle, resulting in the inhibition of tumor cell proliferation and suppression of tumor growth. Moreover, it also triggers autophagy by regulating key oncologic pathways. The increased intake of polyamines, such as spermidine, can suppress oncogenesis and slow the growth of tumors due to its role in anticancer immunosurveillance and regulation of polyamine metabolism. Spermidine/spermine N-1-acetyltransferase (SSAT) plays a critical role in polyamine homeostasis and serves as a diagnostic marker in human cancers. Chemically modified derivatives of spermidine hold great potential for prognostic, diagnostic, and therapeutic applications against various malignancies. This review discusses in detail the recent findings that support the anticancer mechanisms of spermidine and its molecular physiology.
Collapse
|
|
2 |
|
21
|
Nuerbaheti H, Ydyrys A, Tuleuhanov S, Ablаikhanova N, Gulishayia D, Muhemaiti Y, Baishanbo A. Study on the effect of the Kazakh Traditional Medicine Kezimuk granules to the immunologic function of cyclophosphamide induced immunosuppressed mice. INTERNATIONAL JOURNAL OF BIOLOGY AND CHEMISTRY 2017. [DOI: 10.26577/2218-7979-2017-10-1-50-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
8 |
|
22
|
Zahra N, Iqbal J, Arif M, Abbasi BA, Sher H, Nawaz AF, Yaseen T, Ydyrys A, Sharifi-Rad J, Calina D. A comprehensive review on traditional uses, phytochemistry and pharmacological properties of Paeonia emodi Wall. ex Royle: current landscape and future perspectives. Chin Med 2023; 18:23. [PMID: 36859262 PMCID: PMC9979516 DOI: 10.1186/s13020-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Paeonia emodi Wall. ex Royle is commonly known as Himalayan paeony has great importance as a food and medicine. The practice of Paeonia emodi Wall. ex Royle is very ancient and it is conventionally used for a wide range of illnesses in the folk system of medicine because of its wide beneficial phytochemical profile. The main purpose of the current review was the synthesis of recent data on botany, ethnopharmacology, phytochemistry and potential pharmacological mechanisms of action of Paeonia emodi Wall. ex Royle, thus offering new prospects for the development of new adjuvant natural therapies. Using scientific databases such as PubMed/MedLine, Scopus, Web of Science, ScienceDirect, Google Scholar, Springer, and Wiley, a comprehensive literature search was performed for Paeonia emodi Wall. ex Royle. For searching, we used the next MeSH terms: "Biological Product/isolation and purification", "Biological Products/pharmacology", "Drug Discovery/methods", "Ethnopharmacology, Medicine", "Traditional/methods", "Paeonia/chemistry", "Plant Extracts/pharmacology", "Phytochemicals/chemistry", "Phytochemicals/pharmacology", "Plants, Medicinal". The results of the most recent studies were analyzed and the most important data were summarized in tables and figures. Phytochemical research of Paeonia emodi Wall. ex Royle has led to the isolation of triterpenes, monoterpenes, phenolic acids, fatty acids, organic compounds, steroids, free radicals and some other classes of primary metabolites. In addition, diverse pharmacological activities like antibacterial, antifungal, anticoagulant, airway relaxant lipoxygenase and beta-glucuronidase inhibiting activity, radical scavenging activity, phytotoxic and insecticidal activities have been reported for Paeonia emodi Wall. ex Royle. Different bioactive compounds of Paeonia emodi Wall. ex Royle has proven their therapeutic potential in modern pharmacological and biomedical research to cure numerous gastrointestinal and nervous disorders. In future, further in vitro and in vivo therapeutic studies are required to identify new mechanisms of action, pharmacokinetics studies, and new pharmaceutical formulations for target transport and possible interaction with allopathic drugs. Also, new research regarding quality evaluation, toxicity and safety data in humans is needed.
Collapse
|
Review |
2 |
|
23
|
Akzhigitova Z, Dyusebaeva MA, Tokay T, Ydyrys A, Lijiang X, Jenis J. Phytochemical Study of Bergenia crassifolia. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
5 |
|
24
|
Liu X, Wu Z, Alomar TS, AlMasoud N, Liu X, Han X, Guo N, Weng L, Gao J, Algadi H, Koibasova L, Ydyrys A, Ren J, Guo Z. Poly (vinyl alcohol)/carboxylated cellulose nanofibers composite hydrogel flexible strain sensors. Int J Biol Macromol 2025:142902. [PMID: 40203923 DOI: 10.1016/j.ijbiomac.2025.142902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
This study introduces a method for constructing a dual cross-linked hydrogel network via combined chemical and physical processes. Carboxylated cellulose nanofibers (CNF-C) and tannic acid (TA) were integrated into a borax-polyvinyl alcohol (PVA) matrix, followed by the incorporation of metal cations (Al3+) to fabricate PVA/CNF-C composite hydrogels. The PVA-TA@CNF-C-Borax-Al3+ hydrogel forms a multi-crosslinked 3D network through dynamic borate ester bonds between PVA and borax, coordination bonds between TA and Al3+, and hydrogen bonds from CNF, endowing the hydrogel with excellent mechanical properties. The PTCB(PVA-TA@CNF-Borax) hydrogel, with a TA to CNF-C mass ratio of 1:4, exhibits superior mechanical strength(1.6 MPa), robust conductivity(1.7 × 10-2 S/cm), and stable thermal properties(95 % at 60 °C). Furthermore, the influence of different valence ions on the hydrogel's properties was systematically investigated through the introduction of Na+, Zn2+, and Al3+ cations. It was found that Al3+ can effectively enhance the tension and elasticity of the crosslinked network, improving the mechanical adaptability and sensitivity of the hydrogel. Additionally, this hydrogel system exhibits excellent strain-sensing capabilities. When employed as a self-powered triboelectric nanogenerator sensor, it can generate a stable open-circuit voltage of 2 V.
Collapse
|
|
1 |
|
25
|
Syraiyl S, Ydyrys A, Ahmet A, Aitbekov R, Imanaliyeva M. Phytochemical composition and antioxidant activity of three medicinal plants from southeastern Kazakhstan. INTERNATIONAL JOURNAL OF BIOLOGY AND CHEMISTRY 2022. [DOI: 10.26577/ijbch.2022.v15.i1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
3 |
|