1
|
Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2017; 8:475. [PMID: 28421102 PMCID: PMC5378820 DOI: 10.3389/fpls.2017.00475] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
The complex juvenile/maturity transition during a plant's life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene's role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops.
Collapse
|
Review |
8 |
350 |
2
|
Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA. Current understanding on ethylene signaling in plants: the influence of nutrient availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:128-38. [PMID: 24095919 DOI: 10.1016/j.plaphy.2013.09.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/12/2013] [Indexed: 05/18/2023]
Abstract
The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated.
Collapse
|
Review |
12 |
98 |
3
|
Toscano S, Trivellini A, Cocetta G, Bulgari R, Francini A, Romano D, Ferrante A. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. FRONTIERS IN PLANT SCIENCE 2019; 10:1212. [PMID: 31636647 PMCID: PMC6788460 DOI: 10.3389/fpls.2019.01212] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 05/06/2023]
Abstract
The quality of horticultural products is the result of the interaction of different factors, including grower's crop management ability, genotype, and environment. Sub-optimal environmental conditions during plant growth can induce abiotic stresses and reduce the crop performance with yield reduction and quality losses. However, abiotic stresses can induce several physiological, biochemical, and molecular responses in plants, aiming to cope with the stressful conditions. It is well known that these abiotic stresses are also elicitors of the biosynthesis of many metabolites in plants, including a wide range of bioactive compounds, which firstly serve as functional molecules for crop adaptation, but they have also a great interest for their beneficial effects on human health. Nowadays, the consumer is oriented to low-energy foods with low fat content, but at the same time, growing attention is paid to the presence of bioactive molecules, which are recognized as health-related compounds and concur to the nutraceutical value of plant-derived foods. In this context, fruit and vegetables play an important role as sources of bioactive ingredients in the diet. At the cultivation level, the understanding of crop responses to abiotic stresses and how they act in the biosynthesis/accumulation of these bioactive compounds is crucial. In fact, controlled abiotic stresses can be used as tools for improving the nutraceutical value of fruit and vegetables. This review focuses on the quality of vegetables and fruits as affected by preharvest abiotic stressors, with particular attention to the effect on the nutraceutical aspects.
Collapse
|
Review |
6 |
50 |
4
|
Bui LT, Shukla V, Giorgi FM, Trivellini A, Perata P, Licausi F, Giuntoli B. Differential submergence tolerance between juvenile and adult Arabidopsis plants involves the ANAC017 transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:979-994. [PMID: 32860440 DOI: 10.1111/tpj.14975] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 05/24/2023]
Abstract
Plants need to attune their stress responses to the ongoing developmental programmes to maximize their efficacy. For instance, successful submergence adaptation is often associated with a delicate balance between saving resources and their expenditure to activate measures that allow stress avoidance or attenuation. We observed a significant decrease in submergence tolerance associated with ageing in Arabidopsis thaliana, with a critical step between 2 and 3 weeks of post-germination development. This sensitization to flooding was concomitant with the transition from juvenility to adulthood. Transcriptomic analyses indicated that a group of genes related to abscisic acid and oxidative stress response was more highly expressed in juvenile plants than in adult ones. These genes are induced by the endomembrane tethered transcription factor ANAC017 that was in turn activated by submergence-associated oxidative stress. A combination of molecular, biochemical and genetic analyses showed that these genes are located in genomic regions that move towards a heterochromatic state with adulthood, as marked by lysine 4 trimethylation of histone H3. We concluded that, while the mechanisms of flooding stress perception and signal transduction were unaltered between juvenile and adult phases, the sensitivity that these mechanisms set into action is integrated, via epigenetic regulation, into the developmental programme of the plant.
Collapse
|
|
5 |
42 |
5
|
Trivellini A, Ferrante A, Vernieri P, Serra G. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5437-52. [PMID: 21841180 PMCID: PMC3223042 DOI: 10.1093/jxb/err218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/23/2011] [Accepted: 06/15/2011] [Indexed: 05/04/2023]
Abstract
The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style-stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l(-1) methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style-stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style-stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied.
Collapse
|
research-article |
14 |
37 |
6
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
|
Review |
10 |
31 |
7
|
Cotrozzi L, Pellegrini E, Guidi L, Landi M, Lorenzini G, Massai R, Remorini D, Tonelli M, Trivellini A, Vernieri P, Nali C. Losing the Warning Signal: Drought Compromises the Cross-Talk of Signaling Molecules in Quercus ilex Exposed to Ozone. FRONTIERS IN PLANT SCIENCE 2017; 8:1020. [PMID: 28674543 PMCID: PMC5475409 DOI: 10.3389/fpls.2017.01020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/29/2017] [Indexed: 05/27/2023]
Abstract
Understanding the interactions between drought and acute ozone (O3) stress in terms of signaling molecules and cell death would improve the predictions of plant responses to climate change. The aim was to investigate whether drought stress influences the responses of plants to acute episodes of O3 exposure. In this study, the behavior of 84 Mediterranean evergreen Quercus ilex plants was evaluated in terms of cross-talk responses among signaling molecules. Half of the sample was subjected to drought (20% of the effective daily evapotranspiration, for 15 days) and was later exposed to an acute O3 exposure (200 nL L-1 for 5 h). First, our results indicate that in well-water conditions, O3 induced a signaling pathway specific to O3-sensitive behavior. Second, different trends and consequently different roles of phytohormones and signaling molecules (ethylene, ET; abscisic acid, ABA; salycilic acid, SA and jasmonic acid, JA) were observed in relation to water stress and O3. A spatial and functional correlation between these signaling molecules was observed in modulating O3-induced responses in well-watered plants. In contrast, in drought-stressed plants, these compounds were not involved either in O3-induced signaling mechanisms or in leaf senescence (a response observed in water-stressed plants before the O3-exposure). Third, these differences were ascribable to the fact that in drought conditions, most defense processes induced by O3 were compromised and/or altered. Our results highlight how Q. ilex plants suffering from water deprivation respond differently to an acute O3 episode compared to well-watered plants, and suggest new effect to be considered in plant responses to environmental changes. This poses the serious question as to whether or not multiple high-magnitude O3 events (as predicted) can change these cross-talk responses, thus opening it up possible further investigations.
Collapse
|
research-article |
8 |
24 |
8
|
Trivellini A, Cocetta G, Hunter DA, Vernieri P, Ferrante A. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5919-5931. [PMID: 27591432 PMCID: PMC5091337 DOI: 10.1093/jxb/erw295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues.
Collapse
|
research-article |
9 |
22 |
9
|
Mosadegh H, Trivellini A, Lucchesini M, Ferrante A, Maggini R, Vernieri P, Sodi AM. UV-B Physiological Changes Under Conditions of Distress and Eustress in Sweet Basil. PLANTS (BASEL, SWITZERLAND) 2019; 8:E396. [PMID: 31590329 PMCID: PMC6843199 DOI: 10.3390/plants8100396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
UV-B radiation has been previously reported to induce protective or deleterious effects on plants depending on the UV-B irradiation doses. To elucidate how these contrasting events are physiologically coordinated, we exposed sweet basil plants to two UV-B doses: low (8.5 kJ m-2 day-1, 30 min exposure) and high (68 kJ m-2 day-1, 4 h exposure), with the plants given both doses once continuously in a single day. Physiological tests during and after both UV-B exposures were performed by comparing the stress-induced damage and adverse effects on photosynthetic activity, the concentration and composition of photosynthetic and non-photosynthetic pigments, and stress-related hormones biosynthesis in basil plants. Our results showed that upon receiving a high UV-B dose, a severe inactivation of oxygen evolving complex (OEC) activity at the PSII donor side and irreversible PSII photodamage caused primarily by limitation of the acceptor side occurred, which overloaded protective mechanisms and finally led to the death of the plants. In contrast, low UV-B levels did not induce any signs of UV-B stress injuries. The OEC partial limitation and the inactivation of the electron transport chain allowed the activation of photoprotective mechanisms, avoiding irreversible damage to PSII. Overall results indicate the importance of a specific response mechanisms regulating photoprotection vs irreversible photoinhibition in basil that were modulated depending on the UV-B doses.
Collapse
|
research-article |
6 |
21 |
10
|
Tattini M, Velikova V, Vickers C, Brunetti C, Di Ferdinando M, Trivellini A, Fineschi S, Agati G, Ferrini F, Loreto F. Isoprene production in transgenic tobacco alters isoprenoid, non-structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress. PLANT, CELL & ENVIRONMENT 2014; 37:1950-64. [PMID: 24738622 DOI: 10.1111/pce.12350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/03/2023]
Abstract
Isoprene strengthens thylakoid membranes and scavenges stress-induced oxidative species. The idea that isoprene production might also influence isoprenoid and phenylpropanoid pathways under stress conditions was tested. We used transgenic tobacco to compare physiological and biochemical traits of isoprene-emitting (IE) and non-emitting (NE) plants exposed to severe drought and subsequent re-watering. Photosynthesis was less affected by drought in IE than in NE plants, and higher rates were also observed in IE than in NE plants recovering from drought. Isoprene emission was stimulated by mild drought. Under severe drought, isoprene emission declined, and levels of non-volatile isoprenoids, specifically de-epoxidated xanthophylls and abscisic acid (ABA), were higher in IE than in NE plants. Soluble sugars and phenylpropanoids were also higher in IE plants. After re-watering, IE plants maintained higher levels of metabolites, but isoprene emission was again higher than in unstressed plants. We suggest that isoprene production in transgenic tobacco triggered different responses, depending upon drought severity. Under drought, the observed trade-off between isoprene and non-volatile isoprenoids suggests that in IE plants isoprene acts as a short-term protectant, whereas non-volatile isoprenoids protect against severe, long-term damage. After drought, it is suggested that the capacity to emit isoprene might up-regulate production of non-volatile isoprenoids and phenylpropanoids, which may further protect IE leaves.
Collapse
|
|
11 |
21 |
11
|
Landi M, Cotrozzi L, Pellegrini E, Remorini D, Tonelli M, Trivellini A, Nali C, Guidi L, Massai R, Vernieri P, Lorenzini G. When "thirsty" means "less able to activate the signalling wave trigged by a pulse of ozone": A case of study in two Mediterranean deciduous oak species with different drought sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:379-390. [PMID: 30550902 DOI: 10.1016/j.scitotenv.2018.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 05/27/2023]
Abstract
There is a lack of knowledge about the possibility that plants facing abiotic stressors, such as drought, have an altered perception of a pulse of O3 and incur in alterations of their signalling network. This poses some concerns as to whether defensive strategy to cope episodic O3 peaks in healthy plants may fail under stress. In this study, a set of saplings of two Mediterranean deciduous species, Quercus cerris and Q. pubescens, was subjected to water withholding (20% of daily evapotranspiration for 15 days) while another set was kept well-watered. Saplings were then subjected to a pulse of O3 (200 nl l-1 for 5 h) or maintained in filtered air. Q. pubescens had a more severe decline of photosynthesis and leaf PDΨw (about -65% and 5-fold lower than in well-watered ones) and events of cell death were observed under drought when compared to Q. cerris, which is supportive for a higher sensitivity to drought exhibited by this species. When O3 was applied after drought, patterns of signalling compounds were altered in both species. Only in Q. pubescens, the typical O3-induced accumulation of apoplastic reactive oxygen species, which is the first necessary step for the activation of signalling cascade, was completely lost. In Q. cerris the most frequent changes encompassed the weakening of peaks of key signalling molecules (ethylene and salicylic acid), whereas in Q. pubescens both delayed (salicylic and jasmonic acid) or weakened (ethylene and salicylic acid) peaks were observed. This is translated to a higher ability of Q. cerris to maintain a prompt activation of defensive reaction to counteract oxidative damage due to the pollutant. Our results reveal the complexity of the signalling network in plants facing multiple stresses and highlight the need to further investigate possible alteration of defensive mechanism of tree species to predict their behavior.
Collapse
|
|
6 |
21 |
12
|
Pellegrini E, Trivellini A, Campanella A, Francini A, Lorenzini G, Nali C, Vernieri P. Signaling molecules and cell death in Melissa officinalis plants exposed to ozone. PLANT CELL REPORTS 2013; 32:1965-1980. [PMID: 24081611 DOI: 10.1007/s00299-013-1508-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 05/27/2023]
Abstract
The study focuses on the interaction between reactive oxygen species and hormones that regulate the programmed cell death in plants of Melissa officinalis exposed to ozone. Interaction between hormone and redox signaling pathways has been investigated in ozone-stressed (200 ppb, 5 h) lemon balm to verify if the response resembles the biotic defense reactions. In comparison to controls, plants exhibited foliar injury and the cell death was induced by (1) biphasic production of hydrogen peroxide and superoxide radical; (2) hormonal regulation of ozone-induced lesion formation with a significant production of ethylene, salicylic, jasmonic and abscisic acid; (3) ozone degradation to reactive oxygen species and their detoxification by some enzymatic (such as superoxide dismutase) and non-enzymatic antioxidant systems (such as ascorbic acid, glutathione and carotenoids), that worked in cooperation without providing a defense against free radicals (such as confirmed by the modification of the antioxidant properties of leaf tissue). This integrated view showed that reactive oxygen species interact with hormonal signaling pathway regulating cell death and the sensitivity of lemon balm to ozone.
Collapse
|
|
12 |
20 |
13
|
Mannucci A, Mariotti L, Castagna A, Santin M, Trivellini A, Reyes TH, Mensuali-Sodi A, Ranieri A, Quartacci MF. Hormone profile changes occur in roots and leaves of Micro-Tom tomato plants when exposing the aerial part to low doses of UV-B radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:291-301. [PMID: 32000106 DOI: 10.1016/j.plaphy.2020.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 05/20/2023]
Abstract
During the last decades, many studies investigated the effects of UV-B on the above-ground organs of plants, directly reached by the radiation but, to the best of our knowledges, the influence of mild UV-B doses on root hormones was not explored. Consequently, this research aimed at understanding whether low, not-stressful doses of UV-B radiation applied above-ground influenced the hormone concentrations in leaves and roots of Micro-Tom tomato (Solanum lycopersicum L.) plants during 11 days of treatment and after 3 days of recovery. In particular, ethylene, abscisic acid, jasmonic acid, salicylic acid and indoleacetic acid were investigated. The unchanged levels of chlorophyll a and b, lutein, total xanthophylls and carotenoids, as well as the similar H2O2 concentration between control and treated groups suggest that the UV-B dose applied was well tolerated by the plants. Leaf ethylene emission decreased after 8 and 11 days of irradiation, while no effect was found in roots. Conversely, indoleacetic acid underwent a significant reduction in both organs, though in the roots the decrease occurred only at the end of the recovery period. Salicylic acid increased transiently in both leaves and roots on day 8. Changes in leaf and root hormone levels induced by UV-B radiation were not accompanied by marked alterations of plant architecture. The results show that irradiation of above-ground organs with low UV-B doses can affect the hormone concentrations also in roots, with likely implications in stress and acclimation responses mediated by these signal molecules.
Collapse
|
|
5 |
19 |
14
|
Döring AS, Pellegrini E, Campanella A, Trivellini A, Gennai C, Petersen M, Nali C, Lorenzini G. How sensitive is Melissa officinalis to realistic ozone concentrations? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:156-64. [PMID: 24321873 DOI: 10.1016/j.plaphy.2013.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 11/04/2013] [Indexed: 05/01/2023]
Abstract
Lemon balm (Melissa officinalis, L.; Lamiaceae) was exposed to realistic ozone (O3) dosages (80 ppb for 5 h), because high background levels of O3 are considered to be as harmful as episodic O3 regimes. Temporal alterations of different ecophysiological, biochemical and structural parameters were investigated in order to test if this species can be considered as an O3-bioindicator regarding changes in background concentrations. At the end of ozone exposure, the plants did not exhibit any visible foliar symptoms, as only at microscopic level a small number of dead cells were found. Photosynthetic processes, however, were significantly affected. During and after the treatment, ozone induced a reduction in CO2 fixation capacity (up to 52% after 12 h from the beginning of the treatment) due to mesophyllic limitations. Intercellular CO2 concentration significantly increased in comparison to controls (+90% at the end of the post-fumigation period). Furthermore impairment of carboxylation efficiency (-71% at the end of the post-fumigation period compared to controls in filtered air) and membrane damage in terms of integrity (as demonstrated by a significant rise in solute leakage) were observed. A regulatory adjustment of photosynthetic processes was highlighted during the post-fumigation period by the higher values of qNP and (1-q(P)) and therefore suggests a tendency to reduce the light energy used in photochemistry at the expense of the capacity to dissipate the excess as excitation energy. In addition, the chlorophyll a/b ratio and the de-epoxidation index increased, showing a rearrangement of the pigment composition of the photosynthetic apparatus and a marked activation of photoprotective mechanisms.
Collapse
|
|
11 |
18 |
15
|
Bulgari R, Trivellini A, Ferrante A. Effects of Two Doses of Organic Extract-Based Biostimulant on Greenhouse Lettuce Grown Under Increasing NaCl Concentrations. FRONTIERS IN PLANT SCIENCE 2019; 9:1870. [PMID: 30666260 PMCID: PMC6330896 DOI: 10.3389/fpls.2018.01870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/04/2018] [Indexed: 05/13/2023]
Abstract
The enhancement of plant tolerance toward abiotic stresses is increasingly being supported by the application of biostimulants. Salinity represents a serious problem in the Mediterranean region. To verify the effects deriving from the application of biostimulants, trials on Romaine lettuce plants under salt exposure were performed, in greenhouse. Plants were subjected to three NaCl solutions with 0.8, 1.3, and 1.8 dS/m of electrical conductivity. The volume of the solution was 200 mL/plant and delivered every 3 days. Biostimulant treatments started after crop establishment and were: control (water) and two doses (0.1 or 0.2 mL/plant) of the commercial biostimulant Retrosal® (Valagro S.p.A), containing calcium, zinc, and specific active ingredients. Four Retrosal® treatments were applied, every 7 days, directly to the substrate. Non-destructive analyses were conducted to assess the effects on leaf photosynthetic efficiency. At harvest, plants fresh weight (FW) and dry weight were determined, as well as the concentration of chlorophylls, carotenoids, total sugars, nitrate, proline, and abscisic acid (ABA). The biostimulant tested increased significantly the FW of lettuce (+65% in the highest dose) compared to controls. Results indicate that treatments positively affected the chlorophyll content measured in vivo (+45% in the highest dose) and that a general positive effect was observable on net photosynthesis rate. Retrosal® seems to improve the gas exchanges under our experimental conditions. The total sugars levels were not affected by treatments. Biostimulant allowed maintaining nitrate concentration similar to the untreated and unstressed controls. The increasing levels of water salinity caused a raise in proline concentration in control plants (+85%); biostimulant treatments at 0.2 mL/plant dose kept lower the proline levels. All plants treated with the biostimulant showed lower value of ABA (-34%) compared to controls. Results revealed that Retrosal® is able to stimulate plant growth independently from the salinity exposure. However, treated plants reached faster the commercial maturity stage. The fresh biomass of control at the end of experiment, after 30 days, ranged from 15 to 42 g/head, while in biostimulant treated plants ranged from 45 to 94 g/head. The product applied at maximum dose seems to be the most effective in our experimental conditions.
Collapse
|
research-article |
6 |
16 |
16
|
Pellegrini E, Campanella A, Paolocci M, Trivellini A, Gennai C, Muganu M, Nali C, Lorenzini G. Functional Leaf Traits and Diurnal Dynamics of Photosynthetic Parameters Predict the Behavior of Grapevine Varieties Towards Ozone. PLoS One 2015; 10:e0135056. [PMID: 26270333 PMCID: PMC4536205 DOI: 10.1371/journal.pone.0135056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 01/19/2023] Open
Abstract
A comparative study on functional leaf treats and the diurnal dynamics of photosynthetic processes was conducted on 2-year-old potted plants of two grape (Vitis vinifera L.) varieties (Aleatico, ALE, and Trebbiano giallo, TRE), exposed under controlled conditions to realistic concentrations of the pollutant gas ozone (80 ppb for 5 h day-1, 8:00–13:00 h, + 40 ppb for 5 h day-1, 13:00–18:00 h). At constitutive levels, the morphological functional traits of TRE improved leaf resistance to gas exchange, suggesting that TRE is characterized by a potential high degree of tolerance to ozone. At the end of the treatment, both varieties showed typical visible injuries on fully expanded leaves and a marked alteration in the diurnal pattern of photosynthetic activity. This was mainly due to a decreased stomatal conductance (-27 and -29% in ALE and TRE, in terms of daily values in comparison to controls) and to a reduced mesophyllic functioning (+33 and +16% of the intercellular carbon dioxide concentration). Although the genotypic variability of grape regulates the response to oxidative stress, similar detoxification processes were activated, such as an increased content of total carotenoids (+64 and +30%, in ALE and TRE), enhanced efficiency of thermal energy dissipation within photosystem II (+32 and +20%) closely correlated with the increased de-epoxidation index (+26 and +22%) and variations in content of some osmolytes. In summary, we can conclude that: the daily photosynthetic performance of grapevine leaves was affected by a realistic exposure to ozone. In addition, the gas exchange and chlorophyll a fluorescence measurements revealed a different quali-quantitative response in the two varieties. The genotypic variability of V. vinifera and the functional leaf traits would seem to regulate the acclimatory response to oxidative stress and the degree of tolerance to ozone. Similar photoprotective mechanisms were activated in the two varieties, though to a different extent.
Collapse
|
Journal Article |
10 |
15 |
17
|
Trivellini A, Jibran R, Watson LM, O’Donoghue EM, Ferrante A, Sullivan KL, Dijkwel PP, Hunter DA. Carbon deprivation-driven transcriptome reprogramming in detached developmentally arresting Arabidopsis inflorescences. PLANT PHYSIOLOGY 2012; 160:1357-72. [PMID: 22930749 PMCID: PMC3490613 DOI: 10.1104/pp.112.203083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/24/2012] [Indexed: 05/22/2023]
Abstract
Senescence is genetically controlled and activated in mature tissues during aging. However, immature plant tissues also display senescence-like symptoms when continuously exposed to adverse energy-depleting conditions. We used detached dark-held immature inflorescences of Arabidopsis (Arabidopsis thaliana) to understand the metabolic reprogramming occurring in immature tissues transitioning from rapid growth to precocious senescence. Macroscopic growth of the detached inflorescences rapidly ceased upon placement in water in the dark at 21°C. Inflorescences were completely degreened by 120 h of dark incubation and by 24 h had already lost 24% of their chlorophyll and 34% of their protein content. Comparative transcriptome profiling at 24 h revealed that inflorescence response at 24 h had a large carbon-deprivation component. Genes that positively regulate developmental senescence (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN92) and shade-avoidance syndrome (PHYTOCHROME INTERACTING FACTOR4 [PIF4] and PIF5) were up-regulated within 24 h. Mutations in these genes delayed degreening of the inflorescences. Their up-regulation was suppressed in dark-held inflorescences by glucose treatment, which promoted macroscopic growth and development and inhibited degreening of the inflorescences. Detached inflorescences held in the dark for 4 d were still able to reinitiate development to produce siliques upon being brought out to the light, indicating that the transcriptional reprogramming at 24 h was adaptive and reversible. Our results suggest that the response of detached immature tissues to dark storage involves interactions between carbohydrate status sensing and light deprivation signaling and that the dark-adaptive response of the tissues appears to utilize some of the same key regulators as developmental senescence.
Collapse
|
research-article |
13 |
15 |
18
|
Pagno CH, Castagna A, Trivellini A, Mensuali-Sodi A, Ranieri A, Ferreira EA, Rios ADO, Flôres SH. The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
8 |
13 |
19
|
Dani KGS, Fineschi S, Michelozzi M, Trivellini A, Pollastri S, Loreto F. Diversification of petal monoterpene profiles during floral development and senescence in wild roses: relationships among geraniol content, petal colour, and floral lifespan. Oecologia 2020; 197:957-969. [PMID: 32712874 PMCID: PMC8591013 DOI: 10.1007/s00442-020-04710-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
Wild roses store and emit a large array of fragrant monoterpenes from their petals. Maximisation of fragrance coincides with floral maturation in many angiosperms, which enhances pollination efficiency, reduces floral predation, and improves plant fitness. We hypothesized that petal monoterpenes serve additional lifelong functions such as limiting metabolic damage from reactive oxygen species (ROS), and altering isoprenoid hormonal abundance to increase floral lifespan. Petal monoterpenes were quantified at three floral life-stages (unopened bud, open mature, and senescent) in 57 rose species and 16 subspecies originating from Asia, America, and Europe, and relationships among monoterpene richness, petal colour, ROS, hormones, and floral lifespan were analysed within a phylogenetic context. Three distinct types of petal monoterpene profiles, revealing significant developmental and functional differences, were identified: Type A, species where monoterpene abundance peaked in open mature flowers depleting thereafter; Type B, where monoterpenes peaked in senescing flowers increasing from bud stage, and a rare Type C (8 species) where monoterpenes depleted from bud stage to senescence. Cyclic monoterpenes peaked during early floral development, whereas acyclic monoterpenes (dominated by geraniol and its derivatives, often 100-fold more abundant than other monoterpenes) peaked during floral maturation in Type A and B roses. Early-diverging roses were geraniol-poor (often Type C) and white-petalled. Lifetime changes in hydrogen peroxide (H2O2) revealed a significant negative regression with the levels of petal geraniol at all floral life-stages. Geraniol-poor Type C roses also showed higher cytokinins (in buds) and abscisic acid (in mature petals), and significantly shorter floral lifespan compared with geraniol-rich Type A and B roses. We conclude that geraniol enrichment, intensification of petal colour, and lower potential for H2O2-related oxidative damage characterise and likely contribute to longer floral lifespan in monoterpene-rich wild roses.
Collapse
|
Journal Article |
5 |
12 |
20
|
Trivellini A, Gordillo B, Rodríguez-Pulido FJ, Borghesi E, Ferrante A, Vernieri P, Quijada-Morín N, González-Miret ML, Heredia FJ. Effect of salt stress in the regulation of anthocyanins and color of hibiscus flowers by digital image analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6966-6974. [PMID: 25005605 DOI: 10.1021/jf502444u] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of salt stress (200 mM NaCl for 28 days) on physiological characteristics of Hibiscus rosa-sinensis, such as abscisic acid (ABA) content, electrolyte leakage, and photochemical efficiency in leaves, and its influence on biomass production, anthocyanin composition, and color expression of flowers were evaluated. Salinity significantly increased electrolyte leakage and ABA content in leaves and reduced the flower fresh weight. Chlorophyll fluorescence parameters were lower in salt stress condition, compared to control. Moreover, salt stress negatively affected the content of anthocyanins (mainly cyanidin-3-sophoroside), which resulted in a visually perceptible loss of color. The detailed anthocyanin composition monitored by HPLC-DAD-MS and the color variations by digital image analysis due to salt stress showed that the effect was more noticeable at the basal portion of petals. A forward stepwise multiple regression was performed for predicting the content of anthocyanins from appearance characteristics obtained by image analysis, reaching R-square values up to 0.90.
Collapse
|
|
11 |
11 |
21
|
Landi M, Araniti F, Flamini G, Piccolo EL, Trivellini A, Abenavoli MR, Guidi L. "Help is in the air": volatiles from salt-stressed plants increase the reproductive success of receivers under salinity. PLANTA 2020; 251:48. [PMID: 31932951 DOI: 10.1007/s00425-020-03344-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/09/2020] [Indexed: 05/22/2023]
Abstract
Salinity alters VOC profile in emitter sweet basil plants. Airborne signals by emitter plants promote earlier flowering of receivers and increase their reproductive success under salinity. Airborne signals can prime neighboring plants against pathogen and/or herbivore attacks, whilst little is known about the possibility that volatile organic compounds (VOCs) emitted by stressed plants alert neighboring plants against abiotic stressors. Salt stress (50 mM NaCl) was imposed on Ocimum basilicum L. plants (emitters, namely NaCl), and a putative alerting-priming interaction was tested on neighboring basil plants (receivers, namely NaCl-S). Compared with the receivers, the NaCl plants exhibited reduced biomass, lower photosynthesis, and changes in the VOC profile, which are common early responses of plants to salinity. In contrast, NaCl-S plants had physiological parameters similar to those of nonsalted plants (C), but exhibited a different VOC fingerprint, which overlapped, for most compounds, with that of emitters. NaCl-S plants exposed later to NaCl treatment (namely NaCl-S + NaCl) exhibited changes in the VOC profile, earlier plant senescence, earlier flowering, and higher seed yield than C + NaCl plants. This experiment offers the evidence that (1) NaCl-triggered VOCs promote metabolic changes in NaCl-S plants, which, finally, increase reproductive success and (2) the differences in VOC profiles observed between emitters and receivers subjected to salinity raise the question whether the receivers are able to "propagate" the warning signal triggered by VOCs in neighboring companions.
Collapse
|
|
5 |
10 |
22
|
Trivellini A, Cocetta G, Vernieri P, Mensuali-Sodi A, Ferrante A. Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach. PLANT MOLECULAR BIOLOGY 2015; 87:169-80. [PMID: 25425166 DOI: 10.1007/s11103-014-0268-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 11/17/2014] [Indexed: 05/22/2023]
Abstract
Flower senescence is a fascinating natural process that represents the final developmental stage in the life of a flower. Plant hormones play an important role in regulating the timing of flower senescence. Ethylene is a trigger and usually accelerates the senescence rate, while cytokinins are known to delay it. The aim of this work was to study the effect of 6-benzylaminopurine (BA) on petal senescence by transcript profile comparison after 3 or 6 h using a cross-species method by hybridizing petunia samples to a 4 × 44 K Agilent tomato array. The relative content of ethylene, abscisic acid, anthocyanins, total carotenoids and total phenols that determine the physiological behaviours of the petal tissue were measured. BA treatment prolonged the flower life and increased the concentrations of phenols and anthocyanins, while total carotenoids did not increase and were lower than the control. The ethylene biosynthetic and perception gene expressions were studied immediately after treatment until 24 h and all genes were repressed, while ethylene production was strongly induced after 4 days. The microarray analyses highlighted that BA strongly affected gene regulation after 3 h, but only 14% of genes remained differentially expressed after 6 h. The most affected pathways and genes were those related to stress, such as heat shock proteins, abscisic acid (ABA) catabolism and its signalling pathway, lipid metabolism and antioxidant defence systems. A gene annotation enrichment analysis using DAVID showed that the most important gene clusters were involved in energy generation and conservation processes. In addition to the ethylene pathway, cytokinins seem to be strongly involved the regulation of the ABA response in flower tissues.
Collapse
|
|
10 |
10 |
23
|
Natali L, Vangelisti A, Guidi L, Remorini D, Cotrozzi L, Lorenzini G, Nali C, Pellegrini E, Trivellini A, Vernieri P, Landi M, Cavallini A, Giordani T. How Quercus ilex L. saplings face combined salt and ozone stress: a transcriptome analysis. BMC Genomics 2018; 19:872. [PMID: 30514212 PMCID: PMC6278050 DOI: 10.1186/s12864-018-5260-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/16/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Similar to other urban trees, holm oaks (Quercus ilex L.) provide a physiological, ecological and social service in the urban environment, since they remove atmospheric pollution. However, the urban environment has several abiotic factors that negatively influence plant life, which are further exacerbated due to climate change, especially in the Mediterranean area. Among these abiotic factors, increased uptake of Na + and Cl - usually occurs in trees in the urban ecosystem; moreover, an excess of the tropospheric ozone concentration in Mediterranean cities further affects plant growth and survival. Here, we produced and annotated a de novo leaf transcriptome of Q. ilex as well as transcripts over- or under-expressed after a single episode of O3 (80 nl l-1, 5 h), a salt treatment (150 mM for 15 days) or a combination of these treatments, mimicking a situation that plants commonly face, especially in urban environments. RESULTS Salinity dramatically changed the profile of expressed transcripts, while the short O3 pulse had less effect on the transcript profile. However, the short O3 pulse had a very strong effect in inducing over- or under-expression of some genes in plants coping with soil salinity. Many differentially regulated genes were related to stress sensing and signalling, cell wall remodelling, ROS sensing and scavenging, photosynthesis and to sugar and lipid metabolism. Most differentially expressed transcripts revealed here are in accordance with a previous report on Q. ilex at the physiological and biochemical levels, even though the expression profiles were overall more striking than those found at the biochemical and physiological levels. CONCLUSIONS We produced for the first time a reference transcriptome for Q. ilex, and performed gene expression analysis for this species when subjected to salt, ozone and a combination of the two. The comparison of gene expression between the combined salt + ozone treatment and salt or ozone alone showed that even though many differentially expressed genes overlap all treatments, combined stress triggered a unique response in terms of gene expression modification. The obtained results represent a useful tool for studies aiming to investigate the effects of environmental stresses in urban-adapted tree species.
Collapse
|
research-article |
7 |
9 |
24
|
Trivellini A, Vernieri P, Ferrante A, Serra G. PHYSIOLOGICAL CHARACTERIZATION OF FLOWER SENESCENCE IN LONG LIFE AND EPHEMERAL HIBISCUS (HIBISCUS ROSA-SINENSIS L.). ACTA ACUST UNITED AC 2007. [DOI: 10.17660/actahortic.2007.755.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
18 |
8 |
25
|
Guidi L, Remorini D, Cotrozzi L, Giordani T, Lorenzini G, Massai R, Nali C, Natali L, Pellegrini E, Trivellini A, Vangelisti A, Vernieri P, Landi M. The harsh life of an urban tree: the effect of a single pulse of ozone in salt-stressed Quercus ilex saplings. TREE PHYSIOLOGY 2017; 37:246-260. [PMID: 27784826 DOI: 10.1093/treephys/tpw103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/05/2016] [Indexed: 05/27/2023]
Abstract
Ozone (O3) and salinity are usually tested as combined factors on plant performance. However, the response to a single episode of O3 in plants already stressed by an excess of NaCl as occurs in the natural environment has never been investigated, but is important given that it is commonly experienced in Mediterranean areas. Three-year-old Quercus ilex L. (holm oak) saplings were exposed to salinity (150 mM NaCl, 15 days), and the effect on photosynthesis, hydric relations and ion partitioning was evaluated (Experiment I). In Experiment II, salt-treated saplings were exposed to 80 nl l-1 of O3 for 5 h, which is a realistic dose in a Mediterranean environment. Gas exchanges, chlorophyll fluorescence and antioxidant systems were characterized to test whether the salt-induced stomatal closure limited O3 uptake and stress or whether the pollutant represents an additional stressor for plants. Salt-dependent stomatal closure depressed the photosynthetic process (-71.6% of light-saturated rate of photosynthesis (A380)) and strongly enhanced the dissipation of energy via the xanthophyll cycle. However, salt-treated plants had higher values of net assimilation rate/stomatal conductance (A/gs) than the controls, which was attributable to a greater mesophyll conductance gm/gs and carboxylation efficiency (higher gm/maximal rate of Rubisco carboxylation (Vcmax)), thus suggesting no damage to chloroplasts. O3 did not exacerbate the effect of salinity on photosynthesis, however a general enhancement of the Halliwell-Asada cycle was necessary to counteract the O3-triggered oxidative stress. Despite the 79.4% gs reduction in salt-stressed plants, which strongly limited the O3 uptake, a single peak in the air pollutant led to an additional burden for the antioxidant system when plants had been previously subjected to salinity.
Collapse
|
|
8 |
6 |