1
|
Goodwin JM, Dowdle WE, DeJesus R, Wang Z, Bergman P, Kobylarz M, Lindeman A, Xavier RJ, McAllister G, Nyfeler B, Hoffman G, Murphy LO. Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9. Cell Rep 2017; 20:2341-2356. [PMID: 28877469 PMCID: PMC5699710 DOI: 10.1016/j.celrep.2017.08.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Iron is vital for many homeostatic processes, and its liberation from ferritin nanocages occurs in the lysosome. Studies indicate that ferritin and its binding partner nuclear receptor coactivator-4 (NCOA4) are targeted to lysosomes by a form of selective autophagy. By using genome-scale functional screening, we identify an alternative lysosomal transport pathway for ferritin that requires FIP200, ATG9A, VPS34, and TAX1BP1 but lacks involvement of the ATG8 lipidation machinery that constitutes classical macroautophagy. TAX1BP1 binds directly to NCOA4 and is required for lysosomal trafficking of ferritin under basal and iron-depleted conditions. Under basal conditions ULK1/2-FIP200 controls ferritin turnover, but its deletion leads to TAX1BP1-dependent activation of TBK1 that regulates redistribution of ATG9A to the Golgi enabling continued trafficking of ferritin. Cells expressing an amyotrophic lateral sclerosis (ALS)-associated TBK1 allele are incapable of degrading ferritin suggesting a molecular mechanism that explains the presence of iron deposits in patient brain biopsies.
Collapse
|
research-article |
8 |
136 |
2
|
DeJesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, Frias E, Alford J, Reece-Hoyes JS, Lindeman A, Kelliher J, Russ C, Knehr J, Carbone W, Beibel M, Roma G, Ng A, Tallarico JA, Porter JA, Xavier RJ, Mickanin C, Murphy LO, Hoffman GR, Nyfeler B. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. eLife 2016; 5. [PMID: 27351204 PMCID: PMC4924995 DOI: 10.7554/elife.17290] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein. DOI:http://dx.doi.org/10.7554/eLife.17290.001
Collapse
|
Research Support, N.I.H., Extramural |
9 |
104 |
3
|
Wang H, Lu B, Castillo J, Zhang Y, Yang Z, McAllister G, Lindeman A, Reece-Hoyes J, Tallarico J, Russ C, Hoffman G, Xu W, Schirle M, Cong F. Tankyrase Inhibitor Sensitizes Lung Cancer Cells to Endothelial Growth Factor Receptor (EGFR) Inhibition via Stabilizing Angiomotins and Inhibiting YAP Signaling. J Biol Chem 2016; 291:15256-66. [PMID: 27231341 DOI: 10.1074/jbc.m116.722967] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 11/06/2022] Open
Abstract
YAP signaling pathway plays critical roles in tissue homeostasis, and aberrant activation of YAP signaling has been implicated in cancers. To identify tractable targets of YAP pathway, we have performed a pathway-based pooled CRISPR screen and identified tankyrase and its associated E3 ligase RNF146 as positive regulators of YAP signaling. Genetic ablation or pharmacological inhibition of tankyrase prominently suppresses YAP activity and YAP target gene expression. Using a proteomic approach, we have identified angiomotin family proteins, which are known negative regulators of YAP signaling, as novel tankyrase substrates. Inhibition of tankyrase or depletion of RNF146 stabilizes angiomotins. Angiomotins physically interact with tankyrase through a highly conserved motif at their N terminus, and mutation of this motif leads to their stabilization. Tankyrase inhibitor-induced stabilization of angiomotins reduces YAP nuclear translocation and decreases downstream YAP signaling. We have further shown that knock-out of YAP sensitizes non-small cell lung cancer to EGFR inhibitor Erlotinib. Tankyrase inhibitor, but not porcupine inhibitor, which blocks Wnt secretion, enhances growth inhibitory activity of Erlotinib. This activity is mediated by YAP inhibition and not Wnt/β-catenin inhibition. Our data suggest that tankyrase inhibition could serve as a novel strategy to suppress YAP signaling for combinatorial targeted therapy.
Collapse
|
Journal Article |
9 |
55 |
4
|
Hyrina A, Jones C, Chen D, Clarkson S, Cochran N, Feucht P, Hoffman G, Lindeman A, Russ C, Sigoillot F, Tsang T, Uehara K, Xie L, Ganem D, Holdorf M. A Genome-wide CRISPR Screen Identifies ZCCHC14 as a Host Factor Required for Hepatitis B Surface Antigen Production. Cell Rep 2020; 29:2970-2978.e6. [PMID: 31801065 DOI: 10.1016/j.celrep.2019.10.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
A hallmark of chronic hepatitis B (CHB) virus infection is the presence of high circulating levels of non-infectious small lipid HBV surface antigen (HBsAg) vesicles. Although rare, sustained HBsAg loss is the idealized endpoint of any CHB therapy. A small molecule, RG7834, has been previously reported to inhibit HBsAg expression by targeting terminal nucleotidyltransferase proteins 4A and 4B (TENT4A and TENT4B). In this study, we describe a genome-wide CRISPR screen to identify other potential host factors required for HBsAg expression and to gain further insights into the mechanism of RG7834. We report more than 60 genes involved in regulating HBsAg and identify additional factors involved in RG7834 activity, including a zinc finger CCHC-type containing 14 (ZCCHC14) protein. We show that ZCCHC14, together with TENT4A/B, stabilizes HBsAg expression through HBV RNA tailing, providing a potential new therapeutic target to achieve functional cure in CHB patients.
Collapse
|
Journal Article |
5 |
49 |
5
|
Nolin E, Gans S, Llamas L, Bandyopadhyay S, Brittain SM, Bernasconi-Elias P, Carter KP, Loureiro JJ, Thomas JR, Schirle M, Yang Y, Guo N, Roma G, Schuierer S, Beibel M, Lindeman A, Sigoillot F, Chen A, Xie KX, Ho S, Reece-Hoyes J, Weihofen WA, Tyskiewicz K, Hoepfner D, McDonald RI, Guthrie N, Dogra A, Guo H, Shao J, Ding J, Canham SM, Boynton G, George EL, Kang ZB, Antczak C, Porter JA, Wallace O, Tallarico JA, Palmer AE, Jenkins JL, Jain RK, Bushell SM, Fryer CJ. Discovery of a ZIP7 inhibitor from a Notch pathway screen. Nat Chem Biol 2019; 15:179-188. [PMID: 30643281 DOI: 10.1038/s41589-018-0200-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
47 |
6
|
Alimov I, Menon S, Cochran N, Maher R, Wang Q, Alford J, Concannon JB, Yang Z, Harrington E, Llamas L, Lindeman A, Hoffman G, Schuhmann T, Russ C, Reece-Hoyes J, Canham SM, Cai X. Bile acid analogues are activators of pyrin inflammasome. J Biol Chem 2019; 294:3359-3366. [PMID: 30647128 DOI: 10.1074/jbc.ra118.005103] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
Bile acids are critical metabolites in the gastrointestinal tract and contribute to maintaining intestinal immune homeostasis through cross-talk with the gut microbiota. The conversion of bile acids by the gut microbiome is now recognized as a factor affecting both host metabolism and immune responses, but its physiological roles remain unclear. We conducted a screen for microbiome metabolites that would function as inflammasome activators and herein report the identification of 12-oxo-lithocholic acid (BAA485), a potential microbiome-derived bile acid metabolite. We demonstrate that the more potent analogue 11-oxo-12S-hydroxylithocholic acid methyl ester (BAA473) can induce secretion of interleukin-18 (IL-18) through activation of the inflammasome in both myeloid and intestinal epithelial cells. Using a genome-wide CRISPR screen with compound induced pyroptosis in THP-1 cells, we identified that inflammasome activation by BAA473 is pyrin-dependent (MEFV). To our knowledge, the bile acid analogues BAA485 and BAA473 are the first small molecule activators of the pyrin inflammasome. We surmise that pyrin inflammasome activation through microbiota-modified bile acid metabolites such as BAA473 and BAA485 plays a role in gut microbiota regulated intestinal immune response. The discovery of these two bioactive compounds may help to further unveil the importance of pyrin in gut homeostasis and autoimmune diseases.
Collapse
|
Journal Article |
6 |
40 |
7
|
Zeng H, Castillo-Cabrera J, Manser M, Lu B, Yang Z, Strande V, Begue D, Zamponi R, Qiu S, Sigoillot F, Wang Q, Lindeman A, Reece-Hoyes JS, Russ C, Bonenfant D, Jiang X, Wang Y, Cong F. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. eLife 2019; 8:50223. [PMID: 31741433 PMCID: PMC6927754 DOI: 10.7554/elife.50223] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses. Cancer is caused by cells growing and dividing uncontrollably as a result of mutations in certain genes. Many human lung cancers have a mutation in the gene that makes the protein EGFR. In healthy cells, EGFR allows a cell to respond to chemical signals that encourage healthy growth. In cancer, the altered EGFR is always on, which allows the cell to rapidly grow without any control, resulting in cancer. One approach to treating these cancers is with drugs that block the activity of mutant EGFR. Although these drugs have been very successful, they do not always succeed in completely treating the cancer. This is because over time the cancer cells can become resistant to the drug and start forming new tumors. One way that this can happen is if random mutations lead to changes in other proteins that make the drug less effective or stop it from accessing the EGFR proteins. However, it is unclear how other proteins in cancer cells affect the response to these EGFR inhibiting drugs. Now, Zeng et al. have used gene editing to systematically remove every protein from human lung cancer cells grown in the laboratory to see how this affects resistance to EGFR inhibitor treatment. This revealed that a number of different proteins could change how cancer cells responded to the drug. For instance, cells lacking the protein RIC8A were more sensitive to EGFR inhibitors and less likely to develop resistance. This is because loss of RIC8A turns down a key cell survival pathway in cancer cells. Whereas, cancer cells lacking the ARIH2 protein were able to produce more proteins that are needed for cancer cell growth, which resulted in them having increased resistance to EGFR inhibitors. The proteins identified in this study could be used to develop new drugs that improve the effectiveness of EGFR inhibitors. Understanding how cancer cells respond to EGFR inhibitor treatment could help determine how likely a patient is to develop resistance to these drugs.
Collapse
|
Journal Article |
6 |
32 |
8
|
Estoppey D, Hewett JW, Guy CT, Harrington E, Thomas JR, Schirle M, Cuttat R, Waldt A, Gerrits B, Yang Z, Schuierer S, Pan X, Xie K, Carbone W, Knehr J, Lindeman A, Russ C, Frias E, Hoffman GR, Varadarajan M, Ramadan N, Reece-Hoyes JS, Wang Q, Chen X, McAllister G, Roma G, Bouwmeester T, Hoepfner D. Identification of a novel NAMPT inhibitor by CRISPR/Cas9 chemogenomic profiling in mammalian cells. Sci Rep 2017; 7:42728. [PMID: 28205648 PMCID: PMC5311948 DOI: 10.1038/srep42728] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/12/2017] [Indexed: 01/02/2023] Open
Abstract
Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.
Collapse
|
Journal Article |
8 |
29 |
9
|
Borawski J, Lindeman A, Buxton F, Labow M, Gaither LA. Optimization Procedure for Small Interfering RNA Transfection in a 384-Well Format. ACTA ACUST UNITED AC 2007; 12:546-59. [PMID: 17435168 DOI: 10.1177/1087057107300172] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High-throughput screening of RNAi libraries has become an essential part of functional analysis in academic and industrial settings. The transition of a cell-based RNAi assay into a 384-well format requires several optimization steps to ensure the phenotype being screened is appropriately measured and that the signal-to-background ratio is above a certain quantifiable threshold. Methods currently used to assess small interfering RNA (siRNA) efficacy after transfection, including quantitative PCR or branch DNA analysis, face several technical limitations preventing the accurate measurement of mRNA levels in a 384-well format. To overcome these difficulties, the authors developed an approach using a viral-based transfection system that measures siRNA efficacy in a standardized 384-well assay. This method allows measurement of siRNA activity in a phenotypically neutral manner by quantifying the knockdown of an exogenous luciferase gene delivered by a lentiviral vector. In this assay, the efficacy of a luciferase siRNA is compared to a negative control siRNA across many distinct assay parameters including cell type, cell number, lipid type, lipid volume, time of the assay, and concentration of siRNA. Once the siRNA transfection is optimized as a 384-well luciferase knockdown, the biologically relevant phenotypic analysis can proceed using the best siRNA transfection conditions. This approach provides a key technology for 384-well assay development when direct measurement of mRNA knockdown is not possible. It also allows for direct comparison of siRNA activity across cell lines from almost any mammalian species. Defining optimal conditions for siRNA delivery into mammalian cells will greatly increase the speed and quality of large-scale siRNA screening campaigns. ( Journal of Biomolecular Screening 2007:546-559)
Collapse
|
|
18 |
25 |
10
|
Paul A, Annunziato S, Lu B, Sun T, Evrova O, Planas-Paz L, Orsini V, Terracciano LM, Charlat O, Loureiro ZY, Ji L, Zamponi R, Sigoillot F, Lei H, Lindeman A, Russ C, Reece-Hoyes JS, Nicholson TB, Tchorz JS, Cong F. Cell adhesion molecule KIRREL1 is a feedback regulator of Hippo signaling recruiting SAV1 to cell-cell contact sites. Nat Commun 2022; 13:930. [PMID: 35177623 PMCID: PMC8854406 DOI: 10.1038/s41467-022-28567-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
The Hippo/YAP pathway controls cell proliferation through sensing physical and spatial organization of cells. How cell-cell contact is sensed by Hippo signaling is poorly understood. Here, we identified the cell adhesion molecule KIRREL1 as an upstream positive regulator of the mammalian Hippo pathway. KIRREL1 physically interacts with SAV1 and recruits SAV1 to cell-cell contact sites. Consistent with the hypothesis that KIRREL1-mediated cell adhesion suppresses YAP activity, knockout of KIRREL1 increases YAP activity in neighboring cells. Analyzing pan-cancer CRISPR proliferation screen data reveals KIRREL1 as the top plasma membrane protein showing strong correlation with known Hippo regulators, highlighting a critical role of KIRREL1 in regulating Hippo signaling and cell proliferation. During liver regeneration in mice, KIRREL1 is upregulated, and its genetic ablation enhances hepatic YAP activity, hepatocyte reprogramming and biliary epithelial cell proliferation. Our data suggest that KIRREL1 functions as a feedback regulator of the mammalian Hippo pathway through sensing cell-cell interaction and recruiting SAV1 to cell-cell contact sites.
Collapse
|
|
3 |
19 |
11
|
Wang Z, Plasschaert LW, Aryal S, Renaud NA, Yang Z, Choo-Wing R, Pessotti AD, Kirkpatrick ND, Cochran NR, Carbone W, Maher R, Lindeman A, Russ C, Reece-Hoyes J, McAllister G, Hoffman GR, Roma G, Jaffe AB. TRRAP is a central regulator of human multiciliated cell formation. J Cell Biol 2018; 217:1941-1955. [PMID: 29588376 PMCID: PMC5987713 DOI: 10.1083/jcb.201706106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022] Open
Abstract
Multiciliated cells (MCCs) function to promote directional fluid flow across epithelial tissues. Wang et al. show that TRRAP, a component of multiple histone acetyltransferase complexes, is required for airway MCC formation and regulates a network of genes involved in MCC differentiation and function. The multiciliated cell (MCC) is an evolutionarily conserved cell type, which in vertebrates functions to promote directional fluid flow across epithelial tissues. In the conducting airway, MCCs are generated by basal stem/progenitor cells and act in concert with secretory cells to perform mucociliary clearance to expel pathogens from the lung. Studies in multiple systems, including Xenopus laevis epidermis, murine trachea, and zebrafish kidney, have uncovered a transcriptional network that regulates multiple steps of multiciliogenesis, ultimately leading to an MCC with hundreds of motile cilia extended from their apical surface, which beat in a coordinated fashion. Here, we used a pool-based short hairpin RNA screening approach and identified TRRAP, an essential component of multiple histone acetyltransferase complexes, as a central regulator of MCC formation. Using a combination of immunofluorescence, signaling pathway modulation, and genomic approaches, we show that (a) TRRAP acts downstream of the Notch2-mediated basal progenitor cell fate decision and upstream of Multicilin to control MCC differentiation; and (b) TRRAP binds to the promoters and regulates the expression of a network of genes involved in MCC differentiation and function, including several genes associated with human ciliopathies.
Collapse
|
Journal Article |
7 |
11 |
12
|
Li J, Ho DJ, Henault M, Yang C, Neri M, Ge R, Renner S, Mansur L, Lindeman A, Kelly B, Tumkaya T, Ke X, Soler-Llavina G, Shanker G, Russ C, Hild M, Gubser Keller C, Jenkins JL, Worringer KA, Sigoillot FD, Ihry RJ. DRUG-seq Provides Unbiased Biological Activity Readouts for Neuroscience Drug Discovery. ACS Chem Biol 2022; 17:1401-1414. [PMID: 35508359 PMCID: PMC9207813 DOI: 10.1021/acschembio.1c00920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Unbiased transcriptomic RNA-seq data has provided deep insights into biological processes. However, its impact in drug discovery has been narrow given high costs and low throughput. Proof-of-concept studies with Digital RNA with pertUrbation of Genes (DRUG)-seq demonstrated the potential to address this gap. We extended the DRUG-seq platform by subjecting it to rigorous testing and by adding an open-source analysis pipeline. The results demonstrate high reproducibility and ability to resolve the mechanism(s) of action for a diverse set of compounds. Furthermore, we demonstrate how this data can be incorporated into a drug discovery project aiming to develop therapeutics for schizophrenia using human stem cell-derived neurons. We identified both an on-target activation signature, induced by a set of chemically distinct positive allosteric modulators of the N-methyl-d-aspartate (NMDA) receptor, and independent off-target effects. Overall, the protocol and open-source analysis pipeline are a step toward industrializing RNA-seq for high-complexity transcriptomics studies performed at a saturating scale.
Collapse
|
|
3 |
11 |
13
|
Barbosa IAM, Gopalakrishnan R, Mercan S, Mourikis TP, Martin T, Wengert S, Sheng C, Ji F, Lopes R, Knehr J, Altorfer M, Lindeman A, Russ C, Naumann U, Golji J, Sprouffske K, Barys L, Tordella L, Schübeler D, Schmelzle T, Galli GG. Cancer lineage-specific regulation of YAP responsive elements revealed through large-scale functional epigenomic screens. Nat Commun 2023; 14:3907. [PMID: 37400441 DOI: 10.1038/s41467-023-39527-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.
Collapse
|
|
2 |
9 |
14
|
Stager JM, Lindeman A, Edwards J. The use of doubly labelled water in quantifying energy expenditure during prolonged activity. Personal observations. Sports Med 1995; 19:166-72. [PMID: 7784756 DOI: 10.2165/00007256-199519030-00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
Review |
30 |
6 |
15
|
Lindeman A, Huang M, Dawkins E. Using the Visual Analog Scale (VAS) to Measure Perceived Hunger and Satiety at Various Mealtimes and Environments. J Acad Nutr Diet 2016. [DOI: 10.1016/j.jand.2016.06.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
9 |
4 |
16
|
Kobylarz MJ, Goodwin JM, Kang ZB, Annand JW, Hevi S, O’Mahony E, McAllister G, Reece-Hoyes J, Wang Q, Alford J, Russ C, Lindeman A, Beibel M, Roma G, Carbone W, Knehr J, Loureiro J, Antczak C, Wiederschain D, Murphy LO, Menon S, Nyfeler B. An iron-dependent metabolic vulnerability underlies VPS34-dependence in RKO cancer cells. PLoS One 2020; 15:e0235551. [PMID: 32833964 PMCID: PMC7446895 DOI: 10.1371/journal.pone.0235551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.
Collapse
|
|
5 |
3 |
17
|
Ardelt M, Stager JM, Lindeman A. 948 BLOOD MAGNESIUM, AEROBIC CAPACITY AND INDICES OF TRAINING INTENSITY, FREQUENCY AND DURATION. Med Sci Sports Exerc 1993. [DOI: 10.1249/00005768-199305001-00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
32 |
|
18
|
Edwards JE, Wigglesworth JK, Lindeman A. DIFFERENCE BETWEEN REPORTED FOOD INTAKE AND ENERGY EXPENDITURE BY DOUBLY LABELED WATER. Med Sci Sports Exerc 1992. [DOI: 10.1249/00005768-199205001-00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
33 |
|
19
|
Lindeman A. Ombudsman pinpoints trouble spots. HOSPITAL SUPERVISOR'S BULLETIN 1979:1-4. [PMID: 10243118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
Interview |
46 |
|
20
|
Jagani Z, Hoffman G, Rahal R, Buxton F, McAllister G, Xiang K, Frias E, Huber J, Lindeman A, Chen D, Bagdasarian L, Romero R, Ramadan N, Phadke T, Haas K, Jaskelioff M, Wilson B, Meyer M, McLaughlin ME, Roberts CWM, Myer V, Porter J, Keen N, Mickanin C, Stegmeier F. Abstract PR06: A functional screen of the epigenome identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Mol Cancer Ther 2013. [DOI: 10.1158/1535-7163.targ-13-pr06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Epigenetic dysregulation is an emerging hallmark of cancers, and the identification of recurrent somatic mutations in chromatin regulators implies a causal role for altered chromatin states in tumorigenesis. As the majority of epigenetic mutations are inactivating and thus do not present directly druggable targets, we reasoned that these mutations may alter the epigenomic state of cancer cells and thereby expose novel epigenetic vulnerabilities. To systematically search for epigenetic synthetic lethal interactions, we performed a deep coverage pooled shRNA screen across a large collection of cancer cell lines using a library targeting a diverse set of epigenetic regulators. Strikingly, this unbiased screen revealed that silencing of the SWI/SNF ATPase subunit BRM/SMARCA2, selectively inhibits the proliferation of BRG1-deficient cancer cells. The mammalian SWI/SNF complexes (mSWI/SNF) regulate chromatin structure through ATP-dependent nucleosome remodeling. Recent cancer genome studies have revealed a significant frequency of mutations in several components of the mSWI/SNF complexes including loss of the catalytic subunit BRG1 in non-small cell lung cancers. Our studies reveal that BRM knockdown selectively induced cell cycle arrest in BRG1-mutant cancer cells and significantly impaired the growth of BRG1-mutant lung tumor xenografts. BRM is the paralog of BRG1, suggesting a model in which mSWI/SNF mutations lead to a hypomorphic complex that promotes tumorigenesis but cannot tolerate complete inactivation. Therefore, our studies present BRM as an attractive therapeutic target in BRG1-mutant cancers.
Citation Information: Mol Cancer Ther 2013;12(11 Suppl):PR06.
Citation Format: Zainab Jagani, Gregory Hoffman, Rami Rahal, Frank Buxton, Gregory McAllister, Kay Xiang, Elizabeth Frias, Janina Huber, Alicia Lindeman, Dongshu Chen, Linda Bagdasarian, Rodrigo Romero, Nadire Ramadan, Tanushree Phadke, Kristy Haas, Mariela Jaskelioff, Boris Wilson, Matthew Meyer, Margaret E. McLaughlin, Charles WM Roberts, Vic Myer, Jeff Porter, Nicholas Keen, Craig Mickanin, Frank Stegmeier. A functional screen of the epigenome identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr PR06.
Collapse
|
|
12 |
|