1
|
Elbon CE, LeCleir GR, Tuttle MJ, Jurgensen SK, Demas TG, Keller CJ, Stewart T, Buchan A. Correction: Microbiomes and Planctomycete diversity in large-scale aquaria habitats. PLoS One 2024; 19:e0307131. [PMID: 38990883 PMCID: PMC11239042 DOI: 10.1371/journal.pone.0307131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0267881.].
Collapse
|
2
|
Walton JL, Buchan A. Erratum for Walton and Buchan, "Evidence for novel polycyclic aromatic hydrocarbon degradation pathways in culturable marine isolates". Microbiol Spectr 2024; 12:e0011824. [PMID: 38305172 PMCID: PMC10913521 DOI: 10.1128/spectrum.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
|
3
|
Walton JL, Buchan A. Evidence for novel polycyclic aromatic hydrocarbon degradation pathways in culturable marine isolates. Microbiol Spectr 2024; 12:e0340923. [PMID: 38084970 PMCID: PMC10783047 DOI: 10.1128/spectrum.03409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Polycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.
Collapse
|
4
|
Vaksmaa A, Adessi A, Sala MM, Buchan A, Magalhães CM, Jones AC. Editorial: Women in aquatic microbiology: 2022. Front Microbiol 2023; 14:1225575. [PMID: 37405165 PMCID: PMC10316014 DOI: 10.3389/fmicb.2023.1225575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023] Open
|
5
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
|
6
|
Armes AC, Walton JL, Buchan A. Quorum Sensing and Antimicrobial Production Orchestrate Biofilm Dynamics in Multispecies Bacterial Communities. Microbiol Spectr 2022; 10:e0261522. [PMID: 36255295 PMCID: PMC9769649 DOI: 10.1128/spectrum.02615-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023] Open
Abstract
Microbial interactions are often mediated by diffusible small molecules, including secondary metabolites, that play roles in cell-to-cell signaling and inhibition of competitors. Biofilms are often "hot spots" for high concentrations of bacteria and their secondary metabolites, which make them ideal systems for the study of small-molecule contributions to microbial interactions. Here, we use a five-member synthetic community consisting of Roseobacteraceae representatives to investigate the role of secondary metabolites on microbial biofilm dynamics. One synthetic community member, Rhodobacterales strain Y4I, possesses two acylated homoserine lactone (AHL)-based cell-to-cell signaling systems (pgaRI and phaRI) as well as a nonribosomal peptide synthase gene (igi) cluster that encodes the antimicrobial indigoidine. Through serial substitution of Y4I with mutants deficient in single signaling molecule pathways, the contribution of these small-molecule systems could be assessed. As secondary metabolite production is dependent upon central metabolites, the influence of growth substrate (i.e., complex medium versus defined medium with a single carbon substrate) on these dynamics was also considered. Depending on the Y4I mutant genotype included, community dynamics ranged from competitive to cooperative. The observed interactions were mostly competitive in nature. However, the community harboring a Y4I variant that was both impaired in quorum sensing (QS) pathways and unable to produce indigoidine (pgaR variant) shifted toward more cooperative interactions over time. These cooperative interactions were enhanced in the defined growth medium. The results presented provide a framework for deciphering complex, small-molecule-mediated interactions that have broad application to microbial biology. IMPORTANCE Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. Roseobacteraceae are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities. Few studies have examined the impact of secondary metabolites, such as cell-to-cell signaling and antimicrobial production, on marine microbial biofilm community structure. Here, we assessed the impact of secondary metabolites on microbial interactions using a synthetic, five-member Roseobacteraceae community by measuring species composition and biomass production during biofilm growth. We present evidence that secondary metabolites influence social behaviors within these multispecies microbial biofilms, thereby improving understanding of bacterial secondary metabolite production influence on social behaviors within marine microbial biofilm communities.
Collapse
|
7
|
Holt BH, Buchan A, DeBruyn JM, Goodrich-Blair H, McPherson E, Brown VA. Breaking Barriers with Bread: Using the Sourdough Starter Microbiome to Teach High-Throughput Sequencing Techniques. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2022; 23:e00306-21. [PMID: 36061316 PMCID: PMC9429883 DOI: 10.1128/jmbe.00306-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Widespread usage of high-throughput sequencing (HTS) in the LIFE SCIENCES has produced a demand for undergraduate and graduate institutions to offer classes exposing students to all aspects of HTS (sample acquisition, laboratory work, sequencing technologies, bioinformatics, and statistical analyses). Despite the increase in demand, many challenges exist for these types of classes. We advocate for the usage of the sourdough starter microbiome for implementing meta-amplicon sequencing. The relatively small community, dominated by a few taxa, enables potential contaminants to be easily identified, while between-sample differences can be quickly statistically assessed. Finally, bioinformatic pipelines and statistical analyses can be carried out on personal student laptops or in a teaching computer lab. In two semesters adopting this system, 12 of 14 students were able to effectively capture the sourdough starter microbiome, using the instructor's paired sample as reference.
Collapse
|
8
|
Elbon CE, LeCleir GR, Tuttle MJ, Jurgensen SK, Demas TG, Keller CJ, Stewart T, Buchan A. Microbiomes and Planctomycete diversity in large-scale aquaria habitats. PLoS One 2022; 17:e0267881. [PMID: 35551553 PMCID: PMC9098025 DOI: 10.1371/journal.pone.0267881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
In commercial large-scale aquaria, controlling levels of nitrogenous compounds is essential for macrofauna health. Naturally occurring bacteria are capable of transforming toxic nitrogen species into their more benign counterparts and play important roles in maintaining aquaria health. Nitrification, the microbially-mediated transformation of ammonium and nitrite to nitrate, is a common and encouraged process for management of both commercial and home aquaria. A potentially competing microbial process that transforms ammonium and nitrite to dinitrogen gas (anaerobic ammonium oxidation [anammox]) is mediated by some bacteria within the phylum Planctomycetes. Anammox has been harnessed for nitrogen removal during wastewater treatment, as the nitrogenous end product is released into the atmosphere rather than in aqueous discharge. Whether anammox bacteria could be similarly utilized in commercial aquaria is an open question. As a first step in assessing the viability of this practice, we (i) characterized microbial communities from water and sand filtration systems for four habitats at the Tennessee Aquarium and (ii) examined the abundance and anammox potential of Planctomycetes using culture-independent approaches. 16S rRNA gene amplicon sequencing revealed distinct, yet stable, microbial communities and the presence of Planctomycetes (~1-15% of library reads) in all sampled habitats. Preliminary metagenomic analyses identified the genetic potential for multiple complete nitrogen metabolism pathways. However, no known genes diagnostic for the anammox reaction were found in this survey. To better understand the diversity of this group of bacteria in these systems, a targeted Planctomycete-specific 16S rRNA gene-based PCR approach was used. This effort recovered amplicons that share <95% 16S rRNA gene sequence identity to previously characterized Planctomycetes, suggesting novel strains within this phylum reside within aquaria.
Collapse
|
9
|
Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 2021; 19:501-513. [PMID: 33762712 DOI: 10.1038/s41579-021-00530-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/01/2023]
Abstract
Viruses that infect microbial hosts have traditionally been studied in laboratory settings with a focus on either obligate lysis or persistent lysogeny. In the environment, these infection archetypes are part of a continuum that spans antagonistic to beneficial modes. In this Review, we advance a framework to accommodate the context-dependent nature of virus-microorganism interactions in ecological communities by synthesizing knowledge from decades of virology research, eco-evolutionary theory and recent technological advances. We discuss that nuanced outcomes, rather than the extremes of the continuum, are particularly likely in natural communities given variability in abiotic factors, the availability of suboptimal hosts and the relevance of multitrophic partnerships. We revisit the 'rules of life' in terms of how long-term infections shape the fate of viruses and microbial cells, populations and ecosystems.
Collapse
|
10
|
Quigley LNM, Edwards A, Steen AD, Buchan A. Corrigendum: Characterization of the Interactive Effects of Labile and Recalcitrant Organic Matter on Microbial Growth and Metabolism. Front Microbiol 2021; 12:682681. [PMID: 34326820 PMCID: PMC8314299 DOI: 10.3389/fmicb.2021.682681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
|
11
|
Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020; 22:4919-4933. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.
Collapse
|
12
|
Basso JTR, Ankrah NYD, Tuttle MJ, Grossman AS, Sandaa RA, Buchan A. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. THE ISME JOURNAL 2020; 14:1688-1700. [PMID: 32242083 PMCID: PMC7305329 DOI: 10.1038/s41396-020-0637-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
Abstract
Temperate phages engage in long-term associations with their hosts that may lead to mutually beneficial interactions, of which the full extent is presently unknown. Here, we describe an environmentally relevant model system with a single host, a species of the Roseobacter clade of marine bacteria, and two genetically similar phages (ɸ-A and ɸ-D). Superinfection of a ɸ-D lysogenized strain (CB-D) with ɸ-A particles resulted in a lytic infection, prophage induction, and conversion of a subset of the host population, leading to isolation of a newly ɸ-A lysogenized strain (CB-A). Phenotypic differences, predicted to result from divergent lysogenic-lytic switch mechanisms, are evident between these lysogens, with CB-A displaying a higher incidence of spontaneous induction. Doubling times of CB-D and CB-A in liquid culture are 75 and 100 min, respectively. As cell cultures enter stationary phase, CB-A viable counts are half of CB-D. Consistent with prior evidence that cell lysis enhances biofilm formation, CB-A produces twice as much biofilm biomass as CB-D. As strains are susceptible to infection by the opposing phage type, co-culture competitions were performed to test fitness effects. When grown planktonically, CB-A outcompeted CB-D three to one. Yet, during biofilm growth, CB-D outcompeted CB-A three to one. These results suggest that genetically similar phages can have divergent influence on the competitiveness of their shared hosts in distinct environmental niches, possibly due to a complex form of phage-mediated allelopathy. These findings have implications for enhanced understanding of the eco-evolutionary dynamics of host-phage interactions that are pervasive in all ecosystems.
Collapse
|
13
|
Buchan A, Scott-Kirchen L, Kocurek E, Strain D, Li R, Meek J, Meek M. 3:27 PM Abstract No. 258 Outcomes of mechanical thrombectomy using the Inari FlowTriever system for the treatment of acute pulmonary embolism. J Vasc Interv Radiol 2020. [DOI: 10.1016/j.jvir.2019.12.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Quigley LNM, Edwards A, Steen AD, Buchan A. Characterization of the Interactive Effects of Labile and Recalcitrant Organic Matter on Microbial Growth and Metabolism. Front Microbiol 2019; 10:493. [PMID: 30941109 PMCID: PMC6433851 DOI: 10.3389/fmicb.2019.00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 11/23/2022] Open
Abstract
Geochemical models typically represent organic matter (OM) as consisting of multiple, independent pools of compounds, each accessed by microorganisms at different rates. However, recent findings indicate that organic compounds can interact within microbial metabolisms. The relevance of interactive effects within marine systems is debated and a mechanistic understanding of its complexities, including microbe-substrate relationships, is lacking. As a first step toward uncovering mediating processes, the interactive effects of distinct pools of OM on the growth and respiration of marine bacteria, individual strains and a simple, constructed community of Roseobacter lineage members were tested. Isolates were provided with natural organic matter (NOM) and different concentrations (1, 4, 40, 400 μM-C) and forms of labile OM (acetate, casamino acids, tryptone, coumarate). The microbial response to the mixed substrate regimes was assessed using viable counts and respiration in two separate experiments. Two marine bacteria and a six-member constructed community were assayed with these experiments. Both synergistic and antagonistic growth responses were evident for all strains, but all were transient. The specific substrate conditions promoting a response, and the direction of that response, varied amongst species. These findings indicate that the substrate conditions that result in OM interactive effects are both transient and species-specific and thus influenced by both the composition and metabolic potential of a microbial community.
Collapse
|
15
|
Wigington CH, Sonderegger D, Brussaard CPD, Buchan A, Finke JF, Fuhrman JA, Lennon JT, Middelboe M, Suttle CA, Stock C, Wilson WH, Wommack KE, Wilhelm SW, Weitz JS. Author Correction: Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol 2017; 2:1571. [PMID: 28974689 DOI: 10.1038/s41564-017-0042-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The original publication of this Article included analysis of virus and microbial cell abundances and virus-to-microbial cell ratios. Data in the Article came from 25 studies intended to be exclusively from marine sites. However, 3 of the studies included in the original unified dataset were erroneously classified as marine sites during compilation. The records with mis-recorded longitude and latitude values were, in fact, taken from inland, freshwater sources. The three inland, freshwater datasets are ELA, TROUT and SWAT. The data from these three studies represent 163 of the 5,671 records in the original publication. In the updated version of the Article, all analyses have been recalculated using the same statistical analysis pipeline released via GitHub as part of the original publication. Removal of the three studies reduces the unified dataset to 5,508 records. Analyses involving all grouped datasets have been updated with changes noted in each figure. All key results remain qualitatively unchanged. All data and scripts used in this correction have been made available as a new, updated GitHub release to reflect the updated dataset and figures.
Collapse
|
16
|
Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, Follows MJ, Fuhrman JA, Jover LF, Lennon JT, Middelboe M, Sonderegger DL, Suttle CA, Taylor BP, Frede Thingstad T, Wilson WH, Eric Wommack K. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. THE ISME JOURNAL 2015; 9:1352-64. [PMID: 25635642 PMCID: PMC4438322 DOI: 10.1038/ismej.2014.220] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/08/2022]
Abstract
Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.
Collapse
|
17
|
Huang X, Jennings SF, Bruce B, Buchan A, Cai L, Chen P, Cramer CL, Guan W, Hilgert UK, Jiang H, Li Z, McClure G, McMullen DF, Nanduri B, Perkins A, Rekepalli B, Salem S, Specker J, Walker K, Wunsch D, Xiong D, Zhang S, Zhang Y, Zhao Z, Moore JH. Big data - a 21st century science Maginot Line? No-boundary thinking: shifting from the big data paradigm. BioData Min 2015; 8:7. [PMID: 25670967 PMCID: PMC4323225 DOI: 10.1186/s13040-015-0037-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
Whether your interests lie in scientific arenas, the corporate world, or in government, you have certainly heard the praises of big data: Big data will give you new insights, allow you to become more efficient, and/or will solve your problems. While big data has had some outstanding successes, many are now beginning to see that it is not the Silver Bullet that it has been touted to be. Here our main concern is the overall impact of big data; the current manifestation of big data is constructing a Maginot Line in science in the 21st century. Big data is not "lots of data" as a phenomena anymore; The big data paradigm is putting the spirit of the Maginot Line into lots of data. Big data overall is disconnecting researchers and science challenges. We propose No-Boundary Thinking (NBT), applying no-boundary thinking in problem defining to address science challenges.
Collapse
|
18
|
Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 2014; 12:686-98. [PMID: 25134618 DOI: 10.1038/nrmicro3326] [Citation(s) in RCA: 588] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marine phytoplankton blooms are annual spring events that sustain active and diverse bloom-associated bacterial populations. Blooms vary considerably in terms of eukaryotic species composition and environmental conditions, but a limited number of heterotrophic bacterial lineages - primarily members of the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria - dominate these communities. In this Review, we discuss the central role that these bacteria have in transforming phytoplankton-derived organic matter and thus in biogeochemical nutrient cycling. On the basis of selected field and laboratory-based studies of flavobacteria and roseobacters, distinct metabolic strategies are emerging for these archetypal phytoplankton-associated taxa, which provide insights into the underlying mechanisms that dictate their behaviours during blooms.
Collapse
|
19
|
Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol 2014; 12:519-28. [PMID: 24931044 DOI: 10.1038/nrmicro3289] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In marine environments, virus-mediated lysis of host cells leads to the release of cellular carbon and nutrients and is hypothesized to be a major driver of carbon recycling on a global scale. However, efforts to characterize the effects of viruses on nutrient cycles have overlooked the geochemical potential of the virus particles themselves, particularly with respect to their phosphorus content. In this Analysis article, we use a biophysical scaling model of intact virus particles that has been validated using sequence and structural information to quantify differences in the elemental stoichiometry of marine viruses compared with their microbial hosts. By extrapolating particle-scale estimates to the ecosystem scale, we propose that, under certain circumstances, marine virus populations could make an important contribution to the reservoir and cycling of oceanic phosphorus.
Collapse
|
20
|
Ankrah NYD, May AL, Middleton JL, Jones DR, Hadden MK, Gooding JR, LeCleir GR, Wilhelm SW, Campagna SR, Buchan A. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME JOURNAL 2013; 8:1089-100. [PMID: 24304672 DOI: 10.1038/ismej.2013.216] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022]
Abstract
Viruses contribute to the mortality of marine microbes, consequentially altering biological species composition and system biogeochemistry. Although it is well established that host cells provide metabolic resources for virus replication, the extent to which infection reshapes host metabolism at a global level and the effect of this alteration on the cellular material released following viral lysis is less understood. To address this knowledge gap, the growth dynamics, metabolism and extracellular lysate of roseophage-infected Sulfitobacter sp. 2047 was studied using a variety of techniques, including liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics. Quantitative estimates of the total amount of carbon and nitrogen sequestered into particulate biomass indicate that phage infection redirects ∼75% of nutrients into virions. Intracellular concentrations for 82 metabolites were measured at seven time points over the infection cycle. By the end of this period, 71% of the detected metabolites were significantly elevated in infected populations, and stable isotope-based flux measurements showed that these cells had elevated metabolic activity. In contrast to simple hypothetical models that assume that extracellular compounds increase because of lysis, a profile of metabolites from infected cultures showed that >70% of the 56 quantified compounds had decreased concentrations in the lysate relative to uninfected controls, suggesting that these small, labile nutrients were being utilized by surviving cells. These results indicate that virus-infected cells are physiologically distinct from their uninfected counterparts, which has implications for microbial community ecology and biogeochemistry.
Collapse
|
21
|
Cude WN, Buchan A. Acyl-homoserine lactone-based quorum sensing in the Roseobacter clade: complex cell-to-cell communication controls multiple physiologies. Front Microbiol 2013; 4:336. [PMID: 24273537 PMCID: PMC3824088 DOI: 10.3389/fmicb.2013.00336] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/24/2013] [Indexed: 11/13/2022] Open
Abstract
Bacteria have been widely reported to use quorum sensing (QS) systems, which employ small diffusible metabolites to coordinate gene expression in a population density dependent manner. In Proteobacteria, the most commonly described QS signaling molecules are N-acyl-homoserine lactones (AHLs). Recent studies suggest that members of the abundant marine Roseobacter lineage possess AHL-based QS systems and are environmentally relevant models for relating QS to ecological success. As reviewed here, these studies suggest that the roles of QS in roseobacters are varied and complex. An analysis of the 43 publically available Roseobacter genomes shows conservation of QS protein sequences and overall gene topologies, providing support for the hypothesis that QS is a conserved and widespread trait in the clade.
Collapse
|
22
|
Huang X, Bruce B, Buchan A, Congdon CB, Cramer CL, Jennings SF, Jiang H, Li Z, McClure G, McMullen R, Moore JH, Nanduri B, Peckham J, Perkins A, Polson SW, Rekepalli B, Salem S, Specker J, Wunsch D, Xiong D, Zhang S, Zhao Z. No-boundary thinking in bioinformatics research. BioData Min 2013; 6:19. [PMID: 24192339 PMCID: PMC3827872 DOI: 10.1186/1756-0381-6-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022] Open
Abstract
Currently there are definitions from many agencies and research societies defining “bioinformatics” as deriving knowledge from computational analysis of large volumes of biological and biomedical data. Should this be the bioinformatics research focus? We will discuss this issue in this review article. We would like to promote the idea of supporting human-infrastructure (HI) with no-boundary thinking (NT) in bioinformatics (HINT).
Collapse
|
23
|
Gulvik CA, Effler TC, Wilhelm SW, Buchan A. De-MetaST-BLAST: a tool for the validation of degenerate primer sets and data mining of publicly available metagenomes. PLoS One 2012. [PMID: 23189198 PMCID: PMC3506598 DOI: 10.1371/journal.pone.0050362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development and use of primer sets to amplify nucleic acid sequences of interest is fundamental to studies spanning many life science disciplines. As such, the validation of primer sets is essential. Several computer programs have been created to aid in the initial selection of primer sequences that may or may not require multiple nucleotide combinations (i.e., degeneracies). Conversely, validation of primer specificity has remained largely unchanged for several decades, and there are currently few available programs that allows for an evaluation of primers containing degenerate nucleotide bases. To alleviate this gap, we developed the program De-MetaST that performs an in silico amplification using user defined nucleotide sequence dataset(s) and primer sequences that may contain degenerate bases. The program returns an output file that contains the in silico amplicons. When De-MetaST is paired with NCBI’s BLAST (De-MetaST-BLAST), the program also returns the top 10 nr NCBI database hits for each recovered in silico amplicon. While the original motivation for development of this search tool was degenerate primer validation using the wealth of nucleotide sequences available in environmental metagenome and metatranscriptome databases, this search tool has potential utility in many data mining applications.
Collapse
|
24
|
Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, May AL, Buchan A. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 2012; 78:4771-80. [PMID: 22582055 PMCID: PMC3416362 DOI: 10.1128/aem.00297-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/25/2012] [Indexed: 11/20/2022] Open
Abstract
Members of the Roseobacter lineage of marine bacteria are prolific surface colonizers in marine coastal environments, and antimicrobial secondary metabolite production has been hypothesized to provide a competitive advantage to colonizing roseobacters. Here, we report that the roseobacter Phaeobacter sp. strain Y4I produces the blue pigment indigoidine via a nonribosomal peptide synthase (NRPS)-based biosynthetic pathway encoded by a novel series of genetically linked genes: igiBCDFE. A Tn5-based random mutagenesis library of Y4I showed a perfect correlation between indigoidine production by the Phaeobacter strain and inhibition of Vibrio fischeri on agar plates, revealing a previously unrecognized bioactivity of this molecule. In addition, igiD null mutants (igiD encoding the indigoidine NRPS) were more resistant to hydrogen peroxide, less motile, and faster to colonize an artificial surface than the wild-type strain. Collectively, these data provide evidence for pleiotropic effects of indigoidine production in this strain. Gene expression assays support phenotypic observations and demonstrate that igiD gene expression is upregulated during growth on surfaces. Furthermore, competitive cocultures of V. fischeri and Y4I show that the production of indigoidine by Y4I significantly inhibits colonization of V. fischeri on surfaces. This study is the first to characterize a secondary metabolite produced by an NRPS in roseobacters.
Collapse
|
25
|
Rempe C, Budinoff CR, Effler TC, Buchan A. The influence of sample biases on estimations of marine microbial diversity. BMC Bioinformatics 2012. [PMCID: PMC3409046 DOI: 10.1186/1471-2105-13-s12-a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|