1
|
Kennedy KV, Wang JX, McMillan E, Zhou Y, Teranishi R, Semeao A, Mirchandani L, Umeweni CN, Dhakal D, Baccarella A, Ishikawa S, Sasaki M, Itami T, Harman AC, Joannas L, Karakasheva TA, Nakagawa H, Muir AB. Lysyl Oxidase Mediates Proliferation and Differentiation in the Esophageal Epithelium. Biomolecules 2024; 14:1560. [PMID: 39766266 PMCID: PMC11674119 DOI: 10.3390/biom14121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
In homeostatic conditions, the basal progenitor cells of the esophagus differentiate into a stratified squamous epithelium. However, in the setting of acid exposure or inflammation, there is a marked failure of basal cell differentiation, leading to basal cell hyperplasia. We have previously shown that lysyl oxidase (LOX), a collagen crosslinking enzyme, is upregulated in the setting of allergic inflammation of the esophagus; however, its role beyond collagen crosslinking is unknown. Herein, we propose a non-canonical epithelial-specific role of LOX in the maintenance of epithelial homeostasis using 3D organoid and murine models. We performed quantitative reverse transcriptase PCR, Western blot, histologic analysis, and RNA sequencing on immortalized non-transformed human esophageal epithelial cells (EPC2-hTERT) with short-hairpin RNA (shRNA) targeting LOX mRNA in both monolayer and 3D organoid culture. A novel murine model with a tamoxifen-induced Lox knockout specific to the stratified epithelium (K5CreER; Loxfl/fl) was utilized to further define the role of epithelial LOX in vivo. We found that LOX knockdown decreased the proliferative capacity of the esophageal epithelial cells in monolayer culture, and dramatically reduced the organoid formation rate (OFR) in the shLOX organoids. LOX knockdown was associated with decreased expression of the differentiation markers filaggrin, loricrin, and involucrin, with RNA sequencing analysis revealing 1224 differentially expressed genes demonstrating downregulation of pathways involved in cell differentiation and epithelial development. Mice with Lox knockout in their stratified epithelium demonstrated increased basaloid content of their esophageal epithelium and decreased Ki-67 staining compared to the vehicle-treated mice, suggesting reduced differentiation and proliferation in the Lox-deficient epithelium in vivo. Our results demonstrate, both in vivo and in vitro, that LOX may regulate epithelial homeostasis in the esophagus through the modulation of epithelial proliferation and differentiation. Understanding the mechanisms of perturbation in epithelial proliferation and differentiation in an inflamed esophagus could lead to the development of novel treatments that could promote epithelial healing and restore homeostasis.
Collapse
|
2
|
Kennedy KV, Costello A, Lerman MA, Burnham JM, Corcoran A, Piccione J, Grier A, Sullivan K, Whitehorn-Brown T, Alexander CJ, Finn LS, Wilkins BJ, Muir AB. Granulomatous hyperinflammatory state induced by dupilumab treatment for eosinophilic esophagitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100314. [PMID: 39253107 PMCID: PMC11382170 DOI: 10.1016/j.jacig.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 09/11/2024]
Abstract
We present the first case of a dupilumab-induced hyperinflammatory state in the setting of underlying eosinophilic esophagitis characterized by multisystem granulomatous inflammation. Although clinical trial data and subsequent real-world experience support dupilumab as a highly effective therapy for eosinophilic esophagitis, close monitoring for development of adverse symptoms following initiation remains paramount.
Collapse
|
3
|
Strauss Starling A, Ren Y, Li H, Spergel JM, Muir AB, Lynch KL, Liacouras CA, Falk GW. Reducing Eosinophil Counts in Eosinophilic Esophagitis in Children Is Associated With Reduction in Later Stricture Development. Am J Gastroenterol 2024; 119:2002-2009. [PMID: 38661151 DOI: 10.14309/ajg.0000000000002830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION There are limited longitudinal data on the impact of chronic therapy on the natural history of eosinophilic esophagitis (EoE), a chronic allergic disease of the esophagus. The purpose of this study was to evaluate if patients with well-controlled EoE were less likely to develop fibrostenotic complications. METHODS Subjects were identified from a database of pediatric patients with EoE at the Children's Hospital of Philadelphia started in 2000. Patients were then searched in adult medical records to identify patients who transitioned care. All office visits, emergency department visits, and endoscopic, histologic, and imaging reports were reviewed for the primary outcome of strictures and the secondary outcomes of food impactions and dysphagia. Cox proportional hazard regression was performed for outcomes. RESULTS One hundred five patients were identified with the mean follow-up of 11.4 ± 4.9 years. 52.3% (n = 55) had a period of histologic disease control defined as ≥2 consecutive endoscopies with histologic remission. These patients were less likely to develop strictures compared with patients who did not have a period of histologic control (HR 0.232; 95% CI 0.084-0.64, P = 0.005). Patients who were diagnosed at younger ages were less likely to develop strictures. Presentation with dysphagia or impaction was associated with higher rate of stricture development. DISCUSSION In this cohort study with > 10 years of follow-up, children with EoE with a period of histologic disease control and diagnosed at younger ages were less likely to develop esophageal strictures. While this suggests histologic remission is associated with reduction of remodeling complications, additional prospective data with long-term follow-up are needed.
Collapse
|
4
|
Manfredi MD, Yasuda J, Mahon M, Kennedy KV, Menard-Katcher C, Mitchel E, Muir AB. Proton pump inhibitors and esophageal atresia: Too early to change clinical practice. J Pediatr Gastroenterol Nutr 2024. [PMID: 39324371 DOI: 10.1002/jpn3.12373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
|
5
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling Epithelial Homeostasis and Perturbation in Three-Dimensional Human Esophageal Organoids. Biomolecules 2024; 14:1126. [PMID: 39334892 PMCID: PMC11430971 DOI: 10.3390/biom14091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize the ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of the proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ-receptor-mediated signaling. Optimized HOME0 improved normal human esophageal organoid formation. In the HOME0-grown organoids, IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
|
6
|
Chehade M, Wright BL, Walsh S, Bailey DD, Muir AB, Klion AD, Collins MH, Davis CM, Furuta GT, Gupta S, Khoury P, Peterson KA, Jensen ET. Challenging assumptions about the demographics of eosinophilic gastrointestinal diseases: A systematic review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100260. [PMID: 38745866 PMCID: PMC11090865 DOI: 10.1016/j.jacig.2024.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/24/2024] [Accepted: 03/08/2024] [Indexed: 05/16/2024]
Abstract
Background The demographic characteristics of patients with eosinophilic gastrointestinal diseases (EGIDs) are poorly understood. Population-based assessments of EGID demographics may indicate health disparities in diagnosis. Objectives We aimed to characterize the demographic distribution of EGIDs and evaluate the potential for bias in reporting patient characteristics. Methods We conducted a systematic review, extracting data on age, sex, gender, race, ethnicity, body mass index, insurance, and urban/rural residence on EGID patients and the source population. Differences in proportions were assessed by chi-square tests. Demographic reporting was compared to recent guidelines. Results Among 50 studies that met inclusion/exclusion criteria, 12 reported ≥1 demographic feature in both EGID and source populations. Except for age and sex or gender, demographics were rarely described (race = 4, ethnicity = 1, insurance = 1) or were not described (body mass index, urban/rural residence). A higher proportion of male subjects was observed for EoE or esophageal eosinophilia relative to the source population, but no difference in gender or sex distribution was observed for other EGIDs. "Sex" and "gender" were used interchangeably, and frequently only the male proportion was reported. Reporting of race and ethnicity was inconsistent with guidelines. Conclusion Current data support a male predominance for EoE only. Evidence was insufficient to support enrichment of EGIDs in any particular racial, ethnic, or other demographic group. Population-based studies presenting demographics on both cases and source populations are needed. Implementation of guidelines for more inclusive reporting of demographic characteristics is crucial to prevent disparities in timely diagnosis and management of patients with EGIDs.
Collapse
|
7
|
Kennedy KV, Umeweni CN, Alston M, Dolinsky L, McCormack SM, Taylor LA, Bendavid A, Benitez A, Mitchel E, Karakasheva T, Goh V, Maqbool A, Albenberg L, Brown-Whitehorn T, Cianferoni A, Muir AB. Esophageal Remodeling Correlates With Eating Behaviors in Pediatric Eosinophilic Esophagitis. Am J Gastroenterol 2024; 119:1167-1176. [PMID: 38235740 PMCID: PMC11150094 DOI: 10.14309/ajg.0000000000002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
INTRODUCTION There are limited data characterizing eating habits among pediatric patients with eosinophilic esophagitis (EoE). We compared eating behaviors in pediatric patients with EoE with healthy controls and assessed the degree of correlation with symptomatology, endoscopic and histologic findings, and esophageal distensibility. METHODS We conducted a prospective, observational study where subjects consumed 4 food textures (puree, soft solid, chewable, and hard solid) and were scored for eating behaviors including number of chews per bite, sips of fluid per food, and consumption time. Symptomatic, endoscopic, histologic, and esophageal distensibility data were collected for case subjects. RESULTS Twenty-seven case subjects and 25 healthy controls were enrolled in our study (mean age 11.0 years, 63.5% male). Compared with healthy controls, pediatric patients with EoE demonstrated more chews per bite with soft solid (13.6 vs 9.1, P = 0.031), chewable (14.7 vs 10.7, P = 0.047), and hard solid foods (19.0 vs 12.8, P = 0.037). Patients with EoE also demonstrated increased consumption time with soft solid (94.7 vs 58.3 seconds, P = 0.002), chewable (90.0 vs 65.1 seconds, P = 0.005), and hard solid foods (114.1 vs 76.4 seconds, P = 0.034) when compared with healthy controls. Subgroup analysis based on disease status showed no statistically significant differences in eating behaviors between active and inactive EoE. Total endoscopic reference score positively correlated with consumption time ( r = 0.53, P = 0.008) and number of chews ( r = 0.45, P = 0.027) for chewable foods and with number of chews ( r = 0.44, P = 0.043) for hard solid foods. Increased consumption time correlated with increased eosinophil count ( r = 0.42, P = 0.050) and decreased esophageal distensibility ( r = -0.82, P < 0.0001). DISCUSSION Altered eating behaviors including increased chewing and increased consumption time can be seen in pediatric patients with EoE, can persist despite histologic remission, and may be driven by changes in esophageal distensibility.
Collapse
|
8
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling epithelial homeostasis and perturbation in three-dimensional human esophageal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595023. [PMID: 38826379 PMCID: PMC11142071 DOI: 10.1101/2024.05.20.595023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ receptor-mediated signaling. In optimized HOME0, normal human esophageal organoid formation was improved, whereas IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
|
9
|
Thanawala SU, Klein A, Raval K, Amaro JIF, Beveridge CA, Muir AB, Falk GW, Gonzalez-Hernandez G, Lynch KL. Exploring X: barriers to care for eosinophilic esophagitis. Dis Esophagus 2024:doae043. [PMID: 38745432 DOI: 10.1093/dote/doae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Patients with chronic diseases have increasingly turned to social media to discuss symptoms and share the challenges they face with disease management. The primary aim of this study is to use naturally occurring data from X (formerly known as Twitter) to identify barriers to care faced by individuals affected by eosinophilic esophagitis (EoE). For this qualitative study, the X application programming interface with academic research access was used to search for posts that referenced EoE between 1 January 2019 and 10 August 2022. The posts were identified as being either related to barriers to care for EoE or not. Those related to barriers to care were further categorized by the type of barrier that was expressed. A total of 8636 EoE-related posts were annotated of which 12.1% were related to barriers to care in EoE. The themes that emerged about barriers to care included: dietary challenges, limited treatment options, lack of community support, lack of physician awareness of disease, misinformation, cost of care, lack of patient belief in disease or trust in physician, and limited access to care. Saturation of themes was achieved. This study highlights barriers to care in EoE using readily accessible social media data that is not derived from a curated research setting. Identifying these obstacles is key to improving care for this chronic disease.
Collapse
|
10
|
Muir AB, Bailey DD, Mehta P. Embracing Diversity, Equity, Inclusion, and Accessibility in Eosinophilic Gastrointestinal Diseases. Immunol Allergy Clin North Am 2024; 44:293-298. [PMID: 38575224 DOI: 10.1016/j.iac.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Eosinophilic gastrointestinal diseases (EGIDs) including eosinophilic esophagitis (EoE) are rare diseases in which eosinophils abnormally infiltrate the gastrointestinal tract. Because these are rare diseases, there is limited information regarding race and ethnicity in EGIDs and even less is known about the impact of socioeconomic factors. There is some evidence that access to care in rural settings may be affecting epidemiologic understanding of EGIDs in the pediatric populations. Future work should try to evaluate bias in research and strive for representation in clinical trials and medicine.
Collapse
|
11
|
Shaul E, Kennedy KV, Spergel ZC, Daneshdoost S, Mahon M, Thanawala S, Spergel JM, Wilkins B, Ryan MJ, Muir AB. Endoscopic and histologic utility of transnasal endoscopy in pediatric eosinophilic esophagitis. J Pediatr Gastroenterol Nutr 2024; 78:1155-1160. [PMID: 38482943 DOI: 10.1002/jpn3.12170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 02/03/2024] [Indexed: 05/03/2024]
Abstract
Unsedated transnasal endoscopy (TNE) is an alternative method of examining the esophageal mucosa in pediatric patients with eosinophilic esophagitis (EoE), reducing cost, time, and risk associated with frequent surveillance esophagogastroduodenoscopies (EGD). Adequacy of transnasal esophageal biopsies for the evaluation of eosinophilic esophagitis histologic scoring system (EoEHSS) has not yet been evaluated. We compared procedure times, endoscopic findings, and EoEHSS scoring for EoE patients undergoing TNE versus standard EGD. Sixty-six TNE patients and 132 EGD controls matched for age (mean age 14.0 years) and disease status (29.3% active) were included. Compared to patients undergoing standard EGD, patients undergoing TNE spent 1.94 h less in the GI suite (p < 0.0001), with comparable occurrence rates of all visual endoscopic findings and most EoEHSS components. TNE serves as a useful tool for long-term disease surveillance, and consideration should be given to its use in clinical trials for EoE.
Collapse
|
12
|
Kennedy KV, Muir AB, Ruffner MA. Pathophysiology of Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2024; 44:119-128. [PMID: 38575212 DOI: 10.1016/j.iac.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, progressive immune-mediated disease associated with antigen-driven type 2 inflammation and symptoms of esophageal dysfunction. Research over the last 2 decades has dramatically furthered our understanding of the complex interplay between genetics, environmental exposures, and cellular and molecular interactions involved in EoE. This review provides an overview of our current understanding of EoE pathogenesis.
Collapse
|
13
|
Ruffner MA, Shoda T, Lal M, Mrozek Z, Muir AB, Spergel JM, Dellon ES, Rothenberg ME. Persistent esophageal changes after histologic remission in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1063-1072. [PMID: 38154664 PMCID: PMC11151730 DOI: 10.1016/j.jaci.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is characterized by persistent or relapsing allergic inflammation, and both clinical and histologic features of esophageal inflammation persist over time in most individuals. Mechanisms contributing to EoE relapse are not understood, and chronic EoE-directed therapy is therefore required to prevent long-term sequelae. OBJECTIVE We investigated whether EoE patients in histologic remission have persistent dysregulation of esophageal gene expression. METHODS Esophageal biopsy samples from 51 pediatric and 52 adult subjects with EoE in histopathologic remission (<15 eosinophils per high-power field [eos/hpf]) and control (48 pediatric and 167 adult) subjects from multiple institutions were subjected to molecular profiling by the EoE diagnostic panel, which comprises a set of 94 esophageal transcripts differentially expressed in active EoE. RESULTS Defining remission as <15 eos/hpf, we identified 51 and 32 differentially expressed genes in pediatric and adult EoE patients compared to control individuals, respectively (false discovery rate < 0.05). Using the stringent definition of remission (0 eos/hpf), the adult and pediatric cohorts continued to have 18 and 25 differentially expressed genes (false discovery rate < 0.05). Among 6 shared genes between adults and children, CDH26 was upregulated in both children and adults; immunohistochemistry demonstrated increased cadherin 26 staining in the epithelium of EoE patients in remission compared to non-EoE controls. In the adult cohort, POSTN expression correlated with the endoscopic reference system score (Spearman r = 0.35, P = .011), specifically correlating with the rings' endoscopic reference system subscore (r = 0.53, P = .004). CONCLUSION We have identified persistent EoE-associated esophageal gene expression in patients with disease in deep remission. These data suggest potential inflammation-induced epigenetic mechanisms may influence gene expression during remission in EoE and provide insight into possible mechanisms that underlie relapse in EoE.
Collapse
|
14
|
Klochkova A, Karami AL, Fuller AD, Parham LR, Panchani SR, Natarajan S, Jackson JL, Mu A, Tan Y, Cai KQ, Klein-Szanto AJ, Muir AB, Tétreault MP, Graña X, Hamilton KE, Whelan KA. Autophagy Contributes to Homeostasis in Esophageal Epithelium Where High Autophagic Vesicle Level Marks Basal Cells With Limited Proliferation and Enhanced Self-Renewal Potential. Cell Mol Gastroenterol Hepatol 2024; 18:15-40. [PMID: 38452871 PMCID: PMC11126828 DOI: 10.1016/j.jcmgh.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND & AIMS Autophagy plays roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelial homeostasis. METHODS We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histologic and biochemical analyses. We fluorescence-activated cell sorted esophageal basal cells based on fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID and then subjected these cells to transmission electron microscopy, image flow cytometry, three-dimensional organoid assays, RNA sequencing, and cell cycle analysis. Three-dimensional organoids were subjected to passaging, single-cell RNA sequencing, cell cycle analysis, and immunostaining. RESULTS Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells under homeostatic conditions and also was associated with significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Esophageal basal cells with high AV level (Cyto-IDHigh) displayed limited organoid formation capability on initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-IDLow). RNA sequencing suggested increased autophagy in Cyto-IDHigh esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. Single-cell RNA sequencing of three-dimensional organoids generated by Cyto-IDLow and Cyto-IDHigh cells identified expansion of 3 cell populations and enrichment of G2/M-associated genes in the Cyto-IDHigh group. Ki67 expression was also increased in organoids generated by Cyto-IDHigh cells, including in basal cells localized beyond the outermost cell layer. CONCLUSIONS Autophagy contributes to maintenance of the esophageal proliferation-differentiation gradient. Esophageal basal cells with high AV level exhibit limited proliferation and generate three-dimensional organoids with enhanced self-renewal capacity.
Collapse
|
15
|
Sasaki M, Hara T, Wang JX, Zhou Y, Kennedy KV, Umeweni CN, Alston MA, Spergel ZC, Ishikawa S, Teranishi R, Nakagawa R, Mcmillan EA, Whelan KA, Karakasheva TA, Hamilton KE, Ruffner MA, Muir AB. Lysyl Oxidase Regulates Epithelial Differentiation and Barrier Integrity in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2024; 17:923-937. [PMID: 38340809 PMCID: PMC11026689 DOI: 10.1016/j.jcmgh.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is up-regulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. METHODS We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse-transcription polymerase chain reaction, Western blot, histology, and functional analyses of barrier integrity. RESULTS Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL13 in differentiated cells. LOX-overexpressing organoids showed suppressed basal and up-regulated differentiation markers. In addition, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified an enriched bone morphogenetic protein (BMP) signaling pathway compared with wild-type organoids. In particular, LOX overexpression increased BMP2 and decreased the BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. CONCLUSIONS Our data support a model whereby LOX exhibits noncanonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of the BMP pathway in the esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.
Collapse
|
16
|
Muir AB, Karakasheva TA, Whelan KA. Epithelial-Fibroblast Crosstalk in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2024; 17:713-718. [PMID: 38316214 PMCID: PMC10957450 DOI: 10.1016/j.jcmgh.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Eosinophilic esophagitis (EoE) is an emerging form of food allergy that exerts a significant clinical and financial burden worldwide. EoE is clinically characterized by eosinophil-rich inflammatory infiltrates in esophageal mucosa and esophageal dysfunction. Remodeling events in esophageal epithelium and lamina propria also frequently occur in patients with EoE. Because subepithelial fibrosis is associated with esophageal stricture, the most severe consequence of EoE, there exists an urgent need for a deeper understanding of the molecular mechanisms mediating fibrosis in EoE. Here, we review emerging evidence from experimental model systems that implicates crosstalk between esophageal epithelial cells and underlying stromal cells in EoE fibrosis. We further discuss implications for epithelial-stromal interaction with regard to EoE patient care and propose future directions that may be pursued to further the understanding of epithelial-stromal crosstalk in EoE pathobiology.
Collapse
|
17
|
Chehade M, McGowan EC, Wright BL, Muir AB, Klion AD, Furuta GT, Jensen ET, Bailey DD. Barriers to Timely Diagnosis of Eosinophilic Gastrointestinal Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:302-308. [PMID: 38110118 PMCID: PMC10988285 DOI: 10.1016/j.jaip.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Although eosinophilic gastrointestinal diseases, including eosinophilic esophagitis, have been described over the past 2 to 3 decades, barriers to diagnosis and treatment are common and compounded by issues related to social determinants of health, race, ethnicity, and access to care. These barriers contribute to delays in diagnosis, resulting in persistent inflammation in the gastrointestinal tract, which can have significant consequences, including fibrostenotic complications in adults, failure to thrive in children, and decreased quality of life in all affected patients. In this commentary, we summarize gaps in knowledge regarding the epidemiology of eosinophilic gastrointestinal diseases, highlight barriers to diagnosis, discuss potential approaches based on best practices in other atopic and chronic gastrointestinal diseases, and provide recommendations for reducing barriers to timely diagnosis of eosinophilic gastrointestinal diseases in underserved populations.
Collapse
|
18
|
Lal M, Burk CM, Gautam R, Mrozek Z, Trachsel T, Beers J, Carroll MC, Morgan DM, Muir AB, Shreffler WG, Ruffner MA. Interferon-γ signaling in eosinophilic esophagitis has implications for epithelial barrier function and programmed cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577407. [PMID: 38352458 PMCID: PMC10862711 DOI: 10.1101/2024.01.26.577407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Objective Eosinophilic esophagitis (EoE) is a chronic esophageal inflammatory disorder characterized by eosinophil-rich mucosal inflammation and tissue remodeling. Transcriptional profiling of esophageal biopsies has previously revealed upregulation of type I and II interferon (IFN) response genes. We aim to unravel interactions between immune and epithelial cells and examine functional significance in esophageal epithelial cells. Design We investigated epithelial gene expression from EoE patients using single-cell RNA sequencing and a confirmatory bulk RNA-sequencing experiment of isolated epithelial cells. The functional impact of interferon signaling on epithelial cells was investigated using in vitro organoid models. Results We observe upregulation of interferon response signature genes (ISGs) in the esophageal epithelium during active EoE compared to other cell types, single-cell data, and pathway analyses, identified upregulation in ISGs in epithelial cells isolated from EoE patients. Using an esophageal organoid and air-liquid interface models, we demonstrate that IFN-γ stimulation triggered disruption of esophageal epithelial differentiation, barrier integrity, and induced apoptosis via caspase upregulation. We show that an increase in cleaved caspase-3 is seen in EoE tissue and identify interferon gamma (IFNG) expression predominantly in a cluster of majority-CD8+ T cells with high expression of CD69 and FOS. Conclusion These findings offer insight into the interplay between immune and epithelial cells in EoE. Our data illustrate the relevance of several IFN-γ-mediated mechanisms on epithelial function in the esophagus, which have the potential to impact epithelial function during inflammatory conditions.
Collapse
|
19
|
Muir AB. Tolerance to Dietary Antigens in the Upper Intestine Through Chopping of Gasdermin D. Gastroenterology 2023; 165:1575. [PMID: 37625494 DOI: 10.1053/j.gastro.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
|
20
|
Chehade M, Wright BL, Atkins D, Aceves SS, Ackerman SJ, Assa'ad AH, Bauer M, Collins MH, Commins SP, Davis CM, Dellon ES, Doerfler B, Gleich GJ, Gupta SK, Hill DA, Jensen ET, Katzka D, Kliewer K, Kodroff E, Kottyan LC, Kyle S, Muir AB, Pesek RD, Peterson K, Shreffler WG, Spergel JM, Strobel MJ, Wechsler J, Zimmermann N, Furuta GT, Rothenberg ME. Breakthroughs in understanding and treating eosinophilic gastrointestinal diseases presented at the CEGIR/TIGERs Symposium at the 2022 American Academy of Allergy, Asthma & Immunology Meeting. J Allergy Clin Immunol 2023; 152:1382-1393. [PMID: 37660987 DOI: 10.1016/j.jaci.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
The Consortium of Eosinophilic Gastrointestinal Diseases and The International Gastrointestinal Eosinophil Researchers organized a day-long symposium at the 2022 Annual Meeting of the American Academy of Allergy, Asthma & Immunology. The symposium featured a review of recent discoveries in the basic biology and pathogenesis of eosinophilic gastrointestinal diseases (EGIDs) in addition to advances in our understanding of the clinical features of EGIDs. Diagnostic and management approaches were reviewed and debated, and clinical trials of emerging therapies were highlighted. Herein, we briefly summarize the breakthrough discoveries in EGIDs.
Collapse
|
21
|
Hill DA, Muir AB. The immune-epithelial interface in eosinophilic esophagitis: a conversation. FRONTIERS IN ALLERGY 2023; 4:1270581. [PMID: 37854541 PMCID: PMC10579787 DOI: 10.3389/falgy.2023.1270581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
|
22
|
Klochkova A, Karami AL, Fuller AD, Parham LR, Panchani SR, Natarajan S, Jackson JL, Mu A, Tan Y, Cai KQ, Klein-Szanto AJ, Muir AB, Tétreault MP, Hamilton KE, Whelan KA. Autophagy contributes to homeostasis in esophageal epithelium where high autophagic vesicle content marks basal cells with limited proliferation and enhanced self-renewal potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558614. [PMID: 37781581 PMCID: PMC10541137 DOI: 10.1101/2023.09.20.558614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background & Aims Autophagy has been demonstrated to play roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelium under homeostatic conditions. Methods We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histological and biochemical analyses. We FACS sorted esophageal basal cells based upon fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID, then subjected these cells to transmission electron microscopy, image flow cytometry, 3D organoid assays, RNA-Sequencing (RNA-Seq), and cell cycle analysis. 3D organoids were subjected to passaging, single cell (sc) RNA-Seq, cell cycle analysis, and immunostaining. Results Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells. Esophageal basal cells with high AV level (Cyto-ID High ) displayed limited organoid formation capability upon initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-ID Low ). RNA-Seq suggested increased autophagy in Cyto- ID High esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. scRNA-Seq of 3D organoids generated by Cyto-ID Low and Cyto- ID High cells identified expansion of 3 cell populations, enrichment of G2/M-associated genes, and aberrant localization of cell cycle-associated genes beyond basal cell populations in the Cyto- ID High group. Ki67 expression was also increased in organoids generated by Cyto-ID High cells, including in cells beyond the basal cell layer. Squamous epithelial-specific autophagy inhibition induced significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Conclusions High AV level identifies esophageal epithelium with limited proliferation and enhanced self-renewal capacity that contributes to maintenance of the esophageal proliferation- differentiation gradient in vivo .
Collapse
|
23
|
Kabir MF, Jackson JL, Fuller AD, Gathuka L, Karami AL, Conde DG, Klochkova A, Mu A, Cai KQ, Klein-Szanto AJ, Muir AB, Whelan KA. Diclofenac exhibits cytotoxic activity associated with metabolic alterations and p53 induction in ESCC cell lines and decreases ESCC tumor burden in vivo. Carcinogenesis 2023; 44:182-195. [PMID: 37014121 PMCID: PMC10215983 DOI: 10.1093/carcin/bgad019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive forms of human malignancy, often displaying limited therapeutic response. Here, we examine the non-steroidal anti-inflammatory drug diclofenac (DCF) as a novel therapeutic agent in ESCC using complementary in vitro and in vivo models. DCF selectively reduced viability of human ESCC cell lines TE11, KYSE150, and KYSE410 as compared with normal primary or immortalized esophageal keratinocytes. Apoptosis and altered cell cycle profiles were documented in DCF-treated TE11 and KYSE 150. In DCF-treated TE11, RNA-Sequencing identified differentially expressed genes and Ingenuity Pathway Analysis predicted alterations in pathways associated with cellular metabolism and p53 signaling. Downregulation of proteins associated with glycolysis was documented in DCF-treated TE11 and KYSE150. In response to DCF, TE11 cells further displayed reduced levels of ATP, pyruvate, and lactate. Evidence of mitochondrial depolarization and superoxide production was induced by DCF in TE11 and KYSE150. In DCF-treated TE11, the superoxide scavenger MitoTempo improved viability, supporting a role for mitochondrial reactive oxygen species in DCF-mediated toxicity. DCF treatment resulted in increased expression of p53 in TE11 and KYSE150. p53 was further identified as a mediator of DCF-mediated toxicity in TE11 as genetic depletion of p53 partially limited apoptosis in response to DCF. Consistent with the anticancer activity of DCF in vitro, the drug significantly decreased tumor burdene in syngeneic ESCC xenograft tumors and 4-nitroquinoline 1-oxide-mediated ESCC lesions in vivo. These preclinical findings identify DCF as an experimental therapeutic that should be explored further in ESCC.
Collapse
|
24
|
Karakasheva TA, Zhou Y, Xie HM, Soto GE, Johnson TD, Stoltz MA, Roach DM, Nema N, Umeweni CN, Naughton K, Dolinsky L, Pippin JA, Wells AD, Grant SF, Ghanem L, Terry N, Muir AB, Hamilton KE. Patient-derived Colonoids From Disease-spared Tissue Retain Inflammatory Bowel Disease-specific Transcriptomic Signatures. GASTRO HEP ADVANCES 2023; 2:830-842. [PMID: 37736163 PMCID: PMC10512767 DOI: 10.1016/j.gastha.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/12/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND AND AIMS A key histopathological feature of inflammatory bowel disease is damage to the mucosa, including breakdown of the epithelial barrier. Human enteroids and colonoids are a critical bench-to-bedside tool for studying the epithelium in inflammatory bowel disease. The goal of the current study was to define transcriptional differences in healthy versus diseased subjects that are sustained in enteroids and colonoids, including from disease-spared tissue. METHODS Biopsies and matching enteroid or colonoid cultures from pediatric patients with ileal Crohn disease (N = 6) and control subjects (N = 17) were subjected to RNA sequencing followed by bioinformatic and machine learning analyses. Late passage enteroids were exposed to cytokines to assess durable transcriptional differences. RESULTS We observed substantial overlap of pathways upregulated in Crohn disease in enteroids and ileal biopsies, as well as colonoids and rectal biopsies. KEGG pathways for cytokine-cytokine receptor interaction, chemokine signaling, protein export, and Toll-like receptor signaling were upregulated in both ileal and rectal biopsies, as well as enteroids and colonoids. In vitro cytokine exposure reactivated genes previously increased in biopsies. Machine learning predicted biopsy location (100% accuracy) and donor disease status (83% accuracy). A random forest classifier generated using ileal enteroids identified rectal colonoids from ileal Crohn disease subjects with 80% accuracy. CONCLUSION We confirmed transcriptional profiles of Crohn disease biopsies are expressed in enteroids and colonoids. Furthermore, transcriptomic data from disease-spared rectal tissue can identify patients with ileal Crohn disease. Our data support the use of patient enteroids and colonoids as critical translational tools for the study of inflammatory bowel disease.
Collapse
|
25
|
Sasaki M, Hara T, Wang JX, Zhou Y, Kennedy KV, Umeweni NN, Alston MA, Spergel ZC, Nakagawa R, Mcmillan EA, Whelan KA, Karakasheva TA, Hamilton KE, Ruffner MA, Muir AB. Lysyl oxidase regulates epithelial differentiation and barrier integrity in eosinophilic esophagitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534387. [PMID: 37034590 PMCID: PMC10081173 DOI: 10.1101/2023.03.27.534387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background & Aims Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is upregulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. Methods We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)-13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse transcription-polymerase chain reaction, western blot, histology, and functional analyses of barrier integrity. Results Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL-13 in differentiated cells. LOX-overexpressing organoids demonstrated suppressed basal and upregulated differentiation markers. Additionally, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL-13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified enriched bone morphogenetic protein (BMP) signaling pathway compared to wild type organoids. Particularly, LOX overexpression increased BMP2 and decreased BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. Conclusions Our data support a model whereby LOX exhibits non-canonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of BMP pathway in esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.
Collapse
|