1
|
Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL, Moulder G, Barstead R, Maricq AV, Bargmann CI. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 2002; 35:307-18. [PMID: 12160748 DOI: 10.1016/s0896-6273(02)00757-2] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C. elegans OSM-9 is a TRPV channel protein involved in sensory transduction and adaptation. Here, we show that distinct sensory functions arise from different combinations of OSM-9 and related OCR TRPV proteins. Both OSM-9 and OCR-2 are essential for several forms of sensory transduction, including olfaction, osmosensation, mechanosensation, and chemosensation. In neurons that express both OSM-9 and OCR-2, tagged OCR-2 and OSM-9 proteins reside in sensory cilia and promote each other's localization to cilia. In neurons that express only OSM-9, tagged OSM-9 protein resides in the cell body and acts in sensory adaptation rather than sensory transduction. Thus, alternative combinations of TRPV proteins may direct different functions in distinct subcellular locations. Animals expressing the mammalian TRPV1 (VR1) channel in ASH nociceptor neurons avoid the TRPV1 ligand capsaicin, allowing selective, drug-inducible activation of a specific behavior.
Collapse
|
|
23 |
337 |
2
|
Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, et alAsano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, Su HC, Jouanguy E, Amara A, Soumelis V, Cobat A, Zhang Q, Casanova JL. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol 2021; 6:eabl4348. [PMID: 34413140 PMCID: PMC8532080 DOI: 10.1126/sciimmunol.abl4348] [Show More Authors] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023]
Abstract
Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.
Collapse
|
Observational Study |
4 |
287 |
3
|
Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby AH, Kim V, Kosaka Y, Lee E, Malone SA, Mei JJ, Richards SJ, Rivera V, Miller G, Trimmer JK, Shrader WD. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One 2018; 13:e0201369. [PMID: 30110365 PMCID: PMC6093661 DOI: 10.1371/journal.pone.0201369] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
Ferroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model. We found that a specific endogenous metabolite of vitamin E, alpha-tocopherol hydroquinone, was a dramatically more potent inhibitor of ferroptosis than its parent compound, and inhibits 15-lipoxygenase via reduction of the enzyme's non-heme iron from its active Fe3+ state to an inactive Fe2+ state. Furthermore, a non-metabolizable isosteric analog of vitamin E which retains antioxidant activity neither inhibited 15-lipoxygenase nor prevented ferroptosis. These results call into question the prevailing model that vitamin E acts predominantly as a non-specific lipophilic antioxidant. We propose that, similar to the other lipophilic vitamins A, D and K, vitamin E is instead a pro-vitamin, with its quinone/hydroquinone metabolites responsible for its anti-ferroptotic cytoprotective activity.
Collapse
|
research-article |
7 |
132 |
4
|
Kahn-Kirby AH, Dantzker JLM, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 2005; 119:889-900. [PMID: 15607983 DOI: 10.1016/j.cell.2004.11.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/16/2004] [Accepted: 10/13/2004] [Indexed: 12/30/2022]
Abstract
A variety of lipid and lipid-derived molecules can modulate TRP cation channel activity, but the identity of the lipids that affect TRP channel function in vivo is unknown. Here, we use genetic and behavioral analysis in the nematode C. elegans to implicate a subset of 20-carbon polyunsaturated fatty acids (PUFAs) in TRPV channel-dependent olfactory and nociceptive behaviors. Olfactory and nociceptive TRPV signaling are sustained by overlapping but nonidentical sets of 20-carbon PUFAs including eicosapentaenoic acid (EPA) and arachidonic acid (AA). PUFAs act upstream of TRPV family channels in sensory transduction. Short-term dietary supplementation with PUFAs can rescue PUFA biosynthetic mutants, and exogenous PUFAs elicit rapid TRPV-dependent calcium transients in sensory neurons, bypassing the normal requirement for PUFA synthesis. These results suggest that a subset of PUFAs with omega-3 and omega-6 acyl groups act as endogenous modulators of TRPV signal transduction.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
129 |
5
|
Abstract
The TRP (transient receptor potential) superfamily of cation channels is present in all eukaryotes, from yeast to mammals. Many TRP channels have been studied in the nematode Caenorhabditis elegans, revealing novel biological functions, regulatory modes, and mechanisms of localization. C. elegans TRPV channels function in olfaction, mechanosensation, osmosensation, and activity-dependent gene regulation. Their activity is regulated by G protein signaling and polyunsaturated fatty acids. C. elegans TRPPs related to human polycystic kidney disease genes are expressed in male-specific neurons. The KLP-6 kinesin directs TRPP channels to cilia, where they may interact with F0/F1 ATPases. A sperm-specific TRPC channel, TRP-3, is required for fertilization. Upon sperm activation, TRP-3 translocates from an intracellular compartment to the plasma membrane to allow store-operated Ca2+ entry. The TRPM channels GON-2 and GTL-2 regulate Mg2+ homeostasis and Mg2+ uptake by intestinal cells; GON-2 is also required for gonad development. The TRPML CUP-5 promotes normal lysosome biogenesis and prevents apoptosis. Dynamic, precise expression of TRP proteins generates a remarkable range of cellular functions.
Collapse
|
Review |
19 |
88 |
6
|
Husson SJ, Janssen T, Baggerman G, Bogert B, Kahn-Kirby AH, Ashrafi K, Schoofs L. Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 2007; 102:246-60. [PMID: 17564681 DOI: 10.1111/j.1471-4159.2007.04474.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biologically active peptides are synthesized from inactive pre-proproteins or peptide precursors by the sequential actions of processing enzymes. Proprotein convertases cleave the precursor at pairs of basic amino acids, which are then removed from the carboxyl terminus of the generated fragments by a specific carboxypeptidase. Caenorhabditis elegans strains lacking proprotein convertase EGL-3 display a severely impaired neuropeptide profile (Husson et al. 2006, J. Neurochem.98, 1999-2012). In the present study, we examined the role of the C. elegans carboxypeptidase E orthologue EGL-21 in the processing of peptide precursors. More than 100 carboxy-terminally extended neuropeptides were detected in egl-21 mutant strains. These findings suggest that EGL-21 is a major carboxypeptidase involved in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors. The impaired peptide profile of egl-3 and egl-21 mutants is reflected in some similar phenotypes. They both share a severe widening of the intestinal lumen, locomotion defects, and retention of embryos. In addition, egl-3 animals have decreased intestinal fat content. Taken together, these results suggest that EGL-3 and EGL-21 are key enzymes for the proper processing of neuropeptides that control egg-laying, locomotion, fat storage and the nutritional status.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
75 |
7
|
Kahn-Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, Hinman A, Malone SA, Bruegger JJ, Wang L, Kim V, Shrader WD, Hoff KG, Latham JC, Ashley EA, Wheeler MT, Bertini E, Carrozzo R, Martinelli D, Dionisi-Vici C, Chapman KA, Enns GM, Gahl W, Wolfe L, Saneto RP, Johnson SC, Trimmer JK, Klein MB, Holst CR. Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One 2019; 14:e0214250. [PMID: 30921410 PMCID: PMC6438538 DOI: 10.1371/journal.pone.0214250] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
63 |
8
|
Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Abou Tayoun A, Aiuti A, Alavi Darazam I, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Metin Akcan O, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, et alMatuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Abou Tayoun A, Aiuti A, Alavi Darazam I, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Metin Akcan O, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, Boland A, Deleuze JF, Nussbaum R, Kahn-Kirby A, Mentre F, Tubiana S, Gorochov G, Tubach F, Hausfater P, Meyts I, Zhang SY, Puel A, Notarangelo LD, Boisson-Dupuis S, Su HC, Boisson B, Jouanguy E, Casanova JL, Zhang Q, Abel L, Cobat A. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med 2023; 15:22. [PMID: 37020259 PMCID: PMC10074346 DOI: 10.1186/s13073-023-01173-8] [Show More Authors] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. METHODS We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. RESULTS No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P = 1.1 × 10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3-8.2], P = 2.1 × 10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1-2635.4], P = 3.4 × 10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3-8.4], P = 7.7 × 10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10-5). CONCLUSIONS Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
51 |
9
|
Smith ED, Savage SK, Andrew EH, Martin GM, Kahn-Kirby AH, LoTempio J, Délot E, Cohen AJ, Pitsava G, Berger S, Fusaro VA, Vilain E. "Development and Implementation of Novel Chatbot-based Genomic Research Consent". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525221. [PMID: 36747692 PMCID: PMC9900780 DOI: 10.1101/2023.01.23.525221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objective To conduct a retrospective analysis comparing traditional human-based consenting to an automated chat-based consenting process. Materials and Methods We developed a new chat-based consent using our IRB-approved consent forms. We leveraged a previously developed platform (GiaⓇ, or "Genetic Information Assistant") to deliver the chat content to candidate participants. The content included information about the study, educational information, and a quiz to assess understanding. We analyzed 144 families referred to our study during a 6-month time period. A total of 37 families completed consent using the traditional process, while 35 families completed consent using Gia. Results Engagement rates were similar between both consenting methods. The median length of the consent conversation was shorter for Gia users compared to traditional (44 vs. 76 minutes). Additionally, the total time from referral to consent completion was faster with Gia (5 vs. 16 days). Within Gia, understanding was assessed with a 10-question quiz that most participants (96%) passed. Feedback about the chat consent indicated that 86% of participants had a positive experience. Discussion Using Gia resulted in time savings for both the participant and study staff. The chatbot enables studies to reach more potential candidates. We identified five key features related to human-centered design for developing a consent chat. Conclusion This analysis suggests that it is feasible to use an automated chatbot to scale obtaining informed consent for a genomics research study. We further identify a number of advantages when using a chatbot.
Collapse
|
Preprint |
2 |
4 |
10
|
Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Tayoun AA, Aiuti A, Darazam IA, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, Zein LE, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Akcan OM, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, et alMatuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Tayoun AA, Aiuti A, Darazam IA, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, Zein LE, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Akcan OM, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, Boland A, Deleuze JF, Nussbaum R, Kahn-Kirby A, Mentre F, Tubiana S, Gorochov G, Tubach F, Hausfater P, Meyts I, Zhang SY, Puel A, Notarangelo LD, Boisson-Dupuis S, Su HC, Boisson B, Jouanguy E, Casanova JL, Zhang Q, Abel L, Cobat A. Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med 2024; 16:6. [PMID: 38184654 PMCID: PMC10771638 DOI: 10.1186/s13073-023-01278-0] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
|
Published Erratum |
1 |
|
11
|
Matuozzo D, Talouarn E, Marchal A, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Zhang P, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Tayoun AA, Aiuti A, Darazam IA, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Akcan OM, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, Pérez de Diego R, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, Boland A, Deleuze JF, Nussbaum R, et alMatuozzo D, Talouarn E, Marchal A, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Zhang P, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Tayoun AA, Aiuti A, Darazam IA, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Akcan OM, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, Pérez de Diego R, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, Boland A, Deleuze JF, Nussbaum R, Kahn-Kirby A, Mentre F, Tubiana S, Gorochov G, Tubach F, Hausfater P, Meyts I, Zhang SY, Puel A, Notarangelo LD, Boisson-Dupuis S, Su HC, Boisson B, Jouanguy E, Casanova JL, Zhang Q, Abel L, Cobat A. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.22.22281221. [PMID: 36324795 PMCID: PMC9628204 DOI: 10.1101/2022.10.22.22281221] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background We previously reported inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity in 1-5% of unvaccinated patients with life-threatening COVID-19, and auto-antibodies against type I IFN in another 15-20% of cases. Methods We report here a genome-wide rare variant burden association analysis in 3,269 unvaccinated patients with life-threatening COVID-19 (1,301 previously reported and 1,968 new patients), and 1,373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. A quarter of the patients tested had antibodies against type I IFN (234 of 928) and were excluded from the analysis. Results No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7 , with an OR of 27.68 (95%CI:1.5-528.7, P= 1.1×10 -4 ), in analyses restricted to biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70 [95%CI:1.3-8.2], P= 2.1×10 -4 ). Adding the recently reported TYK2 COVID-19 locus strengthened this enrichment, particularly under a recessive model (OR=19.65 [95%CI:2.1-2635.4]; P= 3.4×10 -3 ). When these 14 loci and TLR7 were considered, all individuals hemizygous ( n =20) or homozygous ( n =5) for pLOF or bLOF variants were patients (OR=39.19 [95%CI:5.2-5037.0], P =4.7×10 -7 ), who also showed an enrichment in heterozygous variants (OR=2.36 [95%CI:1.0-5.9], P =0.02). Finally, the patients with pLOF or bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P= 1.68×10 -5 ). Conclusions Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
Collapse
|
Preprint |
3 |
|
12
|
Berger SI, Pitsava G, Cohen AJ, Délot EC, LoTempio J, Andrew EH, Martin GM, Marmolejos S, Albert J, Meltzer B, Fraser J, Regier DS, Kahn-Kirby AH, Smith E, Knoblach S, Ko A, Fusaro VA, Vilain E. Increased diagnostic yield from negative whole genome-slice panels using automated reanalysis. Clin Genet 2023; 104:377-383. [PMID: 37194472 PMCID: PMC10524710 DOI: 10.1111/cge.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
We evaluated the diagnostic yield using genome-slice panel reanalysis in the clinical setting using an automated phenotype/gene ranking system. We analyzed whole genome sequencing (WGS) data produced from clinically ordered panels built as bioinformatic slices for 16 clinically diverse, undiagnosed cases referred to the Pediatric Mendelian Genomics Research Center, an NHGRI-funded GREGoR Consortium site. Genome-wide reanalysis was performed using Moon™, a machine-learning-based tool for variant prioritization. In five out of 16 cases, we discovered a potentially clinically significant variant. In four of these cases, the variant was found in a gene not included in the original panel due to phenotypic expansion of a disorder or incomplete initial phenotyping of the patient. In the fifth case, the gene containing the variant was included in the original panel, but being a complex structural rearrangement with intronic breakpoints outside the clinically analyzed regions, it was not initially identified. Automated genome-wide reanalysis of clinical WGS data generated during targeted panels testing yielded a 25% increase in diagnostic findings and a possibly clinically relevant finding in one additional case, underscoring the added value of analyses versus those routinely performed in the clinical setting.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
13
|
Savage SK, LoTempio J, Smith ED, Andrew EH, Mas G, Kahn-Kirby AH, Délot E, Cohen AJ, Pitsava G, Nussbaum R, Fusaro VA, Berger S, Vilain E. Using a chat-based informed consent tool in large-scale genomic research. J Am Med Inform Assoc 2024; 31:472-478. [PMID: 37665746 PMCID: PMC10797258 DOI: 10.1093/jamia/ocad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVE We implemented a chatbot consent tool to shift the time burden from study staff in support of a national genomics research study. MATERIALS AND METHODS We created an Institutional Review Board-approved script for automated chat-based consent. We compared data from prospective participants who used the tool or had traditional consent conversations with study staff. RESULTS Chat-based consent, completed on a user's schedule, was shorter than the traditional conversation. This did not lead to a significant change in affirmative consents. Within affirmative consents and declines, more prospective participants completed the chat-based process. A quiz to assess chat-based consent user understanding had a high pass rate with no reported negative experiences. CONCLUSION Our report shows that a structured script can convey important information while realizing the benefits of automation and burden shifting. Analysis suggests that it may be advantageous to use chatbots to scale this rate-limiting step in large research projects.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|