1
|
Guarnieri T, Nolan S, Gottlieb SO, Dudek A, Lowry DR. Intravenous amiodarone for the prevention of atrial fibrillation after open heart surgery: the Amiodarone Reduction in Coronary Heart (ARCH) trial. J Am Coll Cardiol 1999; 34:343-7. [PMID: 10440143 DOI: 10.1016/s0735-1097(99)00212-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study was designed to test whether intravenous (i.v.) amiodarone would prevent atrial fibrillation and decrease hospital stay after open heart surgery. BACKGROUND Atrial fibrillation commonly occurs after open heart procedures and is thought to be a significant determinant for prolongation of hospitalization. Oral amiodarone given preoperatively appears to reduce the incidence of atrial fibrillation. This study was designed to test whether the more rapid-acting i.v. formulation of amiodarone given postoperatively would reduce the incidence of atrial fibrillation. METHODS Three hundred patients undergoing standard open heart surgery were randomized in a double-blind fashion to i.v. amiodarone (1 g/day for 2 days) versus placebo immediately after open heart surgery. The primary end points of the trial were incidence of atrial fibrillation and length of hospital stay. Baseline clinical variables and mortality and morbidity data were collected. RESULTS Atrial fibrillation occurred in 67/142 (47%) patients on placebo versus 56/158 (35%) on amiodarone (p = 0.01). Length of hospital stay for the placebo group was 8.2 +/- 6.2 days, and 7.6 +/- 5.9 days for the amiodarone group (p = 0.34). No differences were noted in baseline variables, morbidity or mortality. CONCLUSIONS Low-dose i.v. amiodarone was safe and effective in reducing the incidence of atrial fibrillation after heart surgery, but did not significantly alter length of hospital stay.
Collapse
|
Clinical Trial |
26 |
178 |
2
|
Dudek AM, Zabaleta N, Zinn E, Pillay S, Zengel J, Porter C, Franceschini JS, Estelien R, Carette JE, Zhou GL, Vandenberghe LH. GPR108 Is a Highly Conserved AAV Entry Factor. Mol Ther 2019; 28:367-381. [PMID: 31784416 DOI: 10.1016/j.ymthe.2019.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Adeno-associated virus (AAV) is a highly promising gene transfer vector, yet major cellular requirements for AAV entry are poorly understood. Using a genome-wide CRISPR screen for entry of evolutionarily divergent serotype AAVrh32.33, we identified GPR108, a member of the G protein-coupled receptor superfamily, as an AAV entry factor. Of greater than 20 divergent AAVs across all AAV clades tested in human cell lines, only AAV5 transduction was unaffected in the GPR108 knockout (KO). GPR108 dependency was further shown in murine and primary cells in vitro. These findings are further validated in vivo, as the Gpr108 KO mouse demonstrates 10- to 100-fold reduced expression for AAV8 and rh32.33 but not AAV5. Mechanistically, both GPR108 N- and C-terminal domains are required for transduction, and on the capsid, a VP1 unique domain that is not conserved on AAV5 can be transferred to confer GPR108 independence onto AAV2 chimeras. In vitro binding and fractionation studies indicate reduced nuclear import and cytosolic accumulation in the absence of GPR108. We thus have identified the second of two AAV entry factors that is conserved between mice and humans relevant both in vitro and in vivo, further providing a mechanistic understanding to the tropism of AAV gene therapy vectors.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
89 |
3
|
Elgizouli M, Lowe DM, Speckmann C, Schubert D, Hülsdünker J, Eskandarian Z, Dudek A, Schmitt-Graeff A, Wanders J, Jørgensen SF, Fevang B, Salzer U, Nieters A, Burns S, Grimbacher B. Activating PI3Kδ mutations in a cohort of 669 patients with primary immunodeficiency. Clin Exp Immunol 2015; 183:221-9. [PMID: 26437962 DOI: 10.1111/cei.12706] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
The gene PIK3CD codes for the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), and is expressed solely in leucocytes. Activating mutations of PIK3CD have been described to cause an autosomal dominant immunodeficiency that shares clinical features with common variable immunodeficiency (CVID). We screened a cohort of 669 molecularly undefined primary immunodeficiency patients for five reported mutations (four gain-of-function mutations in PIK3CD and a loss of function mutation in PIK3R1) using pyrosequencing. PIK3CD mutations were identified in three siblings diagnosed with CVID and two sporadic cases with a combined immunodeficiency (CID). The PIK3R1 mutation was not identified in the cohort. Our patients with activated PI3Kδ syndrome (APDS) showed a range of clinical and immunological findings, even within a single family, but shared a reduction in naive T cells. PIK3CD gain of function mutations are more likely to occur in patients with defective B and T cell responses and should be screened for in CVID and CID, but are less likely in patients with a pure B cell/hypogammaglobulinaemia phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
73 |
4
|
Garg AD, Dudek AM, Agostinis P. Calreticulin surface exposure is abrogated in cells lacking, chaperone-mediated autophagy-essential gene, LAMP2A. Cell Death Dis 2013; 4:e826. [PMID: 24091669 PMCID: PMC3824681 DOI: 10.1038/cddis.2013.372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Letter |
12 |
46 |
5
|
Jang S, Cook NJ, Pye VE, Bedwell GJ, Dudek AM, Singh PK, Cherepanov P, Engelman AN. Differential role for phosphorylation in alternative polyadenylation function versus nuclear import of SR-like protein CPSF6. Nucleic Acids Res 2019; 47:4663-4683. [PMID: 30916345 PMCID: PMC6511849 DOI: 10.1093/nar/gkz206] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cleavage factor I mammalian (CFIm) complex, composed of cleavage and polyadenylation specificity factor 5 (CPSF5) and serine/arginine-like protein CPSF6, regulates alternative polyadenylation (APA). Loss of CFIm function results in proximal polyadenylation site usage, shortening mRNA 3' untranslated regions (UTRs). Although CPSF6 plays additional roles in human disease, its nuclear translocation mechanism remains unresolved. Two β-karyopherins, transportin (TNPO) 1 and TNPO3, can bind CPSF6 in vitro, and we demonstrate here that while the TNPO1 binding site is dispensable for CPSF6 nuclear import, the arginine/serine (RS)-like domain (RSLD) that mediates TNPO3 binding is critical. The crystal structure of the RSLD-TNPO3 complex revealed potential CPSF6 interaction residues, which were confirmed to mediate TNPO3 binding and CPSF6 nuclear import. Both binding and nuclear import were independent of RSLD phosphorylation, though a hyperphosphorylated mimetic mutant failed to bind TNPO3 and mislocalized to the cell cytoplasm. Although hypophosphorylated CPSF6 largely supported normal polyadenylation site usage, a significant number of mRNAs harbored unnaturally extended 3' UTRs, similar to what is observed when other APA regulators, such as CFIIm component proteins, are depleted. Our results clarify the mechanism of CPSF6 nuclear import and highlight differential roles for RSLD phosphorylation in nuclear translocation versus regulation of APA.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
42 |
6
|
Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, Salahudeen AA, Dudek AM, Teran CA, Davis TH, Lee CM, Bao G, Randell SH, Artandi SE, Wine JJ, Kuo CJ, Desai TJ, Nayak JV, Sellers ZM, Porteus MH. Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus. Mol Ther 2022; 30:223-237. [PMID: 33794364 PMCID: PMC8753290 DOI: 10.1016/j.ymthe.2021.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
33 |
7
|
Selvaraj S, Feist WN, Viel S, Vaidyanathan S, Dudek AM, Gastou M, Rockwood SJ, Ekman FK, Oseghale AR, Xu L, Pavel-Dinu M, Luna SE, Cromer MK, Sayana R, Gomez-Ospina N, Porteus MH. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat Biotechnol 2024; 42:731-744. [PMID: 37537500 DOI: 10.1038/s41587-023-01888-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.
Collapse
|
|
1 |
31 |
8
|
Østergaard M, Jacobsson LTH, Schaufelberger C, Hansen MS, Bijlsma JWJ, Dudek A, Rell-Bakalarska M, Staelens F, Haake R, Sundman-Engberg B, Bliddal H. MRI assessment of early response to certolizumab pegol in rheumatoid arthritis: a randomised, double-blind, placebo-controlled phase IIIb study applying MRI at weeks 0, 1, 2, 4, 8 and 16. Ann Rheum Dis 2015; 74:1156-63. [PMID: 25512675 PMCID: PMC4431335 DOI: 10.1136/annrheumdis-2014-206359] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To identify the first time point of an MRI-verified response to certolizumab pegol (CZP) therapy in patients with rheumatoid arthritis (RA). METHODS Forty-one patients with active RA despite disease-modifying antirheumatic drug therapy were randomised 2:1 to CZP (CZP loading dose 400 mg every 2 weeks at weeks 0-4; CZP 200 mg every 2 weeks at weeks 6-16) or placebo→CZP (placebo at weeks 0-2; CZP loading dose at weeks 2-6; CZP 200 mg every 2 weeks at weeks 8-16). Contrast-enhanced MRI of one hand and wrist was acquired at baseline (week 0) and weeks 1, 2, 4, 8 and 16. All six time points were read simultaneously, blinded to time, using the Outcome Measures in Rheumatology Clinical Trials RA MRI scoring system. Primary outcome was change in synovitis score in the CZP group; secondary outcomes were change in bone oedema (osteitis) and erosion scores and clinical outcome measures. RESULTS Forty patients were treated (27 CZP, 13 placebo→CZP), and 36 (24 CZP, 12 placebo→CZP) completed week 16. In the CZP group, there were significant reductions from baseline synovitis (Hodges-Lehmann estimate of median change, -1.5, p=0.049) and osteitis scores (-2.5, p=0.031) at week 16. Numerical, but statistically insignificant, MRI inflammation reductions were observed at weeks 1-2 in the CZP group. No significant change was seen in bone erosion score. Improvements across all clinical outcomes were seen in the CZP group. CONCLUSIONS CZP reduced MRI synovitis and osteitis scores at week 16, despite small sample size and the technical challenge of reading six time points simultaneously. This study provides essential information on optimal MRI timing for subsequent trials. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT01235598.
Collapse
|
Clinical Trial, Phase III |
10 |
24 |
9
|
Dudek AM, Porteus MH. AAV6 Is Superior to Clade F AAVs in Stimulating Homologous Recombination-Based Genome Editing in Human HSPCs. Mol Ther 2019; 27:1701-1705. [PMID: 31537456 DOI: 10.1016/j.ymthe.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
Comment |
6 |
9 |
10
|
|
|
48 |
8 |
11
|
Baik R, Cromer MK, Glenn SE, Vakulskas CA, Chmielewski KO, Dudek AM, Feist WN, Klermund J, Shipp S, Cathomen T, Dever DP, Porteus MH. Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells. Nat Commun 2024; 15:111. [PMID: 38169468 PMCID: PMC10762240 DOI: 10.1038/s41467-023-43413-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Genome editing by homology directed repair (HDR) is leveraged to precisely modify the genome of therapeutically relevant hematopoietic stem and progenitor cells (HSPCs). Here, we present a new approach to increasing the frequency of HDR in human HSPCs by the delivery of an inhibitor of 53BP1 (named "i53") as a recombinant peptide. We show that the use of i53 peptide effectively increases the frequency of HDR-mediated genome editing at a variety of therapeutically relevant loci in HSPCs as well as other primary human cell types. We show that incorporating the use of i53 recombinant protein allows high frequencies of HDR while lowering the amounts of AAV6 needed by 8-fold. HDR edited HSPCs were capable of long-term and bi-lineage hematopoietic reconstitution in NSG mice, suggesting that i53 recombinant protein might be safely integrated into the standard CRISPR/AAV6-mediated genome editing protocol to gain greater numbers of edited cells for transplantation of clinically meaningful cell populations.
Collapse
|
Research Support, N.I.H., Intramural |
1 |
7 |
12
|
Dudek A, Chrószcz A, Janeczek M, Sienkiewicz W, Kaleczyc J. Sources of sensory innervation of the hip joint capsule in the rabbit - a retrograde tracing study. Anat Histol Embryol 2013; 42:403-9. [PMID: 23406258 DOI: 10.1111/ahe.12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
The aim of the study was to investigate the sensory innervation of the hip joint capsule in the rabbit. Individual animals were injected with retrograde fluorescent tracer Fast Blue (FB) into the lateral aspect of the left hip joint capsule (group LAT, n = 5) or into the medial aspect of the hip joint capsule (group MED, n = 5), respectively. FB-positive (FB+) neurons were found within ipsilateral lumbar (L) and sacral (S) dorsal root ganglia (DRG) from L7 to S2 (group LAT) and from L6 to S4 (group MED). They were round or oval in shape with a diameter of 20-90 μm. The neurons were evenly distributed throughout the ganglia. The average number of FB+ neurons was 16 ± 2.8 and 27.6 ± 3.5 in rabbits from LAT and MED, respectively. The largest average number of FB+ neurons in animals of group LAT was found within the S1 DRG (8 ± 1.7), while S2 ganglion contained the smallest number of the neurons (3.6 ± 1). In the L7 DRG, the average number of FB+ neurons was 6.2 ± 1.6. In rabbits of MED group, the largest number of FB+ neurons was found within the S1 DRG (13.4 ± 4), while the smallest one was found within the S3 ganglion (1.4 ± 0.4). In L6, L7, S2 and S4 ganglia, the number of retrogradely labelled neurons amounted to 1.6 ± 0.5, 4 ± 1.5, 4.4 ± 1.5 and 2.8 ± 1.7, respectively. The data obtained can be very useful for further investigations regarding the efficacy of denervation in the therapy of hip joint disorders in rabbits.
Collapse
|
|
12 |
5 |
13
|
Dudek AM, Feist WN, Sasu EJ, Luna SE, Ben-Efraim K, Bak RO, Cepika AM, Porteus MH. A simultaneous knockout knockin genome editing strategy in HSPCs potently inhibits CCR5- and CXCR4-tropic HIV-1 infection. Cell Stem Cell 2024; 31:499-518.e6. [PMID: 38579682 PMCID: PMC11212398 DOI: 10.1016/j.stem.2024.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/29/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.
Collapse
|
research-article |
1 |
3 |
14
|
Dudek A, Sienkiewicz W, Chrószcz A, Janeczek M, Kaleczyc J. Chemical Coding of Sensory Neurons Supplying the Hip Joint Capsule in the Sheep. Anat Histol Embryol 2016; 46:121-131. [PMID: 27353745 DOI: 10.1111/ahe.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/03/2016] [Indexed: 12/28/2022]
Abstract
Immunohistochemical properties of nerve fibres supplying the joint capsule were previously described in many mammalian species, but the localization of sensory neurons supplying this structure was studied only in laboratory animals, the rat and rabbit. However, there is no comprehensive data on the chemical coding of sensory neurons projecting to the hip joint capsule (HJC). The aim of this study was to establish immunohistochemical properties of sensory neurons supplying HJC in the sheep. The study was carried out on 10 sheep, weighing about 30-40 kg. The animals were injected with a retrograde neural tracer Fast Blue (FB) into HJC. Sections of the spinal ganglia (SpG) with FB-positive (FB+) neurons were stained using antibodies against calcitonin gene-related peptide (CGRP) substance P (SP), pituitary adenylate cyclase-activating peptide (PACAP), nitric oxide synthase (n-NOS), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), Leu-5-enkephalin (Leu-Enk), galanin (GAL) and vesicular acetylcholine transporter (VACHT). The vast majority of FB+ neurons supplying HJC was found in the ganglia from the 5th lumbar to the 2nd sacral. Immunohistochemistry revealed that most of these neurons were immunoreactive to CGRP or SP (80.7 ± 8.0% or 56.4 ± 4.8%, respectively) and many of them stained for PACAP or GAL (52.9 ± 2.9% or 50.6 ± 19.7%, respectively). Other populations of FB+ neurons were those immunoreactive to n-NOS (37.8 ± 9.7%), NPY (34.6 ± 6.7%), VIP (28.7 ± 4.8%), Leu-Enk (27.1 ± 14.6) and VACHT (16.7 ± 9.6).
Collapse
|
Journal Article |
9 |
2 |
15
|
Sienkiewicz W, Chrószcz A, Dudek A, Janeczek M, Kaleczyc J. Caudal mesenteric ganglion in the sheep - macroanatomical and immunohistochemical study. Pol J Vet Sci 2015; 18:379-89. [PMID: 26172189 DOI: 10.1515/pjvs-2015-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The caudal mesenteric ganglion (CaMG) is a prevetrebral ganglion which provides innervation to a number of organs in the abdominal and pelvic cavity. The morphology of CaMG and the chemical coding of neurones in this ganglion have been described in humans and many animal species, but data on this topic in the sheep are entirely lacking. This prompted us to undertake a study to determine the localization and morphology of sheep CaMG as well as immunohistochemical properties of its neurons. The study was carried out on 8 adult sheep, weighing from 40 to 60 kg each. The sheep were deeply anaesthetised and transcardially perfused with 4% paraformaldehyde. CaMG-s were exposed and their location was determined. Macroanatomical observations have revealed that the ovine CaMG is located at the level of last two lumbar (L5 or L6) and the first sacral (S1) vertebrae. The ganglion represents an unpaired structure composed of several, sequentially arranged aggregates of neurons. Immunohistochemical investigations revealed that nearly all (99.5%) the neurons were DβH-IR and were richly supplied by VACHT-IR nerve terminals forming "basket-like" structures around the perikarya. VACHT-IR neurones were not determined. Many neurons (55%) contained immunoreactivity to NPY, some of them (10%) stained for Met-ENK and solitary nerve cells were GAL-positive. CGRP-IR nerve fibres were numerous and a large number of them simultaneously expressed immunoreactivity to SP. Single, weakly stained neurones were SP-IR and only very few nerve cells weakly stained for VIP.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
1 |
16
|
Sienkiewicz W, Dudek A, Zacharko-Siembida A, Marszałek M. Immunohistochemical characterization of the jugular (superior vagal) ganglion in the pig. Pol J Vet Sci 2017; 20:377-385. [PMID: 28865207 DOI: 10.1515/pjvs-2017-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study was carried out on three 4-month old female pigs. All the animals were deeply anesthetized and transcardially perfused with 4% buffered paraformaldehyde (pH 7.4). Left and right superior vagal ganglia (SVG) were collected and processed for immunofluorescence labeling method. The preparations were examined under a Zeiss LSM 710 confocal microscope equipped with adequate filter block. Neurons forming SVG were round or oval in shape with a round nucleus in the center. The majority of them (52%) were medium (M) (31-50 μm in diameter) while 7% and 41% were small (S) (up to 30μm in diameter) or large (L) (above 50 μm in diameter) in size, respectively. Double-labeling immunofluorescence revealed that SVG neurons stained for CGRP (approx. 57%; among them 37%, 9% and 54% were M, S and L in size, respectively), SP (14.5%; 72.4% M, 3.4% S, 24.2% L), VACHT (26%; 63% M, 24% S and 13% L), GAL (14%; 57% M, 29% S, 14% L), NPY (12%; 53% M, 12% S, 35% L), Met-Enk (5%; 40% M, 6% S and 54% L), PACAP (15%; 52% M, 24% S and 24% L), VIP (6.3%; 67% M, 8% S and 25% L), and NOS-positive (6%; 31% M and 69% L). The most abundant populations of intraganglionic nerve fibers were those which stained for CGRP or GAL, whereas only single SP-, PACAP- or Met-ENK-positive nerve terminals were observed.
Collapse
|
|
8 |
1 |
17
|
Dudek A, Sienkiewicz W, Lepiarczyk E, Kaleczyc J. Immunohistochemical properties of motoneurons supplying the porcine trapezius muscle. Pol J Vet Sci 2024; 27:75-84. [PMID: 38511605 DOI: 10.24425/pjvs.2024.149337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The trapezius muscle (TRAP) belongs to the scapulothoracic group of muscles, which play a crucial role in the integrity and strength of the upper limb, trunk, head, and neck movements and, thus, in maintaining balance. Combined retrograde tracing (using fluorescent tracer Fast Blue, FB) and double-labelling immunohistochemistry were applied to investigate the chemical coding of motoneurons projecting to the porcine TRAP. FB-positive (FB+) motoneurons supplying the cervical (c-TRAP) and thoracic part (th-TRAP) of the right (injected with the tracer) TRAP were located within the IX-th Rexed lamina in the ipsilateral ventral horn of the grey matter of the spinal medulla. Immunohistochemistry revealed that nearly all the neurons were cholinergic in nature [choline acetyltransferase (CHAT)- or vesicular acetylcholine transporter (VACHT)-positive]. Many retrogradelly labelled neurons displayed also immunoreactivity to calcitonin gene-related peptide (CGRP; approximately 68% of FB+ neurons). The smaller number of nerve cells (5%, 3%, 2% or 1%, respectively) stained for nitric oxide synthase (n-NOS), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and substance P (SP). The retrogradely labelled neurons were closely apposed by nerve fibres expressing immunoreactivity to CHAT, VACHT, CGRP, SP, DβH, VIP, n-NOS, NPY, GAL, Leu-Enk and Met-Enk. Taking into account the clinical relevance of TRAP, the present results may be useful in designing further research aimed at the management of various dysfunctions of the muscle.
Collapse
|
|
1 |
|
18
|
Sienkiewicz W, Dudek A. Morphological examination of the proximal ganglion of the vagus nerve in the pig. Pol J Vet Sci 2009; 12:567-569. [PMID: 20169935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This is the first report dealing with the localisation and morphology of the proximal (jugular) ganglion in the pig. Six 3-months-old pigs of both sexes were used in this study. Tissues were stained with three histological methods: Klüver-Barer counterstained with Cresyl violet, Haematoxylin-eosin and Mayer's haematoxylin. The localisation and morphological features of the ganglion and ganglionic neurones were described and discussed.
Collapse
|
|
16 |
|
19
|
Feist WN, Luna SE, Ben-Efraim K, Filsinger Interrante MV, Amorin A, Johnston NM, Bruun TUJ, Utz A, Ghanim HY, Lesch BJ, McLaughlin TM, Dudek AM, Porteus MH. Multilayered HIV-1 resistance in HSPCs through CCR5 Knockout and B cell secretion of HIV-inhibiting antibodies. Nat Commun 2025; 16:3103. [PMID: 40164595 PMCID: PMC11958643 DOI: 10.1038/s41467-025-58371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Allogeneic transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5-null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs engraft and reconstitute multiple hematopoietic lineages in vivo and can be engineered to express multiple antibodies simultaneously (in pre-clinical models). Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro. This work lays the foundation for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.
Collapse
|
research-article |
1 |
|
20
|
Lepiarczyk E, Dudek A, Kaleczyc J, Majewski M, Markiewicz W, Radziszewski P, Bossowska A. The influence of resiniferatoxin on the chemical coding of caudal mesenteric ganglion neurons supplying the urinary bladder in the pig. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY : AN OFFICIAL JOURNAL OF THE POLISH PHYSIOLOGICAL SOCIETY 2016; 67:625-632. [PMID: 27779483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Resiniferatoxin (RTX) is used as experimental drug therapy for a range of neurogenic urinary bladder disorders. The present study investigated the chemical coding of caudal mesenteric ganglion (CaMG) neurons supplying the porcine urinary bladder after intravesical RTX instillation. The CaMG neurons were visualized with retrograde tracer Fast Blue (FB) and their chemical profile was disclosed with double-labelling immunohistochemistry using antibodies against tyrosine hydroxylase (TH), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), calbindin (CB), galanin (GAL) and neuronal nitric oxide synthase (nNOS). It was found that in both the control (n = 6) and RTX-treated pigs (n = 6), the vast majority (92.3 ± 2.7% and 93.1 ± 1.3%, respectively) of FB-positive (FB+) nerve cells were TH+. Intravesical instillation of RTX caused a decrease in the number of FB+ / TH + neurons immunopositive to NPY (91.0 ± 2.2% in control animals vs. 58.8 ± 5.0% in RTX-treated pigs) or VIP (1.7 ± 0.5% vs. 0%) and an increase in the number of FB+ / TH+ neurons immunoreactive to SOM (3.4 ± 1.5% vs. 20.6 ± 4.3%), CB (1.8 ±0.7% vs. 13.4 ± 2.3%), GAL (1.5 ± 0.6% vs. 7.5 ± 1.0%) or nNOS (0% vs. 10.9 ± 3.4%). The present results suggest that therapeutic effects of RTX on the mammalian urinary bladder can be partly mediated by CaMG neurons.
Collapse
|
|
9 |
|
21
|
Charlesworth CT, Homma S, Amaya AK, Dib C, Vaidyanathan S, Tan TK, Miyauchi M, Nakauchi Y, Suchy FP, Wang S, Igarashi KJ, Cromer MK, Dudek AM, Amorin A, Czechowicz A, Wilkinson AC, Nakauchi H. Highly efficient in vivo hematopoietic stem cell transduction using an optimized self-complementary adeno-associated virus. Mol Ther Methods Clin Dev 2025; 33:101438. [PMID: 40129926 PMCID: PMC11930595 DOI: 10.1016/j.omtm.2025.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
In vivo gene therapy targeting hematopoietic stem cells (HSCs) holds significant therapeutic potential for treating hematological diseases. This study uses adeno-associated virus serotype 6 (AAV6) vectors and Cre recombination to systematically optimize the parameters for effective in vivo HSC transduction. We evaluated various genetic architectures and delivery methods of AAV6, establishing an optimized protocol that achieved functional recombination in more than two-thirds of immunophenotypic HSCs. Our findings highlight that second-strand synthesis is a critical limiting factor for transgene expression in HSCs, leading to significant under-detection of HSC transduction with single-stranded AAV6 vectors. We also demonstrate that HSCs in the bone marrow (BM) are readily accessible to transduction, with neither localized injection nor mobilization of HSCs into the bloodstream, enhancing transduction efficacy. Additionally, we observed a surprising preference for HSC transduction over other BM cells, regardless of the AAV6 delivery route. Together, these findings not only underscore the potential of AAV vectors for in vivo HSC gene therapy but also lay a foundation that can inform the development of both in vivo AAV-based HSC gene therapies and potentially in vivo HSC gene therapies that employ alternative delivery modalities.
Collapse
|
research-article |
1 |
|
22
|
Feist WN, Luna SE, Ben-Efraim K, Filsinger Interrante MV, Amorin NA, Johnston NM, Bruun TUJ, Ghanim HY, Lesch BJ, Dudek AM, Porteus MH. Combining Cell-Intrinsic and -Extrinsic Resistance to HIV-1 By Engineering Hematopoietic Stem Cells for CCR5 Knockout and B Cell Secretion of Therapeutic Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583956. [PMID: 38496600 PMCID: PMC10942466 DOI: 10.1101/2024.03.08.583956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Autologous transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5 -null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs maintain engraftment capacity and multi-lineage potential in vivo and can be engineered to express multiple antibodies simultaneously. Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro . This work lays the groundwork for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.
Collapse
|
Preprint |
1 |
|
23
|
Polkowska I, Gołyńska M, Sobczyńska-Rak A, Dudek A, Szponder T, Żylińska B, Matuszewski Ł. Haptoglobin as a treatment monitoring factor in feline plasmacytic gingivostomatitis. Pol J Vet Sci 2019; 21:167-174. [PMID: 29624007 DOI: 10.24425/119035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION feline plasmacytic gingivostomatitis is an important and fairly common chronic disease. Its complex aetiology - which involves infectious agents, immunological disorders, and even genetic factors adds to the considerable difficulty of its treatment. MATERIALS AND METHODS the study was performed on 33 cats, 26 animals diagnosed with plasmacytic gingivostomatitis (study group) and 7 clinically healthy cats (control group). The study extended over four examination periods during which clinical and X-ray examinations, morphological and biochemical blood tests, as well as haptoglobin essays were performed. RESULTS the biochemical and haematological parameters were within normal limits. Blood serum haptoglobin measured on the first day of the treatment was above physiological levels, however its serum concentration decreased as the treatment progressed. CONCLUSIONS in the present study, despite the bacterial inflammatory condition of periodontal pockets, after the treatment was concluded and symptoms alleviated, neither clinical examinations nor haptoglobin essays revealed deviations from values commonly accepted as normal. Fluctuations in blood serum haptoglobin levels proved to be a useful prognostic in determining the duration of necessary treatment.
Collapse
|
Journal Article |
6 |
|
24
|
Nizankowska-Baz T, Korczowski R, Abramowicz T, Dudek A. [Growth hormone concentration following various factors stimulating its release]. POLSKI TYGODNIK LEKARSKI (WARSAW, POLAND : 1960) 1992; 47:994-5. [PMID: 1305718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Growth hormone concentration has been assayed in 105 children (45 girls and 60 boys) during starvation and following its stimulation with clonidine and insulin and during the sleep. A significant difference between growth hormone concentration during fasting and after stimulation has been noted. No statistically significant difference between growth hormone concentrations during the sleep and following insulin has been found. The most intensive growth hormone release has been observed during the sleep. Test with clonidine is technically simple and may be performed also in the out-patient clinics.
Collapse
|
English Abstract |
33 |
|