1
|
Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S, Starkl P, Lakovits K, Hladik A, Korosec A, Sharif O, Warszawska JM, Jolin H, Mesteri I, McKenzie ANJ, Knapp S. First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment. Cell Rep 2017; 18:1893-1905. [PMID: 28228256 PMCID: PMC5329122 DOI: 10.1016/j.celrep.2017.01.071] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/27/2016] [Accepted: 01/26/2017] [Indexed: 01/07/2023] Open
Abstract
From birth onward, the lungs are exposed to the external environment and therefore harbor a complex immunological milieu to protect this organ from damage and infection. We investigated the homeostatic role of the epithelium-derived alarmin interleukin-33 (IL-33) in newborn mice and discovered the immediate upregulation of IL-33 from the first day of life, closely followed by a wave of IL-13-producing type 2 innate lymphoid cells (ILC2s), which coincided with the appearance of alveolar macrophages (AMs) and their early polarization to an IL-13-dependent anti-inflammatory M2 phenotype. ILC2s contributed to lung quiescence in homeostasis by polarizing tissue resident AMs and induced an M2 phenotype in transplanted macrophage progenitors. ILC2s continued to maintain the M2 AM phenotype during adult life at the cost of a delayed response to Streptococcus pneumoniae infection in mice. These data highlight the homeostatic role of ILC2s in setting the activation threshold in the lung and underline their implications in anti-bacterial defenses.
The first breath triggers IL-33 induction by AEC2 in lungs of newborn mice IL-33 promotes the perinatal expansion and activation of ST2-expressing ILC2s ILC2-derived IL-13 polarizes newborn’s AMs into an M2 phenotype This homeostatic type 2 pathway delays antibacterial effector responses
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
193 |
2
|
Glitzner E, Korosec A, Brunner PM, Drobits B, Amberg N, Schonthaler HB, Kopp T, Wagner EF, Stingl G, Holcmann M, Sibilia M. Specific roles for dendritic cell subsets during initiation and progression of psoriasis. EMBO Mol Med 2015; 6:1312-27. [PMID: 25216727 PMCID: PMC4287934 DOI: 10.15252/emmm.201404114] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Several subtypes of APCs are found in psoriasis patients, but their involvement in disease pathogenesis is poorly understood. Here, we investigated the contribution of Langerhans cells (LCs) and plasmacytoid DCs (pDCs) in psoriasis. In human psoriatic lesions and in a psoriasis mouse model (DKO* mice), LCs are severely reduced, whereas pDCs are increased. Depletion of pDCs in DKO* mice prior to psoriasis induction resulted in a milder phenotype, whereas depletion during active disease had no effect. In contrast, while depletion of Langerin-expressing APCs before disease onset had no effect, depletion from diseased mice aggravated psoriasis symptoms. Disease aggravation was due to the absence of LCs, but not other Langerin-expressing APCs. LCs derived from DKO* mice produced increased IL-10 levels, suggesting an immunosuppressive function. Moreover, IL-23 production was high in psoriatic mice and further increased in the absence of LCs. Conversely, pDC depletion resulted in reduced IL-23 production, and therapeutic inhibition of IL-23R signaling ameliorated disease symptoms. Therefore, LCs have an anti-inflammatory role during active psoriatic disease, while pDCs exert an instigatory function during disease initiation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
93 |
3
|
Perugorria MJ, Esparza-Baquer A, Oakley F, Labiano I, Korosec A, Jais A, Mann J, Tiniakos D, Santos-Laso A, Arbelaiz A, Gawish R, Sampedro A, Fontanellas A, Hijona E, Jimenez-Agüero R, Esterbauer H, Stoiber D, Bujanda L, Banales JM, Knapp S, Sharif O, Mann DA. Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut 2019; 68:533-546. [PMID: 29374630 PMCID: PMC6580759 DOI: 10.1136/gutjnl-2017-314107] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Liver injury impacts hepatic inflammation in part via Toll-like receptor (TLR) signalling. Triggering receptor expressed on myeloid cells 2 (TREM-2) modulates TLR4-mediated inflammation in bone marrow (BM)-derived macrophages but its function in liver injury is unknown. Here we hypothesised that the anti-inflammatory effects of TREM-2 on TLR signalling may limit hepatic injury. DESIGN TREM-2 expression was analysed in livers of humans with various forms of liver injury compared with control individuals. Acute and chronic liver injury models were performed in wild type and Trem-2-/- mice. Primary liver cells from both genotypes of mice were isolated for in vitro experiments. RESULTS TREM-2 was expressed on non-parenchymal hepatic cells and induced during liver injury in mice and man. Mice lacking TREM-2 exhibited heightened liver damage and inflammation during acute and repetitive carbon tetrachloride and acetaminophen (APAP) intoxication, the latter of which TREM-2 deficiency was remarkably associated with worsened survival. Liver damage in Trem-2-/- mice following chronic injury and APAP challenge was associated with elevated hepatic lipid peroxidation and macrophage content. BM transplantation experiments and cellular reactive oxygen species assays revealed effects of TREM-2 in the context of chronic injury depended on both immune and resident TREM-2 expression. Consistent with effects of TREM-2 on inflammation-associated injury, primary hepatic macrophages and hepatic stellate cells lacking TREM-2 exhibited augmented TLR4-driven proinflammatory responses. CONCLUSION Our data indicate that by acting as a natural brake on inflammation during hepatocellular injury, TREM-2 is a critical regulator of diverse types of hepatotoxic injury.
Collapse
|
research-article |
6 |
89 |
4
|
Sharif O, Gawish R, Warszawska JM, Martins R, Lakovits K, Hladik A, Doninger B, Brunner J, Korosec A, Schwarzenbacher RE, Berg T, Kralovics R, Colinge J, Mesteri I, Gilfillan S, Salmaggi A, Verschoor A, Colonna M, Knapp S. The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia. PLoS Pathog 2014; 10:e1004167. [PMID: 24945405 PMCID: PMC4055749 DOI: 10.1371/journal.ppat.1004167] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2(-/-) AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2(-/-) mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line, Transformed
- Cells, Cultured
- Complement C1q/genetics
- Complement C1q/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Lung/cytology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration
- PPAR gamma/metabolism
- Phagocytosis
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/metabolism
- Pneumonia, Pneumococcal/pathology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Respiratory Mucosa/cytology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Respiratory Mucosa/pathology
- Survival Analysis
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
41 |
5
|
Brunner JS, Vogel A, Lercher A, Caldera M, Korosec A, Pühringer M, Hofmann M, Hajto A, Kieler M, Garrido LQ, Kerndl M, Kuttke M, Mesteri I, Górna MW, Kulik M, Dominiak PM, Brandon AE, Estevez E, Egan CL, Gruber F, Schweiger M, Menche J, Bergthaler A, Weichhart T, Klavins K, Febbraio MA, Sharif O, Schabbauer G. The PI3K pathway preserves metabolic health through MARCO-dependent lipid uptake by adipose tissue macrophages. Nat Metab 2020; 2:1427-1442. [PMID: 33199895 DOI: 10.1038/s42255-020-00311-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
Adipose tissue macrophages (ATMs) display tremendous heterogeneity depending on signals in their local microenvironment and contribute to the pathogenesis of obesity. The phosphoinositide 3-kinase (PI3K) signalling pathway, antagonized by the phosphatase and tensin homologue (PTEN), is important for metabolic responses to obesity. We hypothesized that fluctuations in macrophage-intrinsic PI3K activity via PTEN could alter the trajectory of metabolic disease by driving distinct ATM populations. Using mice harbouring macrophage-specific PTEN deletion or bone marrow chimeras carrying additional PTEN copies, we demonstrate that sustained PI3K activity in macrophages preserves metabolic health in obesity by preventing lipotoxicity. Myeloid PI3K signalling promotes a beneficial ATM population characterized by lipid uptake, catabolism and high expression of the scavenger macrophage receptor with collagenous structure (MARCO). Dual MARCO and myeloid PTEN deficiencies prevent the generation of lipid-buffering ATMs, reversing the beneficial actions of elevated myeloid PI3K activity in metabolic disease. Thus, macrophage-intrinsic PI3K signalling boosts metabolic health by driving ATM programmes associated with MARCO-dependent lipid uptake.
Collapse
|
|
5 |
23 |
6
|
Sharif O, Brunner JS, Korosec A, Martins R, Jais A, Snijder B, Vogel A, Caldera M, Hladik A, Lakovits K, Saluzzo S, Boehm B, Gorki AD, Mesteri I, Lindroos-Christensen J, Tillmann K, Stoiber D, Menche J, Schabbauer G, Bilban M, Superti-Furga G, Esterbauer H, Knapp S. Beneficial Metabolic Effects of TREM2 in Obesity Are Uncoupled From Its Expression on Macrophages. Diabetes 2021; 70:2042-2057. [PMID: 33627323 PMCID: PMC8576425 DOI: 10.2337/db20-0572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Obesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass, and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated that ATM-expressed TREM2 promoted health. Here, we identified that in mice, TREM2 deficiency aggravated diet-induced insulin resistance and hepatic steatosis independently of fat and cholesterol levels. Metabolomics linked TREM2 deficiency with elevated obesity-instigated serum ceramides that correlated with impaired insulin sensitivity. Remarkably, while inhibiting ceramide synthesis exerted no influences on TREM2-dependent ATM remodeling, inflammation, or lipid load, it restored insulin tolerance, reversing adipose hypertrophy and secondary hepatic steatosis of TREM2-deficient animals. Bone marrow transplantation experiments revealed unremarkable influences of immune cell-expressed TREM2 on health, instead demonstrating that WAT-intrinsic mechanisms impinging on sphingolipid metabolism dominate in the systemic protective effects of TREM2 on metabolic health.
Collapse
|
research-article |
4 |
21 |
7
|
Vogel A, Martin K, Soukup K, Halfmann A, Kerndl M, Brunner JS, Hofmann M, Oberbichler L, Korosec A, Kuttke M, Datler H, Kieler M, Musiejovsky L, Dohnal A, Sharif O, Schabbauer G. JAK1 signaling in dendritic cells promotes peripheral tolerance in autoimmunity through PD-L1-mediated regulatory T cell induction. Cell Rep 2022; 38:110420. [PMID: 35196494 DOI: 10.1016/j.celrep.2022.110420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DCs) induce peripheral T cell tolerance, but cell-intrinsic signaling cascades governing their stable tolerogenesis remain poorly defined. Janus Kinase 1 (JAK1) transduces cytokine-receptor signaling, and JAK inhibitors (Jakinibs), including JAK1-specific filgotinib, break inflammatory cycles in autoimmunity. Here, we report in heterogeneous DC populations of multiple secondary lymphoid organs that JAK1 promotes peripheral T cell tolerance during experimental autoimmune encephalomyelitis (EAE). Mice harboring DC-specific JAK1 deletion exhibit elevated peripheral CD4+ T cell expansion, less regulatory T cells (Tregs), and worse EAE outcomes, whereas adoptive DC transfer ameliorates EAE pathogenesis by inducing peripheral Tregs, programmed cell death ligand 1 (PD-L1) dependently. This tolerogenic program is substantially reduced upon the transfer of JAK1-deficient DCs. DC-intrinsic IFN-γ-JAK1-STAT1 signaling induces PD-L1, which is required for DCs to convert CD4+ T cells into Tregs in vitro and attenuated upon JAK1 deficiency and filgotinib treatment. Thus, DC-intrinsic JAK1 promotes peripheral tolerance, suggesting potential unwarranted DC-mediated effects of Jakinibs in autoimmune diseases.
Collapse
|
|
3 |
18 |
8
|
Maier BB, Hladik A, Lakovits K, Korosec A, Martins R, Kral JB, Mesteri I, Strobl B, Müller M, Kalinke U, Merad M, Knapp S. Type I interferon promotes alveolar epithelial type II cell survival during pulmonary Streptococcus pneumoniae infection and sterile lung injury in mice. Eur J Immunol 2016; 46:2175-86. [PMID: 27312374 DOI: 10.1002/eji.201546201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/17/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022]
Abstract
Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
16 |
9
|
Frech S, Forsthuber A, Korosec A, Lipp K, Kozumov V, Lichtenberger BM. Hedgehog-signalling in papillary fibroblasts is essential for hair follicle regeneration during wound healing. J Invest Dermatol 2021; 142:1737-1748.e5. [PMID: 34922948 DOI: 10.1016/j.jid.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Patients suffering from large scars such as burn victims not only encounter aesthetical challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles (HFs) rarely regenerate within the healing wound. As they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic HF morphogenesis and are particularly involved in wound healing as they orchestrate extracellular matrix (ECM) remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog (Hh)-signalling. In the present study, we show that Hh-signalling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, while Hh-signalling in papillary fibroblasts is essential to induce de novo HF formation within the healing wound.
Collapse
|
|
4 |
13 |
10
|
Korosec A, Frech S, Lichtenberger BM. Isolation of Papillary and Reticular Fibroblasts from Human Skin by Fluorescence-activated Cell Sorting. J Vis Exp 2019. [PMID: 31132050 DOI: 10.3791/59372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fibroblasts are a highly heterogeneous cell population implicated in the pathogenesis of many human diseases. In human skin dermis, fibroblasts have traditionally been attributed to the superficial papillary or lower reticular dermis according to their histological localization. In mouse dermis, papillary and reticular fibroblasts originate from two different lineages with diverging functions regarding physiological and pathological processes and a distinct cell surface marker expression profile by which they can be distinguished. Importantly, evidence from explant cultures from superficial and lower dermal layers suggest that at least two functionally distinct dermal fibroblasts lineages exist in human skin dermis as well. However, unlike for mouse skin, cell surface markers enabling the discrimination of different fibroblast subsets have not yet been established for human skin. We developed a novel protocol for the isolation of human papillary and reticular fibroblast populations via fluorescence-activated cell sorting (FACS) using the two cell surface markers Fibroblast Activation Protein (FAP) and Thymocyte antigen 1 (Thy1)/CD90. This method enables the isolation of pure fibroblast subsets without in vitro manipulation, which was shown to affect gene expression, thus permitting accurate functional analysis of human dermal fibroblast subsets in regard to tissue homeostasis or disease pathology.
Collapse
|
Video-Audio Media |
6 |
6 |
11
|
Gawish R, Maier B, Obermayer G, Watzenboeck ML, Gorki AD, Quattrone F, Farhat A, Lakovits K, Hladik A, Korosec A, Alimohammadi A, Mesteri I, Oberndorfer F, Oakley F, Brain J, Boon L, Lang I, Binder CJ, Knapp S. A neutrophil-B-cell axis impacts tissue damage control in a mouse model of intraabdominal bacterial infection via Cxcr4. eLife 2022; 11:e78291. [PMID: 36178806 PMCID: PMC9525059 DOI: 10.7554/elife.78291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a life-threatening condition characterized by uncontrolled systemic inflammation and coagulation, leading to multiorgan failure. Therapeutic options to prevent sepsis-associated immunopathology remain scarce. Here, we established a mouse model of long-lasting disease tolerance during severe sepsis, manifested by diminished immunothrombosis and organ damage in spite of a high pathogen burden. We found that both neutrophils and B cells emerged as key regulators of tissue integrity. Enduring changes in the transcriptional profile of neutrophils include upregulated Cxcr4 expression in protected, tolerant hosts. Neutrophil Cxcr4 upregulation required the presence of B cells, suggesting that B cells promoted disease tolerance by improving tissue damage control via the suppression of neutrophils' tissue-damaging properties. Finally, therapeutic administration of a Cxcr4 agonist successfully promoted tissue damage control and prevented liver damage during sepsis. Our findings highlight the importance of a critical B-cell/neutrophil interaction during sepsis and establish neutrophil Cxcr4 activation as a potential means to promote disease tolerance during sepsis.
Collapse
|
research-article |
3 |
6 |
12
|
Jelenc M, Kostnapfel T, Lovrecic B, Korosec A, Lovrecic M. Trend and ratio of prescription of antidepressants and anxiolytics in Slovenia from 2009 to 2013. Eur J Public Health 2015. [DOI: 10.1093/eurpub/ckv176.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
10 |
|
13
|
Korosec A, Frech S, Forsthuber A, Lipp K, Lichtenberger B. 588 Skin fibroblast heterogeneity and plasticity are determined by the local niche. J Invest Dermatol 2019. [DOI: 10.1016/j.jid.2019.07.592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
6 |
|
14
|
Korosec A, Mastrogiannaki M, Watt F, Lichtenberger B. 554 Dissecting fibroblast heterogeneity in skin cancer. J Invest Dermatol 2017. [DOI: 10.1016/j.jid.2017.07.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
8 |
|
15
|
Lichtenberger B, Korosec A. Preisträger der ÖGDV Fibroblasten-Heterogenität in der Hautkrebsentstehung. J Dtsch Dermatol Ges 2017; 15:876-877. [DOI: 10.1111/ddg.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
8 |
|
16
|
Ressler JM, Zila N, Korosec A, Yu J, Silmbrod R, Bachmayr V, Tittes J, Strobl J, Lichtenberger BM, Hoeller C, Petzelbauer P. Myofibroblast stroma differentiation in infiltrative basal cell carcinoma is accompanied by regulatory T-cells. J Cutan Pathol 2023; 50:544-551. [PMID: 36562598 DOI: 10.1111/cup.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The implications of infiltrative compared to non-infiltrative growth of cutaneous basal cell carcinoma (BCC) on the tumor stroma and immune cell landscape are unknown. This is of clinical importance, because infiltrative BCCs, in contrast to other BCC subtypes, are more likely to relapse after surgery and radiotherapy. MATERIALS AND METHODS This descriptive cross-sectional study analyzed 38 BCCs collected from 2018 to 2021. In the first cohort (n = 28), immune cells were characterized by immunohistochemistry and multiplex immunofluorescence staining for CD3, CD8, CD68, Foxp3, and α-SMA protein expression. In the second cohort (n = 10) with matched characteristics (age, sex, location, and BCC subtype), inflammatory parameters, including TGF-β1, TGF-β2, ACTA2, IL-10, IL-12A, and Foxp3, were quantified via RT-qPCR after isolating mRNA from BCC tissue samples and perilesional skin. RESULTS Infiltrative BCCs showed significantly increased levels of α-SMA expression in fibroblasts (p = 0.0001) and higher levels of Foxp3+ (p = 0.0023) and CD3+ (p = 0.0443) T-cells compared to non-infiltrative BCCs. CD3+ (p = 0.0171) and regulatory T-cells (p = 0.0026) were significantly increased in α-SMA-positive tumor stroma, whereas CD8+ T-cells (p = 0.1329) and CD68+ myeloid cells (p = 0.2337) were not affected. TGF-β1 and TGF-β2 correlated significantly with ACTA2/α-SMA mRNA expression (p = 0.020, p = 0.005). CONCLUSION Infiltrative growth of BCCs shows a myofibroblastic stroma differentiation and is accompanied by an immunosuppressive tumor microenvironment.
Collapse
|
|
2 |
|
17
|
Jelenc M, Kostnapfel T, Korosec A, Albreht T. Trends in medicines consumption in Slovenia in the period from 2003 to 2013 with recommendations. Eur J Public Health 2015. [DOI: 10.1093/eurpub/ckv176.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
10 |
|
18
|
Forsthuber A, Aschenbrenner B, Korosec A, Jacob T, Annusver K, Krajic N, Kholodniuk D, Frech S, Zhu S, Purkhauser K, Lipp K, Werner F, Nguyen V, Griss J, Bauer W, Soler Cardona A, Weber B, Weninger W, Gesslbauer B, Staud C, Nedomansky J, Radtke C, Wagner SN, Petzelbauer P, Kasper M, Lichtenberger BM. Cancer-associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy. Nat Commun 2024; 15:9678. [PMID: 39516494 PMCID: PMC11549091 DOI: 10.1038/s41467-024-53908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in cancer progression and treatment outcome. This study dissects the intra-tumoral diversity of CAFs in basal cell carcinoma, squamous cell carcinoma, and melanoma using molecular and spatial single-cell analysis. We identify three distinct CAF subtypes: myofibroblast-like RGS5+ CAFs, matrix CAFs (mCAFs), and immunomodulatory CAFs (iCAFs). Large-cohort tissue analysis reveals significant shifts in CAF subtype patterns with increasing malignancy. Two CAF subtypes exhibit immunomodulatory properties via different mechanisms. mCAFs sythesize extracellular matrix and may restrict T cell invasion in low-grade tumors via ensheathing tumor nests, while iCAFs are enriched in late-stage tumors, and express high levels of cytokines and chemokines to aid immune cell recruitment and activation. This is supported by the induction of an iCAF-like phenotype with immunomodulatory functions in primary healthy fibroblasts exposed to skin cancer cell secretomes. Thus, targeting CAF variants holds promise to enhance immunotherapy efficacy in skin cancers.
Collapse
|
research-article |
1 |
|
19
|
Kieler M, Prammer LS, Heller G, Hofmann M, Sperger S, Hanetseder D, Niederreiter B, Komljenovic A, Klavins K, Köcher T, Brunner JS, Stanic I, Oberbichler L, Korosec A, Vogel A, Kerndl M, Hromadová D, Musiejovsky L, Hajto A, Dobrijevic A, Piwonka T, Haschemi A, Miller A, Georgel P, Marolt Presen D, Grillari J, Hayer S, Auger JP, Krönke G, Sharif O, Aletaha D, Schabbauer G, Blüml S. Itaconate is a metabolic regulator of bone formation in homeostasis and arthritis. Ann Rheum Dis 2024; 83:1465-1479. [PMID: 38986577 PMCID: PMC11503170 DOI: 10.1136/ard-2023-224898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis. METHODS We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (Irg1)-deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation. RESULTS We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of Irg1 and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, Irg1-deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis. CONCLUSION In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.
Collapse
|
research-article |
1 |
|