1
|
Ramadoss A, Kim T, Kim GS, Kim SJ. Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications. NEW J CHEM 2014. [DOI: 10.1039/c3nj01558k] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
11 |
195 |
2
|
Ede SR, Ramadoss A, Nithiyanantham U, Anantharaj S, Kundu S. Bio-molecule Assisted Aggregation of ZnWO4 Nanoparticles (NPs) into Chain-like Assemblies: Material for High Performance Supercapacitor and as Catalyst for Benzyl Alcohol Oxidation. Inorg Chem 2015; 54:3851-63. [DOI: 10.1021/acs.inorgchem.5b00018] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
10 |
90 |
3
|
Ramadoss A, Kim GS, Kim SJ. Fabrication of reduced graphene oxide/TiO2 nanorod/reduced graphene oxide hybrid nanostructures as electrode materials for supercapacitor applications. CrystEngComm 2013. [DOI: 10.1039/c3ce41517a] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
12 |
88 |
4
|
Ramadoss A, Saravanakumar B, Lee SW, Kim YS, Kim SJ, Wang ZL. Piezoelectric-driven self-charging supercapacitor power cell. ACS NANO 2015; 9:4337-4345. [PMID: 25794521 DOI: 10.1021/acsnano.5b00759] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, we have fabricated a piezoelectric-driven self-charging supercapacitor power cell (SCSPC) using MnO2 nanowires as positive and negative electrodes and a polyvinylidene difluoride (PVDF)-ZnO film as a separator (as well as a piezoelectric), which directly converts mechanical energy into electrochemical energy. Such a SCSPC consists of a nanogenerator, a supercapacitor, and a power-management system, which can be directly used as a power source. The self-charging capability of SCSPC was demonstrated by mechanical deformation under human palm impact. The SCSPC can be charged to 110 mV (aluminum foil) in 300 s under palm impact. In addition, the green light-emitting diode glowed using serially connected SCSPC as the power source. This finding opens up the possibility of making self-powered flexible hybrid electronic devices.
Collapse
|
|
10 |
68 |
5
|
Ede SR, Ramadoss A, Anantharaj S, Nithiyanantham U, Kundu S. Enhanced catalytic and supercapacitor activities of DNA encapsulated β-MnO2nanomaterials. Phys Chem Chem Phys 2014; 16:21846-59. [DOI: 10.1039/c4cp02884h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
|
11 |
58 |
6
|
Balasubramaniam S, Mohanty A, Balasingam SK, Kim SJ, Ramadoss A. Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. NANO-MICRO LETTERS 2020; 12:85. [PMID: 34138304 PMCID: PMC7770895 DOI: 10.1007/s40820-020-0413-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/13/2020] [Indexed: 05/21/2023]
Abstract
Electrochemical energy storage devices (EESs) play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources. Additionally, to meet the demand for next-generation electronic applications, optimizing the energy and power densities of EESs with long cycle life is the crucial factor. Great efforts have been devoted towards the search for new materials, to augment the overall performance of the EESs. Although there are a lot of ongoing researches in this field, the performance does not meet up to the level of commercialization. A further understanding of the charge storage mechanism and development of new electrode materials are highly required. The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects. The different charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail. Moreover, recent advancements in this supercapattery research and its electrochemical performances are reviewed. Finally, the challenges and possible future developments in this field are summarized.
Collapse
|
Review |
5 |
49 |
7
|
Ramadoss A, Kim SJ. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
11 |
40 |
8
|
Kang KN, Kim IH, Ramadoss A, Kim SI, Yoon JC, Jang JH. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors. Phys Chem Chem Phys 2018; 20:719-727. [DOI: 10.1039/c7cp07473e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ultrahigh rate capability, cycle stability, and high energy density supercapacitors supported by the three-dimensional (3D) carbon coated copper structure.
Collapse
|
|
7 |
31 |
9
|
Mishra S, Mohanty S, Ramadoss A. Functionality of Flexible Pressure Sensors in Cardiovascular Health Monitoring: A Review. ACS Sens 2022; 7:2495-2520. [PMID: 36036627 DOI: 10.1021/acssensors.2c00942] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As the highest percentage of global mortality is caused by several cardiovascular diseases (CVD), maintenance and monitoring of a healthy cardiovascular condition have become the primary concern of each and every individual. Simultaneously, recent progress and advances in wearable pressure sensor technology have provided many pathways to monitor and detect underlying cardiovascular illness in terms of irregularities in heart rate, blood pressure, and blood oxygen saturation. These pressure sensors can be comfortably attached onto human skin or can be implanted on the surface of vascular grafts for uninterrupted monitoring of arterial blood pressure. While the traditional monitoring systems are time-consuming, expensive, and not user-friendly, flexible sensor technology has emerged as a promising and dynamic practice to collect important health information at a comparatively low cost in a reliable and user-friendly way. This Review explores the importance and necessity of cardiovascular health monitoring while emphasizing the role of flexible pressure sensors in monitoring patients' health conditions to avoid adverse effects. A comprehensive discussion on the current research progress along with the real-time impact and accessibility of pressure sensors developed for cardiovascular health monitoring applications has been provided.
Collapse
|
Review |
3 |
27 |
10
|
Nithiyanantham U, Ramadoss A, Kundu S. Supercapacitor and dye-sensitized solar cell (DSSC) applications of shape-selective TiO2nanostructures. RSC Adv 2014. [DOI: 10.1039/c4ra06226d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
|
11 |
24 |
11
|
Nithiyanantham U, Ramadoss A, Kundu S. Synthesis and characterization of DNA fenced, self-assembled SnO2 nano-assemblies for supercapacitor applications. Dalton Trans 2016; 45:3506-21. [DOI: 10.1039/c5dt04920b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled, aggregated, chain-like SnO2 nano assemblies are synthesized at room temperature within an hour in DNA scaffold. Formation and growth mechanism are elaborated. The SnO2 nano-assemblies are utilized as potential anode material in electrochemical supercapacitor studies.
Collapse
|
|
9 |
24 |
12
|
Nithiyanantham U, Ramadoss A, Ede SR, Kundu S. DNA mediated wire-like clusters of self-assembled TiO₂ nanomaterials: supercapacitor and dye sensitized solar cell applications. NANOSCALE 2014; 6:8010-8023. [PMID: 24905088 DOI: 10.1039/c4nr01836b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new route for the formation of wire-like clusters of TiO₂ nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO₂ nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO₂ NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO₂ nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO₂ nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO₂ having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO₂ nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO₂ nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.
Collapse
|
|
11 |
23 |
13
|
Kumar SA, Mohanty A, Saravanakumar B, Mohanty S, Nayak SK, Ramadoss A. Three-dimensional Bi 2O 3/Ti microspheres as an advanced negative electrode for hybrid supercapacitors. Chem Commun (Camb) 2020; 56:12973-12976. [PMID: 32996474 DOI: 10.1039/d0cc04057f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a novel, low-temperature solvothermal method to grow 3D-Bi2O3 flower-like microspheres on Ti substrates as a binder-free negative electrode for supercapacitor applications. The Bi2O3/Ti electrode showed an areal capacitance of 1.65 F cm-2 at 4 mA cm-2. Moreover, the 3D-NiCo2O4||3D-Bi2O3 hybrid device delivered high energy and power densities of 31.17 μW h cm-2 and 7500 μW cm-2, respectively. The more optimal energy storage performance based on the strong adhesion of the current collector and self-assembled three-dimensional nanostructures permits efficient electron and ion transportation.
Collapse
|
|
5 |
15 |
14
|
Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt‐Mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber‐Shaped Electronic Devices. ADVANCED ENERGY MATERIALS 2021; 11. [DOI: 10.1002/aenm.202101443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 09/02/2023]
Abstract
AbstractTextile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end‐use management. Herein, the performance requirements of fiber‐shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state‐of‐art of current fiber‐shaped electronics emphasizing light‐emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber‐shaped electronic components are presented as directions for future research on wearable electronics.
Collapse
|
|
4 |
14 |
15
|
Arun T, Mohanty A, Rosenkranz A, Wang B, Yu J, Morel MJ, Udayabhaskar R, Hevia SA, Akbari-Fakhrabadi A, Mangalaraja R, Ramadoss A. Role of electrolytes on the electrochemical characteristics of Fe3O4/MXene/RGO composites for supercapacitor applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
4 |
13 |
16
|
Sahoo R, Mishra S, Ramadoss A, Mohanty S, Mahapatra S, Nayak SK. An approach towards the fabrication of energy harvesting device using Ca-doped ZnO/ PVDF-TrFE composite film. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
5 |
13 |
17
|
Kaliaraj GS, Siva T, Ramadoss A. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance - a review. J Mater Chem B 2021; 9:9433-9460. [PMID: 34755756 DOI: 10.1039/d1tb01301g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In modern days, the usage of trauma fixation devices has significantly increased due to sports injury, age-related issues, accidents, and revision surgery purposes. Numerous materials such as stainless steel, titanium, Co-Cr alloy, polymers, and ceramics have been used to replace the missing or defective parts of the human body. After implantation, body fluids (Na+, K+, and Cl-), protein, and blood cells interact with the surface of metallic implants, which favours the release of ions from the metallic surface to surrounding body tissues, leading to a hypersensitive reaction. Body pH, temperature, and interaction of immune cells also cause metal ion leaching and lose host cell interaction and effective mineralization for better durability. Moreover, microbial invasion is another important crisis, which produces extracellular compounds onto the biomaterial surface through which it escapes from the antimicrobial agents. To enhance the performance of materials by improving mechanical, corrosion resistance, antimicrobial, and biocompatibility properties, surface modification is a prerequisite method in which chemical vapour deposition (CVD), physical vapour deposition (PVD), sol-gel method, and electrochemical deposition are generally involved. The properties of bioceramics such as chemical inertness, bioactivity, biocompatibility, and corrosion protection make them most suitable for the surface functionalization of metallic implants. To the best of our knowledge, very limited literature is available to discuss the interaction of body proteins, pH, and temperature onto bioceramic coatings. Hence, the present review focuses on the corrosion behaviour of different ceramic composite coating materials with different conditions. This review initially briefs the properties and surface chemistry of metal implants and the need for surface modifications by different deposition techniques. Further, mechanical, cytotoxicity, antimicrobial property, and electrochemical behaviour of ceramics and metal nitride coatings are discussed. Finally, future perspectives of coatings are outlined for biomedical applications.
Collapse
|
Review |
4 |
10 |
18
|
Noby SZ, Wong KK, Ramadoss A, Siroky S, Hagner M, Boldt K, Schmidt-Mende L. Rapid synthesis of vertically aligned α-MoO 3 nanostructures on substrates. RSC Adv 2020; 10:24119-24126. [PMID: 35517361 PMCID: PMC9055125 DOI: 10.1039/d0ra01281e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023] Open
Abstract
We report a new procedure for large scale, reproducible and fast synthesis of polycrystalline, dense, vertically aligned α-MoO3 nanostructures on conducting (FTO) and non-conducting substrates (Si/SiO2) by using a simple, low-cost hydrothermal technique. The synthesis method consists of two steps, firstly formation of a thermally evaporated Cr/MoO3 seed layer, and secondly growth of the nanostructures in a highly acidic precursor solution. In this report, we document a growth process of vertically aligned α-MoO3 nanostructures with varying growth parameters, such as pH and precursor concentration influencing the resulting structure. Vertically aligned MoO3 nanostructures are valuable for different applications such as electrode material for organic and dye-sensitized solar cells, as a photocatalyst, and in Li-ion batteries, display devices and memory devices due to their high surface area.
Collapse
|
research-article |
5 |
6 |
19
|
Kang KN, Ramadoss A, Min JW, Yoon JC, Lee D, Kang SJ, Jang JH. Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries. NANO-MICRO LETTERS 2020; 12:28. [PMID: 34138068 PMCID: PMC7770839 DOI: 10.1007/s40820-019-0356-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/06/2019] [Indexed: 05/13/2023]
Abstract
We report a wire-shaped three-dimensional (3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites, easy access of electrolyte ions, and facile charge transport for flexible wearable applications. The interconnected and compact electrode delivers a high volumetric capacitance (gravimetric capacitance) of 73 F cm-3 (2446 F g-1), excellent rate capability, and cycle stability. The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire (NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire (Mn3O4/3D-Ni) hybrid supercapacitor exhibits energy density of 153.3 Wh kg-1 and power density of 8810 W kg-1. The red light-emitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions. The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge-discharge times, for smart wearable and implantable devices.
Collapse
|
research-article |
5 |
2 |
20
|
Swain N, Saravanakumar B, Mohanty S, Ramadoss A. Engineering of Thermally Converted 3D-NiO-Co3O4/Ni//3D-ϒ-Fe4N-C@Ni/SS Porous Electrodes for High-performance Supercapatteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
3 |
2 |
21
|
Bhatta S, Mitra R, Ramadoss A, Manju U. Enhanced voltage response in TiO 2nanoparticle-embedded piezoelectric nanogenerator. NANOTECHNOLOGY 2022; 33:335402. [PMID: 35533643 DOI: 10.1088/1361-6528/ac6df5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Poly (vinylidene fluoride) (PVDF) and its copolymers have piqued a substantial amount of research interest for its use in modern flexible electronics. The piezoelectricβ-phase of the polymers can be augmented with the addition of suitable fillers that promoteβ-phase nucleation. In this work, we report an improved output voltage response of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with the incorporation of 10 wt.% Titanium (IV) oxide nanoparticles into the polymer matrix. The nano-filler was dispersed in the polymer matrix to form nanocomposite films via the solution casting technique. X-ray Diffraction and Scanning Electron Microscopy measurements were performed to verify the structure and morphology of the films. Fourier Transform Infrared Spectroscopy revealed enhancement in theβ-phase nucleation from ∼15% to ∼36% with the addition of 10 wt.% titania nanoparticles. Thermogravimetric analysis and Differential Scanning Calorimetry results show improved thermal stability of the nanocomposite film, up to 345 °C, as compared to pristine PVDF-HFP. We also demonstrate a facile method for the fabrication of a piezoelectric nanogenerator withβ-PVDF-HFP/TiO2nanocomposite as an active layer. The outputs from the fabricated nanogenerator reached up to 8.89 V through human finger tapping motions, paving way for its potential use in the field of sensors, actuators, and self-sustaining flexible devices.
Collapse
|
|
3 |
1 |
22
|
Sahoo R, Mishra S, Ramadoss A, Mohanty S, Mahapatra S, Nayak SK. Corrigendum to “An approach towards the fabrication of energy harvesting device using Ca-doped ZnO/ PVDF-TrFE composite film” [Polymer 205 (2020) 122869]. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
4 |
|
23
|
Leu S, Ramadoss A, Schaefer T, Tintignac L, Tostado C, Bink A, Moffa G, Demougin P, Moes S, Mariani L, Boulay J. P04.04 Regulation of glioma cell invasion by 3q26 gene products PIK3CA, SOX2 and OPA1. Neuro Oncol 2018. [DOI: 10.1093/neuonc/noy139.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
7 |
|
24
|
Ramadoss A, Kim SJ. Corrigendum to “Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes” [Electrochimica Acta 136 (2014) 105–111]. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
10 |
|
25
|
Basith SA, Ramadoss A, Khandelwal G, Jacob G, Chandrasekhar A. Recycling of diaper wastes for a triboelectric nanogenerator-based weather station. iScience 2024; 27:110627. [PMID: 39228792 PMCID: PMC11369379 DOI: 10.1016/j.isci.2024.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Escalating concerns over waste management and the need for sustainable energy have prompted innovative solutions at the nexus of resource recycling and self-powered applications. This study presents a novel approach to recycling super-absorbing polymer (SAP) gels from waste diapers and discarded baking sheets to fabricate a diaper waste-based triboelectric nanogenerator (DW-TENG). The DW-TENG, resembling a maraca, demonstrated superior electrical performance with a voltage output of 110 V, a current of 9 μA, and a power of 259.15 μW. It was successfully integrated into a self-powered weather station for real-time monitoring of wind speed, humidity, and temperature. This research underscores the dual benefits of waste management and energy generation, representing a promising step toward a circular and sustainable future.
Collapse
|
research-article |
1 |
|