1
|
Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010; 11:1136-42. [PMID: 21057511 PMCID: PMC3058225 DOI: 10.1038/ni.1960] [Citation(s) in RCA: 1020] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/15/2010] [Indexed: 11/24/2022]
Abstract
Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of IL-1β and IL-18. While wild type Salmonella typhimurium infection is lethal to mice, a strain that persistently expresses flagellin was cleared by the cytosolic flagellin detection pathway via NLRC4 activation of caspase-1; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1 induced pyroptotic cell death, released bacteria from macrophages and exposed them to uptake and killing by reactive oxygen species in neutrophils. Similarly, caspase-1 cleared unmanipulated Legionella and Burkholderia by cytokine-independent mechanisms. This demonstrates for the first time that caspase-1 clears intracellular bacteria in vivo independent of IL-1β and IL-18, and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1020 |
2
|
Fitzgerald TW, Gerety SS, Jones WD, van Kogelenberg M, King DA, McRae J, Morley KI, Parthiban V, Al-Turki S, Ambridge K, Barrett DM, Bayzetinova T, Clayton S, Coomber EL, Gribble S, Jones P, Krishnappa N, Mason LE, Middleton A, Miller R, Prigmore E, Rajan D, Sifrim A, Tivey AR, Ahmed M, Akawi N, Andrews R, Anjum U, Archer H, Armstrong R, Balasubramanian M, Banerjee R, Baralle D, Batstone P, Baty D, Bennett C, Berg J, Bernhard B, Bevan AP, Blair E, Blyth M, Bohanna D, Bourdon L, Bourn D, Brady A, Bragin E, Brewer C, Brueton L, Brunstrom K, Bumpstead SJ, Bunyan DJ, Burn J, Burton J, Canham N, Castle B, Chandler K, Clasper S, Clayton-Smith J, Cole T, Collins A, Collinson MN, Connell F, Cooper N, Cox H, Cresswell L, Cross G, Crow Y, D’Alessandro M, Dabir T, Davidson R, Davies S, Dean J, Deshpande C, Devlin G, Dixit A, Dominiczak A, Donnelly C, Donnelly D, Douglas A, Duncan A, Eason J, Edkins S, Ellard S, Ellis P, Elmslie F, Evans K, Everest S, Fendick T, Fisher R, Flinter F, Foulds N, Fryer A, Fu B, Gardiner C, Gaunt L, Ghali N, Gibbons R, Gomes Pereira SL, Goodship J, Goudie D, Gray E, Greene P, Greenhalgh L, Harrison L, Hawkins R, Hellens S, Henderson A, Hobson E, Holden S, Holder S, Hollingsworth G, Homfray T, Humphreys M, Hurst J, Ingram S, Irving M, Jarvis J, Jenkins L, Johnson D, Jones D, Jones E, Josifova D, Joss S, Kaemba B, Kazembe S, Kerr B, Kini U, Kinning E, Kirby G, Kirk C, Kivuva E, Kraus A, Kumar D, Lachlan K, Lam W, Lampe A, Langman C, Lees M, Lim D, Lowther G, Lynch SA, Magee A, Maher E, Mansour S, Marks K, Martin K, Maye U, McCann E, McConnell V, McEntagart M, McGowan R, McKay K, McKee S, McMullan DJ, McNerlan S, Mehta S, Metcalfe K, Miles E, Mohammed S, Montgomery T, Moore D, Morgan S, Morris A, Morton J, Mugalaasi H, Murday V, Nevitt L, Newbury-Ecob R, Norman A, O'Shea R, Ogilvie C, Park S, Parker MJ, Patel C, Paterson J, Payne S, Phipps J, Pilz DT, Porteous D, Pratt N, Prescott K, Price S, Pridham A, Procter A, Purnell H, Ragge N, Rankin J, Raymond L, Rice D, Robert L, Roberts E, Roberts G, Roberts J, Roberts P, Ross A, Rosser E, Saggar A, Samant S, Sandford R, Sarkar A, Schweiger S, Scott C, Scott R, Selby A, Seller A, Sequeira C, Shannon N, Sharif S, Shaw-Smith C, Shearing E, Shears D, Simonic I, Simpkin D, Singzon R, Skitt Z, Smith A, Smith B, Smith K, Smithson S, Sneddon L, Splitt M, Squires M, Stewart F, Stewart H, Suri M, Sutton V, Swaminathan GJ, Sweeney E, Tatton-Brown K, Taylor C, Taylor R, Tein M, Temple IK, Thomson J, Tolmie J, Torokwa A, Treacy B, Turner C, Turnpenny P, Tysoe C, Vandersteen A, Vasudevan P, Vogt J, Wakeling E, Walker D, Waters J, Weber A, Wellesley D, Whiteford M, Widaa S, Wilcox S, Williams D, Williams N, Woods G, Wragg C, Wright M, Yang F, Yau M, Carter NP, Parker M, Firth HV, FitzPatrick DR, Wright CF, Barrett JC, Hurles ME. Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015; 519:223-8. [PMID: 25533962 PMCID: PMC5955210 DOI: 10.1038/nature14135] [Citation(s) in RCA: 826] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/04/2014] [Indexed: 12/23/2022]
Abstract
Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.
Collapse
|
research-article |
10 |
826 |
3
|
Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C. Real-time PCR quantification of precursor and mature microRNA. Methods 2008; 44:31-8. [PMID: 18158130 DOI: 10.1016/j.ymeth.2007.09.006] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/21/2007] [Indexed: 11/17/2022] Open
Abstract
microRNAs (miRNAs) are challenging molecules to amplify by PCR because the miRNA precursor consists of a stable hairpin and the mature miRNA is roughly the size of a standard PCR primer. Despite these difficulties, successful real-time RT-PCR technologies have been developed to amplify and quantify both the precursor and mature microRNA. An overview of real-time PCR technologies developed by us to detect precursor and mature microRNAs is presented here. Protocols describe presentation of the data using relative (comparative C(T)) and absolute (standard curve) quantification. Real-time PCR assays were used to measure the time course of precursor and mature miR-155 expression in monocytes stimulated by lipopolysaccharide. Protocols are provided to configure the assays as low density PCR arrays for high throughput gene expression profiling. By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify miRNAs who's processing is regulated during differentiation. Real-time PCR has become the gold standard of nucleic acid quantification due to the specificity and sensitivity of the PCR. Technological advancements have allowed for quantification of miRNA that is of comparable quality to more traditional RNAs.
Collapse
|
Review |
17 |
442 |
4
|
Abstract
It has been widely assumed that the occurrence of cis peptide bonds in proteins is quite rare due to unfavorable contacts between adjacent amino acid residues in this isomeric form. To investigate this assumption, the Brookhaven Protein Data Bank was examined for the occurrences of cis peptide bonds. Out of 31,005 amide bonds, only 17, or 0.05%, are cis, while 99 of the 1534 imide bonds (X-Pro), or 6.5%, are cis. These figures are considerably less than the distribution predicted on the basis of the potential energy difference between the cis and trans isomeric forms and experimental data on small peptides. It is not known whether the lower than expected occurrence of cis peptide bonds arises from constraints imposed by the protein environment, or from assumptions made in the solution of the X-ray crystal structures. However, when the occurrence of cis bonds in the data base is examined relative to the resolution of the structures, the number of cis bonds increases with increasing resolution. The distributions seen for these peptide omega bonds in the data base are not the same shape as the distributions predicted from simple potential energy barriers. They are sharper in the main, but they are also broader at the base with significant numbers of nonplanar peptide bonds. Cis peptide bonds are found primarily in bends and turns and, in the case of cis imide bonds (X-PRO), this correlation is so high that it suggests a specific role for cis imide groups in such structures.
Collapse
|
|
35 |
426 |
5
|
Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD, Dixit VM. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. THE JOURNAL OF IMMUNOLOGY 2010; 185:4385-92. [PMID: 20802146 DOI: 10.4049/jimmunol.1000803] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Endotoxin administration recapitulates many of the host responses to sepsis. Inhibitors of the cysteine protease caspase 1 have long been sought as a therapeutic because mice lacking caspase 1 are resistant to LPS-induced endotoxic shock. According to current thinking, caspase 1-mediated shock requires the proinflammatory caspase 1 substrates IL-1β and IL-18. We show, however, that mice lacking both IL-1β and IL-18 are normally susceptible to LPS-induced splenocyte apoptosis and endotoxic shock. This finding indicates the existence of another caspase 1-dependent mediator of endotoxemia. Reduced serum high mobility group box 1 (HMGB1) levels in caspase 1-deficient mice correlated with their resistance to LPS. A critical role for HMGB1 in endotoxemia was confirmed when mice deficient for IL-1β and IL-18 were protected from a lethal dose of LPS by pretreatment with HMGB1-neutralizing Abs. We found that HMGB1 secretion from LPS-primed macrophages required the inflammasome components apoptotic speck protein containing a caspase activation and recruitment domain (ASC), caspase 1 and Nalp3, whereas HMGB1 secretion from macrophages infected in vitro with Salmonella typhimurium was dependent on caspase 1 and Ipaf. Thus, HMGB1 secretion, which is critical for endotoxemia, occurs downstream of inflammasome assembly and caspase 1 activation.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
381 |
6
|
Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:28-36. [PMID: 21970692 DOI: 10.1094/mpmi-08-11-0204] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N(2)-fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.
Collapse
|
|
13 |
325 |
7
|
Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J, Marsh CB, Wewers MD, Tridandapani S, Kanneganti TD, Amer AO. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 2009; 5:e1000361. [PMID: 19343209 PMCID: PMC2657210 DOI: 10.1371/journal.ppat.1000361] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 03/02/2009] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila (L. pneumophila), the causative agent of a severe form of pneumonia called Legionnaires' disease, replicates in human monocytes and macrophages. Most inbred mouse strains are restrictive to L. pneumophila infection except for the A/J, Nlrc4−/− (Ipaf−/−), and caspase-1−/− derived macrophages. Particularly, caspase-1 activation is detected during L. pneumophila infection of murine macrophages while absent in human cells. Recent in vitro experiments demonstrate that caspase-7 is cleaved by caspase-1. However, the biological role for caspase-7 activation downstream of caspase-1 is not known. Furthermore, whether this reaction is pertinent to the apoptosis or to the inflammation pathway or whether it mediates a yet unidentified effect is unclear. Using the intracellular pathogen L. pneumophila, we show that, upon infection of murine macrophages, caspase-7 was activated downstream of the Nlrc4 inflammasome and required caspase-1 activation. Such activation of caspase-7 was mediated by flagellin and required a functional Naip5. Remarkably, mice lacking caspase-7 and its macrophages allowed substantial L. pneumophila replication. Permissiveness of caspase-7−/− macrophages to the intracellular pathogen was due to defective delivery of the organism to the lysosome and to delayed cell death during early stages of infection. These results reveal a new mechanism for caspase-7 activation downstream of the Nlrc4 inflammasome and present a novel biological role for caspase-7 in host defense against an intracellular bacterium. Legionella pneumophila causes a severe form of pneumonia called Legionnaires' disease. In human macrophages, L. pneumophila establishes special vacuoles that do not fuse with the lysosome and grows intracellularly. However, in mouse macrophages, the bacteria are efficiently delivered to the lysosome for degradation. Importantly, caspase-1 is activated when L. pneumophila infects mouse macrophages, but not when it infects human cells. Caspase-1 activation promotes the fusion of the L. pneumophila vacuole with the lysosome and macrophage death. However, the caspase-1 substrate mediating such effects is unknown. Experiments performed in vitro demonstrate that caspase-7 is a substrate of caspase-1. Yet, it is not known if the reaction takes place within the macrophage, and it is unclear if it has any biological effect. In this study we show that, in mouse macrophages, caspase-7 is activated by L. pneumophila downstream of caspase-1 and requires the host receptors Nlrc4 and Naip5. Remarkably, caspase-7 activation during L. pneumophila infection restricts growth by promoting early macrophage death and efficient delivery of the organism to the lysosome. Consequently, L. pneumophila grows in the macrophages and the lungs of caspase-7−/− mice. Therefore, we demonstrate a novel caspase-7 activation pathway that contributes to the restriction of L. pneumophila infection.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
148 |
8
|
Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 1986; 29:488-95. [PMID: 3087284 PMCID: PMC180419 DOI: 10.1128/aac.29.3.488] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The production, isolation, and characterization of an antibiotic substance from cultures of Pseudomonas fluorescens 2-79 (NRRL B-15132) is described. P. fluorescens 2-79 originally was isolated from the roots of wheat and is suppressive to the wheat root disease take-all caused by Gaeumannomyces graminis var. tritici. The antibiotic was isolated from potato glucose broth cultures of strain 2-79 by solvent extraction. It was purified by silica gel column chromatography and was a greenish yellow, needle-shaped crystal with a melting point of 242 degrees C (decomposition). It was soluble in methylene chloride, chloroform, acetone, 2 N sodium hydroxide, and 2 N hydrochloric acid and was insoluble in water, methanol, ethyl acetate, tetrahydrofuran, diethyl ether, carbon tetrachloride, hexane, and petroleum ether. On the basis of UV, infrared, 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance, mass spectral analysis, and elemental analysis, the structure of the antibiotic is proposed to be a dimer of phenazine carboxylic acid. Lithium aluminum hydride reduction of the antibiotic yielded hydroxymethyl phenazine as a major product which retained most of the biological characteristics of the parent molecule. There were no toxic symptoms when mice received this antibiotic by oral doses up to 464 mg/kg. The antibiotic showed excellent activity against several species of fungi, including the wheat pathogens Gaeumannomyces graminis var. tritici, Rhizoctonia solani, and Pythium aristosporum; and it may have a role in suppression of take-all in vivo by strain 2-79.
Collapse
|
research-article |
39 |
140 |
9
|
Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, Collins FH. Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences. Mol Genet Genomics 2003; 270:173-80. [PMID: 12955498 DOI: 10.1007/s00438-003-0909-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2003] [Accepted: 07/28/2003] [Indexed: 11/25/2022]
Abstract
piggyBac is a short inverted-repeat-type DNA transposable element originally isolated from the genome of the moth Trichoplusia ni. It is currently the gene vector of choice for the transformation of various insect species. A few sequences with similarity to piggyBac have previously been identified from organisms such as humans ( Looper), the pufferfish Takifugu rubripes ( Pigibaku), Xenopus ( Tx), Daphnia ( Pokey), and the Oriental fruit fly Bactrocera dorsalis. We have now identified 50 piggyBac-like sequences from publicly available genome sequences and expressed sequence tags (ESTs). This survey allows the first comparative examination of the distinctive piggyBac transposase, suggesting that it might contain a highly divergent DDD domain, comparable to the widespread DDE domain found in many DNA transposases and retroviral integrases which consists of two absolutely conserved aspartic acids separated by about 70 amino acids with a highly conserved glutamic acid about 35 amino acids further away. Many piggyBac-like sequences were found in the genomes of a phylogenetically diverse range of organisms including fungi, plants, insects, crustaceans, urochordates, amphibians, fishes and mammals. Also, several instances of "domestication" of the piggyBac transposase sequence by the host genome for cellular functions were identified. Novel members of the piggyBac family may be useful in genetic engineering of many organisms.
Collapse
|
Comparative Study |
22 |
132 |
10
|
Martin BN, Wang C, Zhang CJ, Kang Z, Gulen MF, Zepp JA, Zhao J, Bian G, Do JS, Min B, Pavicic PG, El-Sanadi C, Fox PL, Akitsu A, Iwakura Y, Sarkar A, Wewers MD, Kaiser WJ, Mocarski ES, Rothenberg ME, Hise AG, Dubyak GR, Ransohoff RM, Li X. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol 2016; 17:583-92. [PMID: 26998763 DOI: 10.1038/ni.3389] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
Interleukin 1β (IL-1β) is critical for the in vivo survival, expansion and effector function of IL-17-producing helper T (T(H)17) cells during autoimmune responses, including experimental autoimmune encephalomyelitis (EAE). However, the spatiotemporal role and cellular source of IL-1β during EAE pathogenesis are poorly defined. In the present study, we uncovered a T cell-intrinsic inflammasome that drives IL-1β production during T(H)17-mediated EAE pathogenesis. Activation of T cell antigen receptors induced expression of pro-IL-1β, whereas ATP stimulation triggered T cell production of IL-1β via ASC-NLRP3-dependent caspase-8 activation. IL-1R was detected on T(H)17 cells but not on type 1 helper T (T(H)1) cells, and ATP-treated T(H)17 cells showed enhanced survival compared with ATP-treated T(H)1 cells, suggesting autocrine action of T(H)17-derived IL-1β. Together these data reveal a critical role for IL-1β produced by a T(H)17 cell-intrinsic ASC-NLRP3-caspase-8 inflammasome during inflammation of the central nervous system.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
126 |
11
|
Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 2009; 4:e7140. [PMID: 19779610 PMCID: PMC2744928 DOI: 10.1371/journal.pone.0007140] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/29/2009] [Indexed: 01/20/2023] Open
Abstract
Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1beta and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
124 |
12
|
Sarkar A, Hall MW, Exline M, Hart J, Knatz N, Gatson NT, Wewers MD. Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 2006; 174:1003-10. [PMID: 16908867 PMCID: PMC2648100 DOI: 10.1164/rccm.200604-546oc] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Caspase-1 processes interleukin 1beta (IL-1beta) and IL-18 but may also contribute to apoptosis. In this context, caspase-1 knockout mice have been shown to be protected from endotoxin-induced mortality, whereas IL-1beta knockout mice are not protected. OBJECTIVES We therefore sought to delineate the mechanisms responsible for the differential responses between caspase-1 and IL-1beta knockout mice. METHODS Caspase-1 knockout, IL-1beta knockout, and IL-1beta/IL-18 double knockout mice were compared with wild-type mice for survival after intraperitoneal challenge with live Escherichia coli. MEASUREMENTS AND MAIN RESULTS Caspase-1 knockout animals were protected from bacterial challenge, whereas wild-type, IL-1beta knockout, and IL-1beta/IL-18 double knockout animals were not. Wild-type animals and both IL-1beta knockout and IL-1beta/IL-18 double knockout mice demonstrated significant splenic B lymphocyte apoptosis, which was absent in the caspase-1 knockout mice. Importantly, IL-1beta/IL-18 double knockout mice were protected from splenic cell apoptosis and sepsis-induced mortality by the caspase inhibitor zVAD-fmk. Furthermore, wild-type but not caspase-1 knockout splenic B lymphocytes induced peritoneal macrophages to assume an inhibitory phenotype. CONCLUSION Taken together, these findings suggest that caspase-1 is important in the host response to sepsis at least in part via its ability to regulate sepsis-induced splenic cell apoptosis.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
118 |
13
|
Sarkar A, Duncan M, Hart J, Hertlein E, Guttridge DC, Wewers MD. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. THE JOURNAL OF IMMUNOLOGY 2006; 176:4979-86. [PMID: 16585594 DOI: 10.4049/jimmunol.176.8.4979] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Receptor interacting protein-2 (RIP2) is a caspase recruitment domain (CARD)-containing kinase that interacts with caspase-1 and plays an important role in NF-kappaB activation. Apoptosis-associated speck-like protein containing a CARD (ASC) is a PYRIN and CARD-containing molecule, important in the induction of apoptosis and caspase-1 activation. Although RIP2 has also been linked to caspase-1 activation, RIP2 knockout animals fail to show a defect in caspase-1-mediated processing of proIL-1beta to its active form. Therefore, RIP2 function in binding to caspase-1 remains poorly understood. We hypothesized that caspase-1 may serve as a scaffolding molecule that promotes RIP2 interaction with IkappaB kinase-gamma thus inducing NF-kappaB activation. We further hypothesized that ASC, which also interacts with caspase-1 via its CARD, may interfere with the caspase-1 RIP2 interaction. In HEK293 cells, ASC induced prominent activation of caspase-1 and proIL-1beta processing. RIP2 transient transfection induced transcription of an NF-kappaB reporter gene. This RIP2-induced NF-kappaB activity and caspase-1 binding was inhibited in a dose-dependent fashion by ASC. Consistent with a role for caspase-1 as a scaffold for RIP2, caspase-1 knockout macrophages were suppressed in their ability to activate NF-kappaB, and septic caspase-1 knockout animals produced less IL-6, a functional marker of NF-kappaB activity. Lastly, THP-1 cells treated with small interfering RNA for ASC decreased their caspase-1 activity while enhancing their NF-kappaB signal. These data suggest that ASC may direct caspase-1 away from RIP2-mediated NF-kappaB activation, toward caspase-1-mediated processing of proIL-1beta by interfering with the RIP2 caspase-1 interaction.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
106 |
14
|
Sarkar A, Ramesh R, Bhattacharya SK, Rajagopalan G. Oxygen isotope evidence for a stronger winter monsoon current during the last glaciation. Nature 1990. [DOI: 10.1038/343549a0] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
35 |
101 |
15
|
Sarkar A, Léger JF, Chatenay D, Marko JF. Structural transitions in DNA driven by external force and torque. PHYSICAL REVIEW E 2001; 63:051903. [PMID: 11414929 DOI: 10.1103/physreve.63.051903] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Indexed: 11/07/2022]
Abstract
Experiments on single DNA molecules have shown that abrupt transitions between states of different extensions can be driven by stretching and twisting. Here we show how a simple statistical-mechanical model can be used to globally fit experimental force-extension data of Léger et al. [Phys. Rev. Lett. 83, 1066 (1999)], over a wide range of DNA molecule twisting. We obtain the mean twists, extensions, and free energies of the five DNA states found experimentally. We also predict global force-torque and force-linking number phase diagrams for DNA. At zero force, the unwinding torque for zero-force structural transition from the double helix to an unwound structure is found to be approximately -2kBT, while the right-handed torque needed to drive DNA to a highly overwound state approximately 7kBT.
Collapse
|
|
24 |
94 |
16
|
Alamelu D, Sarkar A, Aggarwal SK. Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution. Talanta 2008; 77:256-61. [PMID: 18804629 DOI: 10.1016/j.talanta.2008.06.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/28/2022]
Abstract
This paper reports studies on the determination of trace levels of samarium, europium and gadolinium in aqueous samples by laser-induced breakdown spectroscopy (LIBS). In this work, a membrane-based filter paper was used as a sample support for the liquid samples. The laser-induced plasma was produced in air at atmospheric pressure, using a pulsed Nd:YAG laser. Calibration standards and synthetic mixtures of these lanthanides were prepared using solutions prepared from respective high purity oxides. Linear calibration was obtained for Sm, Eu and Gd by normalizing the intensities of lanthanides emission lines with respective to C(I) 193.029 nm emission line. The concentrations of Sm, Eu and Gd were then determined in a solution containing a mixture of these lanthanides. The concentrations of individual lanthanides were obtained within 5% of the expected values. Limits of detection were found to be 1.3 ppmw (Sm), 1.9 ppmw (Eu) and 2.3 ppmw (Gd).
Collapse
|
Journal Article |
17 |
92 |
17
|
Rattan S, Sarkar A, Chakder S. Nitric oxide pathway in rectoanal inhibitory reflex of opossum internal anal sphincter. Gastroenterology 1992; 103:43-50. [PMID: 1612356 DOI: 10.1016/0016-5085(92)91093-j] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of nitric oxide in relaxation of the internal anal sphincter (IAS) in response to the rectoanal reflex was studied in the opossum. Resting pressures in the IAS (IASP) were monitored using low-compliance continuously perfused catheters. The NO-synthase inhibitor L-NG-nitro-arginine (L-NNA) caused significant and dose-dependent suppression of the decrease in IASP in response to the reflex mimicked by the rectal balloon distention. NO-synthase inhibitor blocked IAS relaxation in response not only to rectoanal reflex but also to other neural stimuli such as sacral nerve stimulation, local intramural stimulation, and the nicotinic ganglionic stimulant 1,1-dimethyl-4-phenylpiperazinium. Suppression of the neurally mediated IAS relaxation by L-NNA was stereoselective; D-NNA had no effect on the relaxation. The suppression of the rectoanal reflex-induced IAS relaxation by L-NNA was completely reversed by NO precursor L-arginine stereoselectively as D-arginine failed to reverse the suppressed IAS relaxation. Sodium nitroprusside caused a decrease in IASP that was modified neither by the neurotoxin tetrodotoxin nor by L-NNA. Furthermore, the decrease in IASP by the direct-acting beta-adrenoceptor agonist isoproterenol was also not modified by the inhibitor of NO synthase. It is concluded that NO or an NO-like substance is an important mediator of IAS relaxation in response to noradrenergic, noncholinergic nerve stimulation.
Collapse
|
|
33 |
83 |
18
|
Sarkar A, Nitin N, Karwe MV, Singh RP. Fluid Flow and Heat Transfer in Air Jet Impingement in Food Processing. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb06315.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
19 |
75 |
19
|
Bishayee A, Sarkar A, Chatterjee M. Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. JOURNAL OF ETHNOPHARMACOLOGY 1995; 47:69-74. [PMID: 7500638 DOI: 10.1016/0378-8741(95)01254-b] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The effect of carrot extract on carbon tetrachloride (CCl4)-induced acute liver damage was evaluated. The increased serum enzyme levels (viz., glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, lactate dehydrogenase, alkaline phosphatase, sorbitol and glutamate dehydrogenase) by CCl4-induction were significantly lowered due to pretreatment with the extract. The extract also decreased the elevated serum bilirubin and urea content due to CCl4 administration. Increased activities of hepatic 5'-nucleotidase, acid phosphatase, acid ribonuclease and decreased levels of succinic dehydrogenase, glucose-6-phosphatase and cytochrome P-450 produced by CCl4 were reversed by the extract in a dose-responsive way. Results of this study revealed that carrot could afford a significant protective action in the alleviation of CCl4-induced hepatocellular injury.
Collapse
|
|
30 |
75 |
20
|
Sarkar A, Murugan AV, Manthiram A. Low cost Pd–W nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b812722k] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
16 |
72 |
21
|
Reddy VK, Valasinas A, Sarkar A, Basu HS, Marton LJ, Frydman B. Conformationally restricted analogues of 1N,12N-bisethylspermine: synthesis and growth inhibitory effects on human tumor cell lines. J Med Chem 1998; 41:4723-32. [PMID: 9822543 DOI: 10.1021/jm980172v] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eight analogues of 1N,12N-bisethylspermine (BES) with restricted conformations were synthesized in the search for new spermine mimetics with cytotoxic activities. By replacing the central butane segment of BES with a 1,2-disubstituted cyclopropane ring, a pair of cis/trans-isomers was obtained that introduced a spatial constraint in the otherwise freely mobile butane chain. An analogous pair of isomers was obtained when the butane segment was replaced with a 1, 2-disubstituted cyclobutane ring or with a 2-butene residue. The six new BES analogues thus obtained (three pairs of cis/trans-isomers) were growth inhibitory at low-micromolar concentrations against four human tumor cell lines (A549, HT-29, U251MG, and DU145) but were less growth inhibitory against two other human tumor cell lines (PC-3 and MCF7). 1N,12N-Bisethylspermyne, where the central butane segment of BES was replaced by the rigid 2-butyne segment, was devoid of growth inhibitory activity against five of the six human cell lines studied (DU145 being the only exception), a clear indication of the importance of conformational mobility at the 4N, 9N-butane segment of BES for its biological activity. When the butane segment was replaced by a benzene-1,2-dimethyl residue, the resulting BES analogue was devoid of growth inhibitory activity despite its cisoid conformation. The cytotoxicity of the analogues does not seem to be directly related to their uptake by the cells or to their effects on cellular polyamine levels. BES analogues with restricted conformations but which contained the equivalent of a two-carbon unit, rather than the natural four-carbon unit, at the central segment, such as 1,2-diaminocyclopropyl or 1, 2-diaminocyclobutyl derivatives, were devoid of growth inhibitory effects at the concentrations studied. The development of conformationally restricted polyamine analogues appears to show promise in the further quest for polyamine-related therapeutic agents with specificity of action.
Collapse
|
|
27 |
71 |
22
|
Fahy RJ, Exline MC, Gavrilin MA, Bhatt NY, Besecker BY, Sarkar A, Hollyfield JL, Duncan MD, Nagaraja HN, Knatz NL, Hall M, Wewers MD. Inflammasome mRNA expression in human monocytes during early septic shock. Am J Respir Crit Care Med 2008; 177:983-8. [PMID: 18263805 DOI: 10.1164/rccm.200703-418oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Monocytes are central to the initiation of the inflammatory response in sepsis, with caspase-1 activation playing a key role. Monocyte deactivation during sepsis has been linked to poor outcomes. OBJECTIVES Given the importance of caspase-1 in the immune response, we investigated whether monocytes from patients early in septic shock demonstrate alterations in mRNAs for caspase-1-related molecules. METHODS Patients with septic shock (n = 26; age >18 years), critically ill intensive care unit patients (n = 20), and healthy volunteers (n = 22) were enrolled in a prospective cohort study in a university intensive care unit. Demographic, biological, physiologic, and plasma cytokine measurements were obtained. Monocytes were assayed for ex vivo tumor necrosis factor-alpha production, and fresh monocyte mRNA was analyzed by quantitative reverse-transcription polymerase chain reaction for Toll-like receptors, NOD-LRR proteins, cytokines, and nuclear factor-kappaB-related genes. MEASUREMENTS AND MAIN RESULTS Relative copy numbers for the inflammasome mRNAs for ASC, caspase-1, NALP1, and Pypaf-7 were significantly lower in patients with septic shock compared with critically ill control subjects. NALP1 mRNA levels were linked to survival in patients with sepsis (P = 0.0068) and correlated with SAPS II scores (r = -0.63). CONCLUSIONS These data suggest that monocyte deactivation occurs during the earliest stages of the systemic inflammatory response and that changes in inflammasome mRNA expression are part of this process.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
68 |
23
|
Sarkar A, Ray D, Shrivastava AN, Sarker S. Molecular Biomarkers: their significance and application in marine pollution monitoring. ECOTOXICOLOGY (LONDON, ENGLAND) 2006; 15:333-40. [PMID: 16676218 DOI: 10.1007/s10646-006-0069-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2006] [Indexed: 05/09/2023]
Abstract
This paper presents an overview of the significance of the use of molecular biomarkers as diagnostic and prognostic tools for marine pollution monitoring. In order to assess the impact of highly persistent pollutants such as polychlorinated biphenyls (PCB), polychlorinated dibenzo-dioxins (PCDD), polychlorinated dibenzo-furans (PCDF), polynuclear aromatic hydrocarbons (PAH), tributyltin (TBT) and other toxic metals on the marine ecosystem a suite of biomarkers are being extensively used worldwide. Among the various types of biomarkers, the following have received special attention: cytochrome P4501A induction, DNA integrity, acetylcholinesterase activity and metallothionein induction. These biomarkers are being used to evaluate exposure of various species of sentinel marine organisms (e.g. mussels, clams, oysters, snails, fishes, etc.) to and the effect of various contaminants (organic xenobiotics and metals) using different molecular approaches [biochemical assays, enzyme linked immuno-sorbent assays (ELISA), spectrophotometric, fluorometric measurement, differential pulsed polarography, liquid chromatography, atomic absorption spectrometry]. The induction of the biotransformation enzyme, cytochrome P4501A in fishes (Callionymus lyra, Limanda limanda, Serranus sp., Mullus barbatus) and mussels (Dreissena polymorpha) by various xenobiotic contaminants such as PCBs, PAHs, PCDs is used as a biomarker of exposure to such organic pollutants. The induction of cytochrome P4501A is involved in chemical carcinogenesis through catalysis of the covalent bonding of organic contaminants to a DNA strand leading to formation of DNA adduct. Measurement of the induction of cytochrome P4501A in terms of EROD (7-ethoxy resorufin O-deethylase) activity is successfully used as a potential biomarker of exposure to xenobiotic contaminants in marine pollution monitoring. In order to assess the impact of neurotoxic compounds on marine environment the evaluation of acetylcholinesterase activity in marine organisms is used as a biomarker of exposure to neurotoxic agents such as organophosphorus, carbamate pesticides etc. Metallothioneins (MTs) are induced by toxic metals such as Cd, Hg, and Cu by chelation through cysteine residues and are used in both vertebrates and invertebrates as a biomarker of metal exposure. The measurement of the levels of DNA integrity in marine organisms such as Sea stars (Asterias rubens) from the North Sea and the marine snails (Planaxis sulcatus) from the Arabian Sea along the Goa coast exposed to environmental xenobiotic contaminants clearly indicated the extent and the nature of pollution at the sampling sites along coastal environment.
Collapse
|
Review |
19 |
65 |
24
|
Adamczyk L, Agakishiev G, Aggarwal MM, Ahammed Z, Alakhverdyants AV, Alekseev I, Alford J, Anderson BD, Anson CD, Arkhipkin D, Aschenauer E, Averichev GS, Balewski J, Bannerjee A, Barnovska Z, Beavis DR, Bellwied R, Betancourt MJ, Betts RR, Bhasin A, Bhati AK, Bichsel H, Bielcik J, Bielcikova J, Bordyuzhin IG, Borowski W, Bouchet J, Brandin AV, Brovko SG, Bruna E, Bueltmann S, Bunzarov I, Burton TP, Butterworth J, Cai XZ, Caines H, Calderón de la Barca Sánchez M, Cebra D, Cendejas R, Cervantes MC, Chaloupka P, Chattopadhyay S, Chen HF, Chen JH, Chen JY, Chen L, Cheng J, Cherney M, Chikanian A, Christie W, Chung P, Chwastowski J, Codrington MJM, Corliss R, Cramer JG, Crawford HJ, Cui X, Davila Leyva A, De Silva LC, Debbe RR, Dedovich TG, Deng J, Derradi de Souza R, Dhamija S, Didenko L, Ding F, Dion A, Djawotho P, Dong X, Drachenberg JL, Draper JE, Du CM, Dunkelberger LE, Dunlop JC, Efimov LG, Elnimr M, Engelage J, Eppley G, Eun L, Evdokimov O, Fatemi R, Fazio S, Fedorisin J, Fersch RG, Filip P, Finch E, Fisyak Y, Gagliardi CA, Gangadharan DR, Geurts F, Gliske S, Gorbunov YN, Grebenyuk OG, Grosnick D, Gupta S, Guryn W, Haag B, Hajkova O, Hamed A, Han LX, Harris JW, Hays-Wehle JP, Heppelmann S, Hirsch A, Hoffmann GW, Hofman DJ, Horvat S, Huang B, Huang HZ, Huck P, Humanic TJ, Huo L, Igo G, Jacobs WW, Jena C, Joseph J, Judd EG, Kabana S, Kang K, Kapitan J, Kauder K, Ke HW, Keane D, Kechechyan A, Kesich A, Kettler D, Kikola DP, Kiryluk J, Kisiel A, Kizka V, Klein SR, Koetke DD, Kollegger T, Konzer J, Koralt I, Koroleva L, Korsch W, Kotchenda L, Kravtsov P, Krueger K, Kumar L, Lamont MAC, Landgraf JM, LaPointe S, Lauret J, Lebedev A, Lednicky R, Lee JH, Leight W, LeVine MJ, Li C, Li L, Li W, Li X, Li X, Li Y, Li ZM, Lima LM, Lisa MA, Liu F, Ljubicic T, Llope WJ, Longacre RS, Lu Y, Luo X, Luszczak A, Ma GL, Ma YG, Madagodagettige Don DMMD, Mahapatra DP, Majka R, Mall OI, Margetis S, Markert C, Masui H, Matis HS, McDonald D, McShane TS, Mioduszewski S, Mitrovski MK, Mohammed Y, Mohanty B, Morozov B, Munhoz MG, Mustafa MK, Naglis M, Nandi BK, Nasim M, Nayak TK, Nogach LV, Novak J, Odyniec G, Ogawa A, Oh K, Ohlson A, Okorokov V, Oldag EW, Oliveira RAN, Olson D, Ostrowski P, Pachr M, Page BS, Pal SK, Pan YX, Pandit Y, Panebratsev Y, Pawlak T, Pawlik B, Pei H, Perkins C, Peryt W, Pile P, Planinic M, Pluta J, Plyku D, Poljak N, Porter J, Poskanzer AM, Powell CB, Prindle D, Pruneau C, Pruthi NK, Przybycien M, Pujahari PR, Putschke J, Qiu H, Raniwala R, Raniwala S, Ray RL, Redwine R, Reed R, Riley CK, Ritter HG, Roberts JB, Rogachevskiy OV, Romero JL, Ross JF, Ruan L, Rusnak J, Sahoo NR, Sakrejda I, Salur S, Sandacz A, Sandweiss J, Sangaline E, Sarkar A, Schambach J, Scharenberg RP, Schmah AM, Schmidke B, Schmitz N, Schuster TR, Seele J, Seger J, Seyboth P, Shah N, Shahaliev E, Shao M, Sharma B, Sharma M, Shi SS, Shou QY, Sichtermann EP, Singaraju RN, Skoby MJ, Smirnov D, Smirnov N, Solanki D, Sorensen P, deSouza UG, Spinka HM, Srivastava B, Stanislaus TDS, Steadman SG, Stevens JR, Stock R, Strikhanov M, Stringfellow B, Suaide AAP, Suarez MC, Sumbera M, Sun XM, Sun Y, Sun Z, Surrow B, Svirida DN, Symons TJM, Szanto de Toledo A, Takahashi J, Tang AH, Tang Z, Tarini LH, Tarnowsky T, Thein D, Thomas JH, Tian J, Timmins AR, Tlusty D, Tokarev M, Trainor TA, Trentalange S, Tribble RE, Tribedy P, Trzeciak BA, Tsai OD, Turnau J, Ullrich T, Underwood DG, Van Buren G, van Nieuwenhuizen G, Vanfossen JA, Varma R, Vasconcelos GMS, Videbæk F, Viyogi YP, Vokal S, Voloshin SA, Vossen A, Wada M, Wang F, Wang G, Wang H, Wang JS, Wang Q, Wang XL, Wang Y, Webb G, Webb JC, Westfall GD, Whitten C, Wieman H, Wissink SW, Witt R, Witzke W, Wu YF, Xiao Z, Xie W, Xin K, Xu H, Xu N, Xu QH, Xu W, Xu Y, Xu Z, Xue L, Yang Y, Yang Y, Yepes P, Yi Y, Yip K, Yoo IK, Zawisza M, Zbroszczyk H, Zhang JB, Zhang S, Zhang WM, Zhang XP, Zhang Y, Zhang ZP, Zhao F, Zhao J, Zhong C, Zhu X, Zhu YH, Zoulkarneeva Y. Transverse single-spin asymmetry and cross section forπ0andηmesons at large Feynmanxinp↑+pcollisions ats=200 GeV. Int J Clin Exp Med 2012. [DOI: 10.1103/physrevd.86.051101] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
13 |
64 |
25
|
Mitra S, Exline M, Habyarimana F, Gavrilin MA, Baker PJ, Masters SL, Wewers MD, Sarkar A. Microparticulate Caspase 1 Regulates Gasdermin D and Pulmonary Vascular Endothelial Cell Injury. Am J Respir Cell Mol Biol 2019; 59:56-64. [PMID: 29365280 DOI: 10.1165/rcmb.2017-0393oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung endothelial cell apoptosis and injury occur throughout all stages of acute lung injury/acute respiratory distress syndrome and impact disease progression. Caspases 1, 4, and 5 are essential for completion of the apoptotic program known as pyroptosis that also involves proinflammatory cytokines. Because gasdermin D (GSDMD) mediates pyroptotic death and is essential for pore formation, we hypothesized that it might direct caspase 1-encapsulated microparticle (MP) release and mediate endothelial cell death. Our present work provides evidence that GSDMD is released by LPS-stimulated THP-1 monocytic cells, where it is packaged into microparticles together with active caspase 1. Furthermore, only MP released from stimulated monocytic cells that contain both cleaved GSDMD and active caspase 1 induce endothelial cell apoptosis. MPs pretreated with caspase 1 inhibitor Y-VAD or pan-caspase inhibitor Z-VAD do not contain cleaved GSDMD. MPs from caspase 1-knockout cells are also deficient in p30 active GSDMD, further confirming that caspase 1 regulates GSDMD function. Although control MPs contained cleaved GSDMD without caspase 1, these fractions were unable to induce cell death, suggesting that encapsulation of both caspase 1 and GSDMD is essential for cell death induction. Release of microparticulate active caspase 1 was abrogated in GSDMD knockout cells, although cytosolic caspase 1 activation was not impaired. Last, higher concentrations of microparticulate GSDMD were detected in the plasma of septic patients with acute respiratory distress syndrome than in that of healthy donors. Taken together, these findings suggest that GSDMD regulates the release of microparticulate active caspase 1 from monocytes essential for induction of cell death and thereby may play a critical role in sepsis-induced endothelial cell injury.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
63 |