1
|
Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf 2019; 18:1111-1134. [PMID: 31920467 PMCID: PMC6952072 DOI: 10.1111/1541-4337.12448] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Monosodium glutamate (MSG) is an umami substance widely used as flavor enhancer. Although it is generally recognized as being safe by food safety regulatory agencies, several studies have questioned its long-term safety. The purpose of this review was to survey the available literature on preclinical studies and clinical trials regarding the alleged adverse effects of MSG. Here, we aim to provide a comprehensive overview of the reported possible risks that may potentially arise following chronic exposure. Furthermore, we intend to critically evaluate the relevance of this data for dietary human intake. Preclinical studies have associated MSG administration with cardiotoxicity, hepatotoxicity, neurotoxicity, low-grade inflammation, metabolic disarray and premalignant alterations, along with behavioral changes. Moreover, links between MSG consumption and tumorigenesis, increased oxidative stress and apoptosis in thymocytes, as well as genotoxic effects in lymphocytes have been reported. However, in reviewing the available literature, we detected several methodological flaws, which led us to conclude that these studies have limited relevance for extrapolation to dietary human intakes of MSG risk exposure. Clinical trials have focused mainly on the effects of MSG on food intake and energy expenditure. Besides its well-known impact on food palatability, MSG enhances salivary secretion and interferes with carbohydrate metabolism, while the impact on satiety and post-meal recovery of hunger varied in relation to meal composition. Reports on MSG hypersensitivity, also known as 'Chinese restaurant syndrome', or links of its use to increased pain sensitivity and atopic dermatitis were found to have little supporting evidence. Based on the available literature, we conclude that further clinical and epidemiological studies are needed, with an appropriate design, accounting for both added and naturally occurring dietary MSG. Critical analysis of existing literature, establishes that many of the reported negative health effects of MSG have little relevance for chronic human exposure and are poorly informative as they are based on excessive dosing that does not meet with levels normally consumed in food products.
Collapse
|
research-article |
6 |
86 |
2
|
Ungurianu A, Zanfirescu A, Nițulescu G, Margină D. Vitamin E beyond Its Antioxidant Label. Antioxidants (Basel) 2021; 10:634. [PMID: 33919211 PMCID: PMC8143145 DOI: 10.3390/antiox10050634] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.
Collapse
|
Review |
4 |
45 |
3
|
Nitulescu G, Nicorescu IM, Olaru OT, Ungurianu A, Mihai DP, Zanfirescu A, Nitulescu GM, Margina D. Molecular Docking and Screening Studies of New Natural Sortase A Inhibitors. Int J Mol Sci 2017; 18:E2217. [PMID: 29065551 PMCID: PMC5666896 DOI: 10.3390/ijms18102217] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
To date, multi-drug resistant bacteria represent an increasing health threat, with a high impact on mortality, morbidity, and health costs on a global scale. The ability of bacteria to rapidly and permanently acquire new virulence factors and drug-resistance elements requires the development of new antimicrobial agents and selection of new proper targets, such as sortase A. This specific bacterial target plays an important role in the virulence of many Gram-positive pathogens, and its inhibition should produce a mild evolutionary pressure which will not favor the development of resistance. A primary screening using a fluorescence resonance energy transfer assay was used to experimentally evaluate the inhibitory activity of several compounds on sortase A. Using molecular docking and structure-activity relationship analyses, several lead inhibitors were identified, which were further tested for antimicrobial activity using the well diffusion test and minimum inhibitory concentration. The toxicity was assessed using the Daphnia magna test and used as a future screening filter. Three natural compounds were identified in this study as promising candidates for further development into therapeutically useful anti-infective agents that could be used to treat infections caused by multi-drug resistant bacterial pathogens which include sortase A in their enzymatic set.
Collapse
|
research-article |
8 |
37 |
4
|
Fierascu RC, Georgiev MI, Fierascu I, Ungureanu C, Avramescu SM, Ortan A, Georgescu MI, Sutan AN, Zanfirescu A, Dinu-Pirvu CE, Velescu BS, Anuta V. Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem Toxicol 2017; 111:44-52. [PMID: 29126799 DOI: 10.1016/j.fct.2017.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
Abstract
The present study aims to evaluate the potential uses of hydroalcoholic extracts obtained from Romanian native wild-growing plants. The hydroalcoholic extracts were obtained from the burdock roots and respectively the aerial parts of birdeye speedwell. The extracts were characterised by HPLC (quantifying 13 compounds in the V. persica extract, 6 compounds in the A. lappa extract and confirming the presence of arctiin and arctigenin in the burdock extract). The antioxidant potential of the crude extracts was evaluated using two methods: the DPPH assay (79.91% for speedwell extract, 76.23% for burdock extract) and the phosphomolybdate method (296.5 mg/g ascorbic acid equivalents for burdock, 324.4 mg/g for speedwell). The crude extracts were found to be active against both fungal lines used (Aspergillus niger and Penicillium hirsutum), inhibition zones - 17.1 mm and 13.1 mm against P. hirsutum, respectively ca. 22 mm for both extracts against A. niger. The cytogenetic effects (assessed using the Allium cepa assay) revealed a series of chromosomal aberrations and nuclear aberrations induced in the meristematic root cells. The anti-inflammatory effect, estimated in two inflammation experimental models, showed a significant effect, especially for the speedwell extract. The results recommend the evaluated extracts as promising sources of biologically-active compounds.
Collapse
|
Journal Article |
8 |
32 |
5
|
Ungurianu A, Zanfirescu A, Margină D. Sirtuins, resveratrol and the intertwining cellular pathways connecting them. Ageing Res Rev 2023; 88:101936. [PMID: 37116286 DOI: 10.1016/j.arr.2023.101936] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Sirtuins are a family of NAD+-dependent deacylases with numerous physiological and pathological implications, which lately became an attractive therapeutic target. Sirtuin-activating compounds (STACs) could be useful in disease prevention and treatment. Despite its bioavailability issues, resveratrol exerts a myriad of beneficial effects, known as the "resveratrol paradox". Modulation of sirtuins' expression and activity may, in fact, underlie many of resveratrol revered actions; however, the cellular pathways affected by modulating the activity of each sirtuin isoform, in different physio-pathological conditions, are not fully known. The purpose of this review was to summarize recent reports concerning the effects of resveratrol on the activity of sirtuins in different experimental settings, focusing on in vitro and in vivo preclinical studies. Most reports concern SIRT1, however recent studies dive into the effects initiated via other isoforms. Numerous cellular signaling pathways were reported to be modulated by resveratrol in a sirtuin-dependent manner (increased phosphorylation of MAPKs, AKT, AMPK, RhoA, BDNF, decreased activation of NLRP3 inflammasome, NF-κB, STAT3, upregulation of SIRT1/SREBP1c pathway, reduced β-amyloid via SIRT1-NF-κB-BACE1 signaling and counteracting mitochondrial damage by deacetylating PGC-1α). Thus, resveratrol may be the ideal candidate in the search for STACs as a tool for preventing and treating inflammatory and neurodegenerative diseases.
Collapse
|
Review |
2 |
31 |
6
|
Nitulescu G, Margina D, Zanfirescu A, Olaru OT, Nitulescu GM. Targeting Bacterial Sortases in Search of Anti-Virulence Therapies with Low Risk of Resistance Development. Pharmaceuticals (Basel) 2021; 14:ph14050415. [PMID: 33946434 PMCID: PMC8147154 DOI: 10.3390/ph14050415] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022] Open
Abstract
Increasingly ineffective antibiotics and rapid spread of multi- and pan-resistant bacteria represent a global health threat; hence, the need of developing new antimicrobial medicines. A first step in this direction is identifying new molecular targets, such as virulence factors. Sortase A represents a virulence factor essential for the pathogenesis of Gram-positive pathogens, some of which have a high risk for human health. We present here an exhaustive collection of sortases inhibitors grouped by relevant chemical features: vinyl sulfones, 3-aryl acrylic acids and derivatives, flavonoids, naphtoquinones, anthraquinones, indoles, pyrrolomycins, isoquinoline derivatives, aryl β-aminoethyl ketones, pyrazolethiones, pyridazinones, benzisothiazolinones, 2-phenyl-benzoxazole and 2-phenyl-benzofuran derivatives, thiadiazoles, triazolothiadiazoles, 2-(2-phenylhydrazinylidene)alkanoic acids, and 1,2,4-thiadiazolidine-3,5-dione. This review focuses on highlighting their structure–activity relationships, using the half maximal inhibitory concentration (IC50), when available, as an indicator of each compound effect on a specific sortase. The information herein is useful for acquiring knowledge on diverse natural and synthetic sortases inhibitors scaffolds and for understanding the way their structural variations impact IC50. It will hopefully be the inspiration for designing novel effective and safe sortase inhibitors in order to create new anti-infective compounds and to help overcoming the current worldwide antibiotic shortage.
Collapse
|
Review |
4 |
30 |
7
|
Fierascu I, Ungureanu C, Avramescu SM, Cimpeanu C, Georgescu MI, Fierascu RC, Ortan A, Sutan AN, Anuta V, Zanfirescu A, Dinu-Pirvu CE, Velescu BS. Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:3. [PMID: 29301523 PMCID: PMC5755145 DOI: 10.1186/s12906-017-2066-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Juniperus communis L. represents a multi-purpose crop used in the pharmaceutical, food, and cosmetic industry. Several studies present the possible medicinal properties of different Juniperus taxa native to specific geographical area. The present study aims to evaluate the genoprotective, antioxidant, antifungal and anti-inflammatory potential of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. METHODS The prepared hydroethanolic extract of Juniperus communis L. was characterized by GC-MS, HPLC, UV-Vis spectrometry and phytochemical assays. The antioxidant potential was evaluated using the DPPH assay, the antifungal effect was studied on Aspergillus niger ATCC 15475 and Penicillium hirsutum ATCC 52323, while the genoprotective effect was evaluated using the Allium cepa assay. The anti-inflammatory effect was evaluated in two inflammation experimental models (dextran and kaolin) by plethysmometry. Male Wistar rats were treated by gavage with distilled water (negative control), the microemulsion (positive control), diclofenac sodium aqueous solution (reference) and microemulsions containing juniper extract (experimental group). The initial paw volume and the paw volumes at 1, 2, 3, 4, 5 and 24 h were measured. RESULTS Total terpenoids, phenolics and flavonoids were estimated to be 13.44 ± 0.14 mg linalool equivalent, 19.23 ± 1.32 mg gallic acid equivalent, and 5109.6 ± 21.47 mg rutin equivalent per 100 g of extract, respectively. GC-MS characterization of the juniper extract identified 57 volatile compounds in the sample, while the HPLC analysis revealed the presence of the selected compounds (α-pinene, chlorogenic acid, rutin, apigenin, quercitin). The antioxidant potential of the crude extract was found to be 81.63 ± 0.38% (measured by the DPPH method). The results of the antifungal activity assay (for Aspergillus niger and Penicillium hirsutum) were 21.6 mm, respectively 17.2 mm as inhibition zone. Test results demonstrated the genoprotective potential of J. communis undiluted extract, inhibiting the mitodepressive effect of ethanol. The anti-inflammatory action of the juniper extract, administered as microemulsion in acute-dextran model was increased when compared to kaolin subacute inflammation induced model. CONCLUSION The hydroalcoholic extract obtained from wild-growing Juniperus communis native to Romanian southern sub-Carpathian hills has genoprotective, antioxidant, antifungal and anti-inflammatory properties.
Collapse
|
research-article |
7 |
21 |
8
|
Nitulescu G, Mihai DP, Nicorescu IM, Olaru OT, Ungurianu A, Zanfirescu A, Nitulescu GM, Margina D. Discovery of natural naphthoquinones as sortase A inhibitors and potential anti-infective solutions against Staphylococcus aureus. Drug Dev Res 2019; 80:1136-1145. [PMID: 31486108 DOI: 10.1002/ddr.21599] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Three natural naphthoquinones were screened to find new anti-virulence agents as inhibitors against sortase A from Staphylococcus aureus (SaSrtA) by quantifying the increase in fluorescence intensity upon substrate cleavage at various concentrations. The 5-hydroxy-1,4-naphthalenedione derivatives, juglone and plumbagin, demonstrated a potent inhibitory effect, with IC50 values of 1.78 μM, respectively, 16.71 μM. The related 2-hydroxy-1,4-naphthalenedione derivative, lawsone, demonstrated the selectivity of the chemical scaffold having no significant effect on SaSrtA. The experimental assay was reinforced by molecular docking experiments, antimicrobial, and toxicological studies. Molecular docking studies and the electrophilic character analysis suggest bonding to the enzyme active cysteine residue by a Michael addition reaction. None of the compounds had a significant effect on the concentration of total thiol proteins in the Daphnia magna toxicological assay after 24 hr exposure. Juglone and plumbagin moderately inhibited biofilm formation with no significant effect on bacterial growth of S. aureus, Enterococcus faecalis, and Staphylococcus epidermidis, indicating a selective anti-virulence profile.
Collapse
|
Journal Article |
6 |
20 |
9
|
Paun G, Neagu E, Moroeanu V, Albu C, Ursu TM, Zanfirescu A, Negres S, Chirita C, Radu GL. Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
|
7 |
18 |
10
|
Ungurianu A, Zanfirescu A, Margină D. Regulation of Gene Expression through Food—Curcumin as a Sirtuin Activity Modulator. PLANTS 2022; 11:plants11131741. [PMID: 35807694 PMCID: PMC9269530 DOI: 10.3390/plants11131741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
The sirtuin family comprises NAD+-dependent protein lysine deacylases, mammalian sirtuins being either nuclear (SIRT1, SIRT2, SIRT6, and SIRT7), mitochondrial (SIRT3, SIRT4, and SIRT5) or cytosolic enzymes (SIRT2 and SIRT5). They are able to catalyze direct metabolic reactions, thus regulating several physiological functions, such as energy metabolism, stress response, inflammation, cell survival, DNA repair, tissue regeneration, neuronal signaling, and even circadian rhythms. Based on these data, recent research was focused on finding molecules that could regulate sirtuins’ expression and/or activity, natural compounds being among the most promising in the field. Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) can induce, through SIRT, modulation of cancer cell senescence, improve endothelial cells protection against atherosclerotic factors, enhance muscle regeneration in atrophy models, and act as a pro-longevity factor counteracting the neurotoxicity of amyloid-beta. Although a plethora of protective effects was reported (antioxidant, anti-inflammatory, anticancer, etc.), its therapeutical use is limited due to its bioavailability issues. However, all the reported effects may be explained via the bioactivation theory, which postulates that curcumin’s observed actions are modulated via its metabolites and/or degradation products. The present article is focused on bringing together the literature data correlating the ability of curcumin and its metabolites to modulate SIRT activity and its consequent beneficial effects.
Collapse
|
|
3 |
17 |
11
|
Zanfirescu A, Cristea AN, Nitulescu GM, Velescu BS, Gradinaru D. Chronic Monosodium Glutamate Administration Induced Hyperalgesia in Mice. Nutrients 2017; 10:E1. [PMID: 29267217 PMCID: PMC5793229 DOI: 10.3390/nu10010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
Monosodium glutamate (MSG) is a widely used food additive. Although it is generally considered safe, some questions regarding the impact of its use on general health have arisen. Several reports correlate MSG consumption with a series of unwanted reactions, including headaches and mechanical sensitivity in pericranial muscles. Endogenous glutamate plays a significant role in nociceptive processing, this neurotransmitter being associated with hyperalgesia and central sensitization. One of the mechanisms underlying these phenomena is the stimulation of Ca2+/calmodulin sensitive nitric oxide synthase, and a subsequent increase in nitric oxide production. This molecule is a key player in nociceptive processing, with implications in acute and chronic pain states. Our purpose was to investigate the effect of this food additive on the nociceptive threshold when given orally to mice. Hot-plate and formalin tests were used to assess nociceptive behaviour. We also tried to determine if a correlation between chronic administration of MSG and variations in central nitric oxide (NO) concentration could be established. We found that a dose of 300 mg/kg MSG given for 21 days reduces the pain threshold and is associated with a significant increase in brain NO level. The implications of these findings on food additive-drug interaction, and on pain perception in healthy humans, as well as in those suffering from affections involving chronic pain, are still to be investigated.
Collapse
|
research-article |
8 |
16 |
12
|
Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021; 26:5668. [PMID: 34577139 PMCID: PMC8468992 DOI: 10.3390/molecules26185668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Neurological and neurodegenerative diseases are debilitating conditions, and frequently lack an effective treatment. Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of 2-AG (2-arachidonoylglycerol), a neuroprotective endocannabinoid intimately linked to the generation of pro- and anti-inflammatory molecules. Consequently, synthesizing selective MAGL inhibitors has become a focus point in drug design and development. The purpose of this review was to summarize the diverse synthetic scaffolds of MAGL inhibitors concerning their potency, mechanisms of action and potential therapeutic applications, focusing on the results of studies published in the past five years. The main irreversible inhibitors identified were derivatives of hexafluoroisopropyl alcohol carbamates, glycol carbamates, azetidone triazole ureas and benzisothiazolinone, whereas the most promising reversible inhibitors were derivatives of salicylketoxime, piperidine, pyrrolidone and azetidinyl amides. We reviewed the results of in-depth chemical, mechanistic and computational studies on MAGL inhibitors, in addition to the results of in vitro findings concerning selectivity and potency of inhibitors, using the half maximal inhibitory concentration (IC50) as an indicator of their effect on MAGL. Further, for highlighting the potential usefulness of highly selective and effective inhibitors, we examined the preclinical in vivo reports regarding the promising therapeutic applications of MAGL pharmacological inhibition.
Collapse
|
Review |
4 |
13 |
13
|
Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res 2024; 38:2361-2387. [PMID: 38429891 DOI: 10.1002/ptr.8168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 03/03/2024]
Abstract
As the global population ages, preventing lifestyle- and aging-related diseases is increasing, necessitating the search for safe and affordable therapeutic interventions. Among nutraceuticals, quercetin, a flavonoid ubiquitously present in various plants, has garnered considerable interest. This review aimed to collate and analyze existing literature on the therapeutic potentials of quercetin, especially its interactions with SIRTs and its clinical applicability based on its bioavailability and safety. This narrative review was based on a literature survey spanning from 2015 to 2023 using PUBMED. The keywords and MeSH terms used were: "quercetin" AND "bioavailability" OR "metabolism" OR "metabolites" as well as "quercetin" AND "SIRTuin" OR "SIRT*" AND "cellular effects" OR "pathway" OR "signaling" OR "neuroprotective" OR "cardioprotective" OR "nephroprotective" OR "antiatherosclerosis" OR "diabetes" OR "antidiabetic" OR "dyslipidemia" AND "mice" OR "rats". Quercetin demonstrates multiple therapeutic activities, including neuroprotective, cardioprotective, and anti-atherosclerotic effects. Its antioxidant, anti-inflammatory, antiviral, and immunomodulatory properties are well-established. At a molecular level, it majorly interacts with SIRTs, particularly SIRT1 and SIRT6, and modulates numerous signaling pathways, contributing to its therapeutic effects. These pathways play roles in reducing oxidative stress, inflammation, autophagy regulation, mitochondrial biogenesis, glucose utilization, fatty acid oxidation, and genome stability. However, clinical trials on quercetin's effectiveness in humans are scarce. Quercetin exhibits a wide range of SIRT-mediated therapeutic effects. Despite the compelling preclinical data, more standardized clinical trials are needed to fully understand its therapeutic potential. Future research should focus on addressing its bioavailability and safety concerns.
Collapse
|
Review |
1 |
6 |
14
|
Pușcașu C, Zanfirescu A, Negreș S. Recent Progress in Gels for Neuropathic Pain. Gels 2023; 9:gels9050417. [PMID: 37233008 DOI: 10.3390/gels9050417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. While several treatment options are available, they often have limited efficacy and are associated with adverse effects. In recent years, gels have emerged as a promising option for the treatment of neuropathic pain. Inclusion of various nanocarriers, such as cubosomes and niosomes, into gels results in pharmaceutical forms with higher drug stability and increased drug penetration into tissues compared to products currently marketed for the treatment of neuropathic pain. Furthermore, these compounds usually provide sustained drug release and are biocompatible and biodegradable, which makes them a safe option for drug delivery. The purpose of this narrative review was to provide a comprehensive analysis of the current state of the field and identify potential directions for future research in the development of effective and safe gels for the treatment of neuropathic pain, ultimately improving the quality of life for patients suffering from neuropathic pain.
Collapse
|
Review |
2 |
5 |
15
|
Zanfirescu A, Nitulescu G, Mihai DP, Nitulescu GM. Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals (Basel) 2021; 15:38. [PMID: 35056095 PMCID: PMC8781999 DOI: 10.3390/ph15010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/29/2023] Open
Abstract
Chronic pain determines a substantial burden on individuals, employers, healthcare systems, and society. Most of the affected patients report dissatisfaction with currently available treatments. There are only a few and poor therapeutic options-some therapeutic agents are an outgrowth of drugs targeting acute pain, while others have several serious side effects. One of the primary degradative enzymes for endocannabinoids, fatty acid amide hydrolase (FAAH) attracted attention as a significant molecular target for developing new therapies for neuropsychiatric and neurological diseases, including chronic pain. Using chemical graph mining, quantitative structure-activity relationship (QSAR) modeling, and molecular docking techniques we developed a multi-step screening protocol to identify repurposable drugs as FAAH inhibitors. After screening the DrugBank database using our protocol, 273 structures were selected, with five already approved drugs, montelukast, repaglinide, revefenacin, raloxifene, and buclizine emerging as the most promising repurposable agents for treating chronic pain. Molecular docking studies indicated that the selected compounds interact with the enzyme mostly non-covalently (except for revefenacin) through shape complementarity to the large substrate-binding pocket in the active site. A molecular dynamics simulation was employed for montelukast and revealed stable interactions with the enzyme. The biological activity of the selected compounds should be further confirmed by employing in vitro and in vivo studies.
Collapse
|
|
4 |
4 |
16
|
Olaru OT, Zanfirescu A, Nitulescu GM, Nitulescu G, Dinu-Pirvu CE, Anuta V, Tsatsakis A, Spandidos DA, Margina D, Seremet OC. Predictive power of the Triticum root elongation test for the assessment of novel anti‑proliferative therapies. Int J Mol Med 2019; 44:16-24. [PMID: 31115484 PMCID: PMC6559296 DOI: 10.3892/ijmm.2019.4192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/02/2019] [Indexed: 02/03/2023] Open
Abstract
The use of alternative techniques to reduce the number of animals used in anticancer research is an issue of current interest. The aim of this study was to validate the use of a simple and efficient alternative tool for the assessment of the potential of novel anti‑proliferative agents. A set of 20 compounds with various mechanisms were tested in the Triticum aestivum root elongation assay, using aminophylline as negative control. Hierarchical cluster analyses were performed using the furthest neighbor method based on Euclidean distance measure, and the compounds were statistically analyzed in reference to their anti‑proliferative pattern registered in the NCI60 human tumor cell line anticancer drug screen. A correlation between the Triticum test results and the NCI60 anti‑proliferative profile was made for a number of human cells that we defined as the Triticum cell panel. Linear equations were computed that can be used to transform the inhibitory effect measured in any future Triticum assay in order to predict the effect on particular human cells. Of the tested anti‑proliferative agents, methotrexate, colchicine, cantharidin, cisplatin and verapamil produced a growth inhibition over 50%. On the whole, the findings of this study suggest that the Triticum test can be used to detect several types of anti‑proliferative mechanisms, particularly those targeting tubulin, rendering it a useful tool with which to identify novel mitotic spindle inhibitors.
Collapse
|
Journal Article |
6 |
3 |
17
|
Avram I, Pelinescu D, Gatea F, Ionescu R, Barcan A, Rosca R, Zanfirescu A, Vamanu E. Boletus edulis Extract-A New Modulator of Dysbiotic Microbiota. Life (Basel) 2023; 13:1481. [PMID: 37511858 PMCID: PMC10381576 DOI: 10.3390/life13071481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The regular administration of antibiotics is a public concern due to the prejudices of large population groups and the high frequency with which antimicrobial products are prescribed. The current study aimed to evaluate the in vitro effect of a new extract from Boletus edulis (BEE) on the human microbiota. One of the disadvantages of this extensive use is the disruption of the human microbiota, leading to potential negative health consequences. The in vitro evaluation of BEE consisted in determining its cytotoxicity, influence on the concentration of four types of cytokines (IL-6, IL-10, IL-1β, TNFα), and capacity to modulate the human microbiota after administering antibiotics. The latter was assessed by microbiome analysis and the evaluation of short-chain fatty acid synthesis (SCFAs). Simultaneously, the content of total polyphenols, the antioxidant capacity, and the compositional analysis of the extract (individual polyphenols composition) were determined. The results showed that BEE modulates the microbial pattern and reduces inflammatory progression. The data demonstrated antioxidant properties correlated with the increase in synthesizing some biomarkers, such as SCFAs, which mitigated antibiotic-induced dysbiosis without using probiotic products.
Collapse
|
|
2 |
2 |
18
|
Mihai DP, Ungurianu A, Ciotu CI, Fischer MJM, Olaru OT, Nitulescu GM, Andrei C, Zbarcea CE, Zanfirescu A, Seremet OC, Chirita C, Negres S. Effects of Venlafaxine, Risperidone and Febuxostat on Cuprizone-Induced Demyelination, Behavioral Deficits and Oxidative Stress. Int J Mol Sci 2021; 22:7183. [PMID: 34281235 PMCID: PMC8268376 DOI: 10.3390/ijms22137183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, autoimmune disease that affects a large number of young adults. Novel therapies for MS are needed considering the efficiency and safety limitations of current treatments. In our study, we investigated the effects of venlafaxine (antidepressant, serotonin-norepinephrine reuptake inhibitor), risperidone (atypical antipsychotic) and febuxostat (gout medication, xanthine oxidase inhibitor) in the cuprizone mouse model of acute demyelination, hypothesizing an antagonistic effect on TRPA1 calcium channels. Cuprizone and drugs were administered to C57BL6/J mice for five weeks and locomotor activity, motor performance and cold sensitivity were assessed. Mice brains were harvested for histological staining and assessment of oxidative stress markers. Febuxostat and metabolites of venlafaxine (desvenlafaxine) and risperidone (paliperidone) were tested for TRPA1 antagonistic activity. Following treatment, venlafaxine and risperidone significantly improved motor performance and sensitivity to a cold stimulus. All administered drugs ameliorated the cuprizone-induced deficit of superoxide dismutase activity. Desvenlafaxine and paliperidone showed no activity on TRPA1, while febuxostat exhibited agonistic activity at high concentrations. Our findings indicated that all three drugs offered some protection against the effects of cuprizone-induced demyelination. The agonistic activity of febuxostat can be of potential use for discovering novel TRPA1 ligands.
Collapse
|
research-article |
4 |
2 |
19
|
Ungurianu A, Zanfirescu A, Grădinaru D, Ionescu-Tîrgoviște C, Dănciulescu Miulescu R, Margină D. Interleukins and redox impairment in type 2 diabetes mellitus: mini-review and pilot study. Curr Med Res Opin 2022; 38:511-522. [PMID: 35067142 DOI: 10.1080/03007995.2022.2033049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) represents a leading cause of morbidity and premature mortality, low-grade inflammation being acknowledged as a key contributor to its development and progression. A tailored therapeutic approach, based on sensitive and specific biomarkers, could allow a more accurate analysis of disease susceptibility/prognostic and of the response to treatment. OBJECTIVES This mini-review and pilot study had two main goals: (1) reviewing the most recent literature encompassing the use of interleukins as inflammatory markers influenced by the redox imbalances in T2DM and (2) assessing parameters that conjunctly evaluate the redox impairment and inflammatory burden of T2DM patients, taking into consideration smoking status, as such group-specific biomarkers are scarcely reported in literature. METHODS Firstly, PubMed database was surveyed to select and review the relevant studies employing interleukins as T2DM biomarkers and to assess if studies using combined inflammatory-redox indices were reported. Then, routine biochemical parameters were assessed in a pilot study -T2DM patients with 3 subgroups: non-smokers, smokers and ex-smokers, were compared to a control group of non-diabetic, apparently healthy non-smokers. Protein (AOPPs, AGEs), lipid/HDL (Amplex Red-based method) oxidative damage and inflammatory status (CRP, IL-1β, IL-6, IL-10) biomarkers were assessed. Cytokine ratios and 2 oxidative-inflammatory status indices were developed (IH1 and IH2) and evaluated. RESULTS We observed significant differences in terms of serum redox and inflammatory status (AOPPs, AGEs, CRP, CRP/HDL, CRP/IL-6, IL-10/IL-6, IH1) between T2DM patients compared to control and, moreover, between the subgroups formed considering smoking status (CRP, CRP/HDL, IH1). Glycemic control strongly influenced inflammatory status biomarkers: glycemia was positively correlated with the inflammatory parameters (CRP/IL-10) and inversely with the anti-inflammatory ones (IL-10, IL-10/IL-1β ratio). CONCLUSIONS Several of the assessed parameters may possess prognostic value for diabetics, especially when comparing subgroups with a different smoking history and could prove useful in clinical practice for assessing disease progress and therapeutic efficacy.
Collapse
|
Review |
3 |
2 |
20
|
Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:339. [PMID: 36679051 PMCID: PMC9860573 DOI: 10.3390/plants12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.
Collapse
|
Review |
2 |
1 |
21
|
Andrei C, Nitulescu GM, Nitulescu G, Zanfirescu A. Cannabidiol Supplements in Romania: Bridging the Gap Between Marketed Claims and Clinical Reality. PHARMACY 2024; 12:176. [PMID: 39728841 DOI: 10.3390/pharmacy12060176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, the European market, including Romania, has witnessed a significant increase in the promotion of cannabidiol (CBD)-based products, often presented as effective treatments for various health conditions. This study investigates the inconsistencies between the health claims associated with these supplements and the evidence from clinical trials. To identify products available on the Romanian market, a systematic review of online pharmacies and websites that specialize in selling CBD-based products has been performed. Additionally, a systematic review of clinical trials has been conducted to assess the efficacy of CBD for the specified indications. Our analysis revealed that some claims, such as those related to post-traumatic stress disorder, lack substantial clinical evidence. Moreover, even when clinical support exists, the dosages recommended for the supplements are often significantly lower than those used in trials, raising concerns about their efficacy. These findings highlight the need for stricter regulatory oversight and more transparent communication to ensure that consumer expectations are aligned with scientific evidence, ultimately promoting informed decision-making and consumer safety.
Collapse
|
|
1 |
|
22
|
Andrei C, Mihai DP, Nitulescu G, Ungurianu A, Margina DM, Nitulescu GM, Olaru OT, Busca RM, Zanfirescu A. Cetirizine and Levetiracetam as Inhibitors of Monoacylglycerol Lipase: Investigating Their Repurposing Potential as Novel Osteoarthritic Pain Therapies. Pharmaceuticals (Basel) 2023; 16:1563. [PMID: 38004429 PMCID: PMC10675604 DOI: 10.3390/ph16111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis is characterized by progressive articular cartilage degradation, subchondral bone changes, and synovial inflammation, and affects various joints, causing pain and disability. Current osteoarthritis therapies, primarily focused on pain management, face limitations due to limited effectiveness and high risks of adverse effects. Safer and more effective treatments are urgently needed. Considering that the endocannabinoid 2-arachidonoyl glycerol is involved in pain processing, increasing its concentration through monoacylglycerol lipase (MAGL) inhibition reduces pain in various animal models. Furthermore, drug repurposing approaches leverage established drug safety profiles, presenting a cost-effective route to accelerate clinical application. To this end, cetirizine and levetiracetam were examined for their MAGL inhibitory effects. In vitro studies revealed that cetirizine and levetiracetam inhibited MAGL with IC50 values of 9.3931 µM and 3.0095 µM, respectively. In vivo experiments demonstrated that cetirizine, and to a lesser extent levetiracetam, reduced mechanical and thermal nociception in complete Freund adjuvant (CFA)-induced osteoarthritis in rats. Cetirizine exhibited a notable anti-inflammatory effect, reducing CFA-induced inflammation, as well as the inflammatory infiltrate and granuloma formation in the affected paw. These findings suggest that cetirizine may serve as a promising starting point for the development of novel compounds for osteoarthritis treatment, addressing both pain and inflammation.
Collapse
|
research-article |
2 |
|
23
|
Pușcașu C, Andrei C, Olaru OT, Zanfirescu A. Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Curr Issues Mol Biol 2025; 47:63. [PMID: 39852178 PMCID: PMC11763455 DOI: 10.3390/cimb47010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes. Receptors such as free fatty acid receptor 1 (FFAR1/GPR40), free fatty acid receptor 4 (FFAR4/GPR120), free fatty acid receptor 2 (FFAR2/GPR43), and Takeda G protein-coupled receptor 5 (TGR5/GPR131/GPBAR1) are key modulators of nociceptive signaling. GPR40, activated by long-chain fatty acids, exhibits strong anti-inflammatory effects by reducing cytokine expression. Butyrate-activated GPR43 inhibits inflammatory mediators like nitric oxide synthase-2 and cyclooxygenase-2, mitigating inflammation. TGR5, activated by bile acids, regulates inflammation and cellular senescence through pathways like NF-κB and p38. These receptors are promising therapeutic targets in chronic pain, addressing the metabolic and inflammatory factors underlying nociceptive sensitization and tissue degeneration. This review explores the molecular mechanisms of metabolite-sensing receptors in chronic pain, their therapeutic potential, and challenges in clinical application. By uncovering these mechanisms, metabolite-sensing receptors could lead to safer, more effective pain management strategies.
Collapse
|
Review |
1 |
|
24
|
Negreş S, Scutari C, Ionică FE, Gonciar V, Velescu BŞ, Şeremet OC, Zanfirescu A, Zbârcea CE, Ştefănescu E, Ciobotaru E, ChiriŢă C. Influence of hyperforin on the morphology of internal organs and biochemical parameters, in experimental model in mice. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2016; 57:663-673. [PMID: 27833957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND AIMS Hyperforin (HY) is used to treat depression and skin irritation and has been shown a number of pharmacological activities. The literature does no cite data on changes that may occur in the body after HY intake (ethylene diammonium salt - EDS) in long-term administration. From this point of view, the present work is a key to determining the pharmacotoxicological profile of the HY-EDS, in long-term administration. MATERIALS AND METHODS In present research, the influence of toxic doses of HY-EDS was investigated on the biochemical serum parameters and the histopathological changes in internal organs on the experimental mice model. For acute toxicity determination, the HY-EDS was tested in doses of 2000-5000 mg÷kg, administered once per day orally. For subacute toxicity, the HY-EDS was tested in three groups of mice, in doses of 50, 75 and 100 mg÷kg÷day, administered once daily, for 28 consecutive days. RESULTS AND CONCLUSIONS As concern acute toxicity, a lethal effect has not occurred at any of the two tested doses and HY-EDS was classified as Class V toxic: median lethal dose (LD50) >5000 mg÷kg, p.o. After 14 days of follow-up in acute toxicity, the experimental results showed a statistically significant increase of aspartate transaminase (AST) and alanine transaminase (ALT), compared to the control group. There were no changes in creatinine and serum glucose compared to the control group. After the administration of repeated doses, it was observed an increase of serum transaminases and alkaline phosphatase. Histological examination revealed that the liver injuries were in an initial stage, making them reversible in case of HY-EDS treatment discontinuation. There was no evidence of kidney damage to any of the doses of HY-EDS.
Collapse
|
|
9 |
|
25
|
Ungurianu A, Margină D, Mihai DP, Nicolae AC, Drăgoi CM, Grădinaru D, Zanfirescu A. Caloric restriction mimetics: Pinostilbene versus resveratrol regarding SIRT1 and SIRT6 interaction. Adv Med Sci 2024; 70:44-50. [PMID: 39617052 DOI: 10.1016/j.advms.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 11/21/2024] [Indexed: 12/08/2024]
Abstract
PURPOSE Caloric restriction (CR), the permanent or periodic reduction of caloric intake, is a dietary strategy that promotes longevity and healthspan, yielding multiple beneficial effects, such as improved insulin sensitivity and mitochondrial function, decreased body weight, and mitigation of cardiometabolic risk factors. The purpose of our study was the in silico and in vitro assessment of the effects exerted by pinostilbene on SIRT1 and SIRT6 compared to those of resveratrol, a known activator of these enzymes. MATERIALS AND METHODS Molecular docking was carried out to determine the interactions with SIRT1 and SIRT6 and, further, the effect of pinostilbene on their activity was tested in vitro to evaluate if it parallels resveratrol's effects regarding SIRT activation. RESULTS Molecular docking indicates that resveratrol and pinostilbene bind similarly to SIRT6, while pinostilbene may be able to activate SIRT1 more efficiently than resveratrol. In vitro activity assays showed that while both resveratrol and pinostilbene activate SIRT1 and SIRT6, the concentration-dependent effects differ. For resveratrol, a greater effect was observed at the medium concentration (25 μM), whereas pinostilbene showed a more pronounced activation at the lowest concentration (5 μM). CONCLUSIONS Our results offer a glimpse into the structural features and interactions of pinostilbene and resveratrol with SIRT1 and SIRT6, contributing to understanding their potential roles in various cellular processes regulated by SIRT.
Collapse
|
|
1 |
|