1
|
Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann KH, Steinmetz MO. Molecular Mechanism of Action of Microtubule-Stabilizing Anticancer Agents. Science 2013; 339:587-90. [DOI: 10.1126/science.1230582] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microtubule-stabilizing agents (MSAs) are efficacious chemotherapeutic drugs widely used for the treatment of cancer. Despite the importance of MSAs for medical applications and basic research, their molecular mechanisms of action on tubulin and microtubules remain elusive. We determined high-resolution crystal structures of αβ-tubulin in complex with two unrelated MSAs, zampanolide and epothilone A. Both compounds were bound to the taxane pocket of β-tubulin and used their respective side chains to induce structuring of the M-loop into a short helix. Because the M-loop establishes lateral tubulin contacts in microtubules, these findings explain how taxane-site MSAs promote microtubule assembly and stability. Further, our results offer fundamental structural insights into the control mechanisms of microtubule dynamics.
Collapse
|
|
12 |
358 |
2
|
Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, Reinelt S, Lane H, Steinmetz MO. The Novel Microtubule-Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin with Distinct Effects on Microtubule Organization. J Mol Biol 2014; 426:1848-60. [DOI: 10.1016/j.jmb.2014.02.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 11/16/2022]
|
|
11 |
191 |
3
|
Chappell JD, Prota AE, Dermody TS, Stehle T. Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO J 2002; 21:1-11. [PMID: 11782420 PMCID: PMC125343 DOI: 10.1093/emboj/21.1.1] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reovirus attaches to cellular receptors with the sigma1 protein, a fiber-like molecule protruding from the 12 vertices of the icosahedral virion. The crystal structure of a receptor-binding fragment of sigma1 reveals an elongated trimer with two domains: a compact head with a new beta-barrel fold and a fibrous tail containing a triple beta-spiral. Numerous structural and functional similarities between reovirus sigma1 and the adenovirus fiber suggest an evolutionary link in the receptor-binding strategies of these two viruses. A prominent loop in the sigma1 head contains a cluster of residues that are conserved among reovirus serotypes and are likely to form a binding site for junction adhesion molecule, an integral tight junction protein that serves as a reovirus receptor. The fibrous tail is mainly responsible for sigma1 trimer formation, and it contains a highly flexible region that allows for significant movement between the base of the tail and the head. The architecture of the trimer interface and the observed flexibility indicate that sigma1 is a metastable structure poised to undergo conformational changes upon viral attachment and cell entry.
Collapse
|
Comparative Study |
23 |
182 |
4
|
Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC, Kammerer RA, Janke C, Steinmetz MO. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. ACTA ACUST UNITED AC 2013; 200:259-70. [PMID: 23358242 PMCID: PMC3563685 DOI: 10.1083/jcb.201211017] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural analysis of a complex of tubulin and tubulin tyrosine ligase (TTL) reveals insights into TTL’s enzymatic mechanism, how it discriminates between α- and β-tubulin, and its possible evolutionary origin. Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL–tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
178 |
5
|
Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, Rai A, Cho MY, Stern JJ, Prota AE, Kampmann M, Akhmanova A, Steinmetz MO, Tanenbaum ME, Weissman JS. Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Mol Cell 2017; 68:210-223.e6. [PMID: 28985505 PMCID: PMC5640507 DOI: 10.1016/j.molcel.2017.09.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling. Application of these strategies to rigosertib, a drug in phase 3 clinical trials for high-risk myelodysplastic syndrome whose molecular target had remained controversial, pointed singularly to microtubules as rigosertib's target. We showed that rigosertib indeed directly binds to and destabilizes microtubules using cell biological, in vitro, and structural approaches. Finally, expression of tubulin with a structure-guided mutation in the rigosertib-binding pocket conferred resistance to rigosertib, establishing that rigosertib kills cancer cells by destabilizing microtubules. These results demonstrate the power of our chemical-genetic screening strategies for pinpointing the physiologically relevant targets of chemical agents.
Collapse
|
research-article |
8 |
167 |
6
|
Prota AE, Bargsten K, Northcote PT, Marsh M, Altmann KH, Miller JH, Díaz JF, Steinmetz MO. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014; 53:1621-5. [PMID: 24470331 DOI: 10.1002/anie.201307749] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/28/2013] [Indexed: 11/06/2022]
Abstract
Laulimalide and peloruside A are microtubule-stabilizing agents (MSAs), the mechanism of action on microtubules of which is poorly defined. Here, using X-ray crystallography it is shown that laulimalide and peloruside A bind to a unique non-taxane site on β-tubulin and use their respective macrolide core structures to interact with a second tubulin dimer across protofilaments. At the same time, they allosterically stabilize the taxane-site M-loop that establishes lateral tubulin contacts in microtubules. Structures of ternary complexes of tubulin with laulimalide/peloruside A and epothilone A are also solved, and a crosstalk between the laulimalide/peloruside and taxane sites via the M-loop of β-tubulin is found. Together, the data define the mechanism of action of laulimalide and peloruside A on tubulin and microtubules. The data further provide a structural framework for understanding the synergy observed between two classes of MSAs in tubulin assembly and the inhibition of cancer cell growth.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
146 |
7
|
Prota AE, Campbell JA, Schelling P, Forrest JC, Watson MJ, Peters TR, Aurrand-Lions M, Imhof BA, Dermody TS, Stehle T. Crystal structure of human junctional adhesion molecule 1: implications for reovirus binding. Proc Natl Acad Sci U S A 2003; 100:5366-71. [PMID: 12697893 PMCID: PMC404559 DOI: 10.1073/pnas.0937718100] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Indexed: 02/04/2023] Open
Abstract
Reovirus attachment to cells is mediated by the binding of viral attachment protein sigma 1 to junctional adhesion molecule 1 (JAM1). The crystal structure of the extracellular region of human JAM1 (hJAM1) reveals two concatenated Ig-type domains with a pronounced bend at the domain interface. Two hJAM1 molecules form a dimer that is stabilized by extensive ionic and hydrophobic contacts between the N-terminal domains. This dimeric arrangement is similar to that observed previously in the murine homolog of JAM1, indicating physiologic relevance. However, differences in the dimeric structures of hJAM1 and murine JAM1 suggest that the interface is dynamic, perhaps as a result of its ionic nature. We demonstrate that hJAM1, but not the related proteins hJAM2 and hJAM3, serves as a reovirus receptor, which provides insight into sites in hJAM1 that likely interact with sigma 1. In addition, we present evidence that the previously reported structural homology between sigma 1 and the adenovirus attachment protein, fiber, also extends to their respective receptors, which form similar dimeric structures. Because both receptors are located at regions of cell-cell contact, this similarity suggests that reovirus and adenovirus use conserved mechanisms of entry and pathways of infection.
Collapse
|
research-article |
22 |
121 |
8
|
Waight AB, Bargsten K, Doronina S, Steinmetz MO, Sussman D, Prota AE. Structural Basis of Microtubule Destabilization by Potent Auristatin Anti-Mitotics. PLoS One 2016; 11:e0160890. [PMID: 27518442 PMCID: PMC4982639 DOI: 10.1371/journal.pone.0160890] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/26/2016] [Indexed: 12/29/2022] Open
Abstract
The auristatin class of microtubule destabilizers are highly potent cytotoxic agents against several cancer cell types when delivered as antibody drug conjugates. Here we describe the high resolution structures of tubulin in complex with both monomethyl auristatin E and F and unambiguously define the trans-configuration of both ligands at the Val-Dil amide bond in their tubulin bound state. Moreover, we illustrate how peptidic vinca-site agents carrying terminal carboxylate residues may exploit an observed extended hydrogen bond network with the M-loop Arg278 to greatly improve the affinity of the corresponding analogs and to maintain the M-loop in an incompatible conformation for productive lateral tubulin-tubulin contacts in microtubules. Our results highlight a potential, previously undescribed molecular mechanism by which peptidic vinca-site agents maintain unparalleled potency as microtubule-destabilizing agents.
Collapse
|
Journal Article |
9 |
110 |
9
|
Gaspari R, Prota AE, Bargsten K, Cavalli A, Steinmetz MO. Structural Basis of cis - and trans -Combretastatin Binding to Tubulin. Chem 2017. [DOI: 10.1016/j.chempr.2016.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
8 |
84 |
10
|
Dohle W, Jourdan FL, Menchon G, Prota AE, Foster PA, Mannion P, Hamel E, Thomas MP, Kasprzyk PG, Ferrandis E, Steinmetz MO, Leese MP, Potter BVL. Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure. J Med Chem 2018; 61:1031-1044. [PMID: 29227648 DOI: 10.1021/acs.jmedchem.7b01474] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quinazolinone-based anticancer agents were designed, decorated with functional groups from a 2-methoxyestradiol-based microtubule disruptor series, incorporating the aryl sulfamate motif of steroid sulfatase (STS) inhibitors. The steroidal AB-ring system was mimicked, favoring conformations with an N-2 substituent occupying D-ring space. Evaluation against breast and prostate tumor cell lines identified 7b with DU-145 antiproliferative activity (GI50 300 nM). A preliminary structure-activity relationship afforded compounds (e.g., 7j GI50 50 nM) with activity exceeding that of the parent. Both 7b and 7j inhibit tubulin assembly in vitro and colchicine binding, and 7j was successfully co-crystallized with the αβ-tubulin heterodimer as the first of its class, its sulfamate group interacting positively at the colchicine binding site. Microtubule destabilization by 7j is likely achieved by preventing the curved-to-straight conformational transition in αβ-tubulin. Quinazolinone sulfamates surprisingly showed weak STS inhibition. Preliminary in vivo studies in a multiple myeloma xenograft model for 7b showed oral activity, confirming the promise of this template.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
71 |
11
|
Bohnacker T, Prota AE, Beaufils F, Burke JE, Melone A, Inglis AJ, Rageot D, Sele AM, Cmiljanovic V, Cmiljanovic N, Bargsten K, Aher A, Akhmanova A, Díaz JF, Fabbro D, Zvelebil M, Williams RL, Steinmetz MO, Wymann MP. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun 2017; 8:14683. [PMID: 28276440 PMCID: PMC5347140 DOI: 10.1038/ncomms14683] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
BKM120 (Buparlisib) is one of the most advanced phosphoinositide 3-kinase (PI3K) inhibitors for the treatment of cancer, but it interferes as an off-target effect with microtubule polymerization. Here, we developed two chemical derivatives that differ from BKM120 by only one atom. We show that these minute changes separate the dual activity of BKM120 into discrete PI3K and tubulin inhibitors. Analysis of the compounds cellular growth arrest phenotypes and microtubule dynamics suggest that the antiproliferative activity of BKM120 is mainly due to microtubule-dependent cytotoxicity rather than through inhibition of PI3K. Crystal structures of BKM120 and derivatives in complex with tubulin and PI3K provide insights into the selective mode of action of this class of drugs. Our results raise concerns over BKM120's generally accepted mode of action, and provide a unique mechanistic basis for next-generation PI3K inhibitors with improved safety profiles and flexibility for use in combination therapies. Buparlisib/BKM120 is in phase 3 clinical trials as a phosphoinositide 3-kinase (PI3K) inhibitor. Here, Bohnacker et al. combine chemical biology and structural biology approaches to segregate BKM120's biological actions, and suggest that it causes mitotic arrest predominantly by binding microtubules and disrupting their dynamics.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
71 |
12
|
Prota AE, Sage DR, Stehle T, Fingeroth JD. The crystal structure of human CD21: Implications for Epstein-Barr virus and C3d binding. Proc Natl Acad Sci U S A 2002; 99:10641-6. [PMID: 12122212 PMCID: PMC124999 DOI: 10.1073/pnas.162360499] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 06/17/2002] [Indexed: 11/18/2022] Open
Abstract
Human complement receptor type 2 (CD21) is the cellular receptor for Epstein-Barr virus (EBV), a human tumor virus. The N-terminal two short consensus repeats (SCR1-SCR2) of the receptor interact with the EBV glycoprotein gp350/220 and also with the natural CD21 ligand C3d. Here we present the crystal structure of the CD21 SCR1-SCR2 fragment in the absence of ligand and demonstrate that it is able to bind EBV. Based on a functional analysis of wild-type and mutant CD21 and molecular modeling, we identify a likely region for EBV attachment and demonstrate that this region is not involved in the interaction with C3d. A comparison with the previously determined structure of CD21 SCR1-SCR2 in complex with C3d shows that, in both cases, CD21 assumes compact V-shaped conformations. However, our analysis reveals a surprising degree of flexibility at the SCR1-SCR2 interface, suggesting interactions between the two domains are not specific. We present evidence that the V-shaped conformation is induced by deglycosylation of the protein, and that physiologic glycosylation of CD21 would result in a more extended conformation, perhaps with additional epitopes for C3d binding.
Collapse
|
research-article |
23 |
58 |
13
|
Vogt J, Perozzo R, Pautsch A, Prota A, Schelling P, Pilger B, Folkers G, Scapozza L, Schulz GE. Nucleoside binding site of herpes simplex type 1 thymidine kinase analyzed by X-ray crystallography. Proteins 2000; 41:545-53. [PMID: 11056041 DOI: 10.1002/1097-0134(20001201)41:4<545::aid-prot110>3.0.co;2-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The crystal structures of the full-length Herpes simplex virus type 1 thymidine kinase in its unligated form and in a complex with an adenine analogue have been determined at 1.9 A resolution. The unligated enzyme contains four water molecules in the thymidine pocket and reveals a small induced fit on substrate binding. The structure of the ligated enzyme shows for the first time a bound adenine analogue after numerous complexes with thymine and guanine analogues have been reported. The adenine analogue constitutes a new lead compound for enzyme-prodrug gene therapy. In addition, the structure of mutant Q125N modifying the binding site of the natural substrate thymidine in complex with this substrate has been established at 2.5 A resolution. It reveals that neither the binding mode of thymidine nor the polypeptide backbone conformation is altered, except that the two major hydrogen bonds to thymidine are replaced by a single water-mediated hydrogen bond, which improves the relative acceptance of the prodrugs aciclovir and ganciclovir compared with the natural substrate. Accordingly, the mutant structure represents a first step toward improving the virus-directed enzyme-prodrug gene therapy by enzyme engineering.
Collapse
|
|
25 |
54 |
14
|
Prota AE, Setter J, Waight AB, Bargsten K, Murga J, Diaz JF, Steinmetz MO. Pironetin Binds Covalently to αCys316 and Perturbs a Major Loop and Helix of α-Tubulin to Inhibit Microtubule Formation. J Mol Biol 2016; 428:2981-8. [DOI: 10.1016/j.jmb.2016.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 11/29/2022]
|
|
9 |
52 |
15
|
Matthew S, Chen QY, Ratnayake R, Fermaintt CS, Lucena-Agell D, Bonato F, Prota AE, Lim ST, Wang X, Díaz JF, Risinger AL, Paul VJ, Oliva MÁ, Luesch H. Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site. Proc Natl Acad Sci U S A 2021; 118:e2021847118. [PMID: 33619102 PMCID: PMC7936326 DOI: 10.1073/pnas.2021847118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/β-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/β-tubulin-GB1 complex.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
52 |
16
|
Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive Analysis of Binding Sites in Tubulin. Angew Chem Int Ed Engl 2021; 60:13331-13342. [PMID: 33951246 PMCID: PMC8251789 DOI: 10.1002/anie.202100273] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/01/2023]
Abstract
Tubulin plays essential roles in vital cellular activities and is the target of a wide range of proteins and ligands. Here, using a combined computational and crystallographic fragment screening approach, we addressed the question of how many binding sites exist in tubulin. We identified 27 distinct sites, of which 11 have not been described previously, and analyzed their relationship to known tubulin-protein and tubulin-ligand interactions. We further observed an intricate pocket communication network and identified 56 chemically diverse fragments that bound to 10 distinct tubulin sites. Our results offer a unique structural basis for the development of novel small molecules for use as tubulin modulators in basic research applications or as drugs. Furthermore, our method lays down a framework that may help to discover new pockets in other pharmaceutically important targets and characterize them in terms of chemical tractability and allosteric modulation.
Collapse
|
research-article |
4 |
50 |
17
|
Cébe-Suarez S, Grünewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K. Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J 2008; 22:3078-86. [PMID: 18467594 DOI: 10.1096/fj.08-107219] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factors (VEGFs) interact with the receptor tyrosine kinases (RTKs) VEGFR-1, -2, and -3; neuropilins (NRPs); and heparan sulfate (HS) proteoglycans. VEGF RTKs signal to downstream targets upon ligand-induced tyrosine phosphorylation, while NRPs and HS act as coreceptors that lack enzymatic activity yet modulate signal output by VEGF RTKs. VEGFs exist in various isoforms with distinct receptor specificity and biological activity. Here, a series of mammalian VEGF-A splice variants and orf virus VEGF-Es, as well as chimeric and mutant VEGF variants, were characterized to determine the motifs required for binding to NRP-1 in the absence (VEGF-E) or presence (VEGF-A(165)) of an HS-binding sequence. We identified the carboxyterminal peptides RPPR and DKPRR as the NRP-1 binding motifs of VEGF-E and VEGF-A, respectively. RPPR had significantly higher affinity for NRP-1 than DKPRR. VEGFs containing an RPPR motif promoted HS-independent coreceptor complex assembly between VEGFR-2 and NRP-1, independent of whether these receptors were expressed on the same or separate cells grown in cocultures. Functional studies showed that stable coreceptor assembly by VEGF correlated with its ability to promote vessel formation in an embryoid body angiogenesis assay.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
46 |
18
|
Prota A, Vogt J, Pilger B, Perozzo R, Wurth C, Marquez VE, Russ P, Schulz GE, Folkers G, Scapozza L. Kinetics and crystal structure of the wild-type and the engineered Y101F mutant of Herpes simplex virus type 1 thymidine kinase interacting with (North)-methanocarba-thymidine. Biochemistry 2000; 39:9597-603. [PMID: 10924157 DOI: 10.1021/bi000668q] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinetic and crystallographic analyses of wild-type Herpes simplex virus type 1 thymidine kinase (TK(HSV1)) and its Y101F-mutant [TK(HSV1)(Y101F)] acting on the potent antiviral drug 2'-exo-methanocarba-thymidine (MCT) have been performed. The kinetic study reveals a 12-fold K(M) increase for thymidine processed with Y101F as compared to the wild-type TK(HSV1). Furthermore, MCT is a substrate for both wild-type and mutant TK(HSV1). Its binding affinity for TK(HSV1) and TK(HSV1)(Y101F), expressed as K(i), is 11 microM and 51 microM, respectively, whereas the K(i) for human cytosolic thymidine kinase is as high as 1.6 mM, rendering TK(HSV1) a selectivity filter for antiviral activity. Moreover, TK(HSV1)(Y101F) shows a decrease in the quotient of the catalytic efficiency (k(cat)/K(M)) of dT over MCT corresponding to an increased specificity for MCT when compared to the wild-type enzyme. Crystal structures of wild-type and mutant TK(HSV1) in complex with MCT have been determined to resolutions of 1.7 and 2.4 A, respectively. The thymine moiety of MCT binds like the base of dT while the conformationally restricted bicyclo[3.1.0]hexane, mimicking the sugar moiety, assumes a 2'-exo envelope conformation that is flatter than the one observed for the free compound. The hydrogen bond pattern around the sugar-like moiety differs from that of thymidine, revealing the importance of the rigid conformation of MCT with respect to hydrogen bonds. These findings make MCT a lead compound in the design of resistance-repellent drugs for antiviral therapy, and mutant Y101F, in combination with MCT, opens new possibilities for gene therapy.
Collapse
|
|
25 |
41 |
19
|
Wieczorek M, Tcherkezian J, Bernier C, Prota AE, Chaaban S, Rolland Y, Godbout C, Hancock MA, Arezzo JC, Ocal O, Rocha C, Olieric N, Hall A, Ding H, Bramoullé A, Annis MG, Zogopoulos G, Harran PG, Wilkie TM, Brekken RA, Siegel PM, Steinmetz MO, Shore GC, Brouhard GJ, Roulston A. The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity. Sci Transl Med 2017; 8:365ra159. [PMID: 27856798 DOI: 10.1126/scitranslmed.aag1093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/28/2016] [Indexed: 01/02/2023]
Abstract
Microtubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types. It has an unusually high safety margin and lacks neurotoxicity in rats at effective plasma concentrations. DZ-2384 binds the vinca domain of tubulin in a distinct way, imparting structurally and functionally different effects on microtubule dynamics compared to other vinca-binding compounds. X-ray crystallography and electron microscopy studies demonstrate that DZ-2384 causes straightening of curved protofilaments, an effect proposed to favor polymerization of tubulin. Both DZ-2384 and the vinca alkaloid vinorelbine inhibit microtubule growth rate; however, DZ-2384 increases the rescue frequency and preserves the microtubule network in nonmitotic cells and in primary neurons. This differential modulation of tubulin results in a potent MTA therapeutic with enhanced safety.
Collapse
|
Journal Article |
8 |
37 |
20
|
Menchon G, Prota AE, Lucena-Agell D, Bucher P, Jansen R, Irschik H, Müller R, Paterson I, Díaz JF, Altmann KH, Steinmetz MO. A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nat Commun 2018; 9:2106. [PMID: 29844393 PMCID: PMC5974090 DOI: 10.1038/s41467-018-04535-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/26/2023] Open
Abstract
Microtubule-targeting agents (MTAs) like taxol and vinblastine are among the most successful chemotherapeutic drugs against cancer. Here, we describe a fluorescence anisotropy-based assay that specifically probes for ligands targeting the recently discovered maytansine site of tubulin. Using this assay, we have determined the dissociation constants of known maytansine site ligands, including the pharmacologically active degradation product of the clinical antibody-drug conjugate trastuzumab emtansine. In addition, we discovered that the two natural products spongistatin-1 and disorazole Z with established cellular potency bind to the maytansine site on β-tubulin. The high-resolution crystal structures of spongistatin-1 and disorazole Z in complex with tubulin allowed the definition of an additional sub-site adjacent to the pocket shared by all maytansine-site ligands, which could be exploitable as a distinct, separate target site for small molecules. Our study provides a basis for the discovery and development of next-generation MTAs for the treatment of cancer.
Collapse
|
research-article |
7 |
37 |
21
|
Bueno O, Estévez Gallego J, Martins S, Prota AE, Gago F, Gómez-SanJuan A, Camarasa MJ, Barasoain I, Steinmetz MO, Díaz JF, Pérez-Pérez MJ, Liekens S, Priego EM. High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Sci Rep 2018; 8:4242. [PMID: 29523799 PMCID: PMC5844890 DOI: 10.1038/s41598-018-22382-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
Microtubule-targeting agents that bind at the colchicine-site of tubulin are of particular interest in antitumoral therapy due to their dual mechanism of action as antimitotics and vascular disrupting agents. Cyclohexanediones derivatives have been described as a new family of colchicine-domain binders with an association constant to tubulin similar to that of colchicine. Here, the high-resolution structures of tubulin in complex with cyclohexanediones TUB015 and TUB075 were solved by X-ray crystallography. A detailed analysis of the tubulin-TUB075 interaction by means of computational affinity maps allowed the identification of two additional regions at the binding site that were addressed with the design and synthesis of a new series of cyclohexanediones with a distal 2-substituted benzofurane. These new compounds showed potent antiproliferative activity with IC50 values in the nM range, arrested cell cycle progression at the G2/M phase and induced apoptosis at sub μM concentrations. Moreover, they caused the destruction of a preformed vascular network in vitro and inhibited the migration of endothelial cells at non-toxic concentrations. Finally, these compounds displayed high affinity for tubulin as substantiated by a K b value of 2.87 × 108 M-1 which, to the best of our knowledge, represents the highest binding constant measured to date for a colchicine-domain ligand.
Collapse
|
research-article |
7 |
36 |
22
|
Jiang K, Faltova L, Hua S, Capitani G, Prota AE, Landgraf C, Volkmer R, Kammerer RA, Steinmetz MO, Akhmanova A. Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure 2018; 26:375-382.e4. [DOI: 10.1016/j.str.2017.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022]
|
|
7 |
34 |
23
|
Estévez-Gallego J, Josa-Prado F, Ku S, Buey RM, Balaguer FA, Prota AE, Lucena-Agell D, Kamma-Lorger C, Yagi T, Iwamoto H, Duchesne L, Barasoain I, Steinmetz MO, Chrétien D, Kamimura S, Díaz JF, Oliva MA. Structural model for differential cap maturation at growing microtubule ends. eLife 2020; 9:50155. [PMID: 32151315 PMCID: PMC7064335 DOI: 10.7554/elife.50155] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) are hollow cylinders made of tubulin, a GTPase responsible for essential functions during cell growth and division, and thus, key target for anti-tumor drugs. In MTs, GTP hydrolysis triggers structural changes in the lattice, which are responsible for interaction with regulatory factors. The stabilizing GTP-cap is a hallmark of MTs and the mechanism of the chemical-structural link between the GTP hydrolysis site and the MT lattice is a matter of debate. We have analyzed the structure of tubulin and MTs assembled in the presence of fluoride salts that mimic the GTP-bound and GDP•Pi transition states. Our results challenge current models because tubulin does not change axial length upon GTP hydrolysis. Moreover, analysis of the structure of MTs assembled in the presence of several nucleotide analogues and of taxol allows us to propose that previously described lattice expansion could be a post-hydrolysis stage involved in Pi release.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
32 |
24
|
Furger E, Frei DC, Schibli R, Fischer E, Prota AE. Structural basis for universal corrinoid recognition by the cobalamin transport protein haptocorrin. J Biol Chem 2013; 288:25466-25476. [PMID: 23846701 PMCID: PMC3757208 DOI: 10.1074/jbc.m113.483271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Indexed: 12/25/2022] Open
Abstract
Cobalamin (Cbl; vitamin B12) is an essential micronutrient synthesized only by bacteria. Mammals have developed a sophisticated uptake system to capture the vitamin from the diet. Cbl transport is mediated by three transport proteins: transcobalamin, intrinsic factor, and haptocorrin (HC). All three proteins have a similar overall structure but a different selectivity for corrinoids. Here, we present the crystal structures of human HC in complex with cyanocobalamin and cobinamide at 2.35 and 3.0 Å resolution, respectively. The structures reveal that many of the interactions with the corrin ring are conserved among the human Cbl transporters. However, the non-conserved residues Asn-120, Arg-357, and Asn-373 form distinct interactions allowing for stabilization of corrinoids other than Cbl. A central binding motif forms interactions with the e- and f-side chains of the corrin ring and is conserved in corrinoid-binding proteins of other species. In addition, the α- and β-domains of HC form several unique interdomain contacts and have a higher shape complementarity than those of intrinsic factor and transcobalamin. The stabilization of ligands by all of these interactions is reflected in higher melting temperatures of the protein-ligand complexes. Our structural analysis offers fundamental insights into the unique binding behavior of HC and completes the picture of Cbl interaction with its three transport proteins.
Collapse
|
research-article |
12 |
32 |
25
|
Pieren M, Prota AE, Ruch C, Kostrewa D, Wagner A, Biedermann K, Winkler FK, Ballmer-Hofer K. Crystal Structure of the Orf Virus NZ2 Variant of Vascular Endothelial Growth Factor-E. J Biol Chem 2006; 281:19578-87. [PMID: 16672228 DOI: 10.1074/jbc.m601842200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian vascular endothelial growth factors constitute a family of polypeptides, vascular endothelial growth factor (VEGF)-A, -B, -C, -D and placenta growth factor (PlGF), that regulate blood and lymphatic vessel development. VEGFs bind to three types of receptor tyrosine kinases, VEGF receptors 1, 2, and 3, that are predominantly expressed on endothelial and some hematopoietic cells. Pox viruses of the Orf family encode highly related proteins called VEGF-E that show only 25-35% amino acid identity with VEGF-A but bind with comparable affinity to VEGFR-2. The crystal structure of VEGF-E NZ2 described here reveals high similarity to the known structural homologs VEGF-A, PlGF, and the snake venoms Vammin and VR-1, which are all homodimers and contain the characteristic cysteine knot motif. Distinct conformational differences are observed in loop L1 and particularly in L3, which contains a highly flexible GS-rich motif that differs from all other structural homologs. Based on our structure, we created chimeric proteins by exchanging selected segments in L1 and L3 with the corresponding sequences from PlGF. Single loop mutants did not bind to either receptor, whereas a VEGF-E mutant in which both L1 and L3 were replaced gained affinity for VEGFR-1, illustrating the possibility to engineer receptor-specific chimeric VEGF molecules. In addition, changing arginine 46 to isoleucine in L1 significantly increased the affinity of VEGF-E for both VEGF receptors.
Collapse
|
|
19 |
29 |