1
|
Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, Savard M, Lussier FZ, Tissot C, Karikari TK, Ottoy J, Mathotaarachchi S, Stevenson J, Massarweh G, Schöll M, de Leon MJ, Soucy JP, Edison P, Blennow K, Zetterberg H, Gauthier S, Rosa-Neto P. Microglial activation and tau propagate jointly across Braak stages. Nat Med 2021; 27:1592-1599. [PMID: 34446931 DOI: 10.1038/s41591-021-01456-w] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/28/2021] [Indexed: 11/09/2022]
Abstract
Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer's disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([11C]PBR28), amyloid-β (Aβ) ([18F]AZD4694) and tau ([18F]MK-6240) pathologies. We further assessed microglial triggering receptor expressed on myeloid cells 2 (TREM2) cerebrospinal fluid (CSF) concentrations and brain gene expression patterns. We found that [11C]PBR28 correlated with CSF soluble TREM2 and showed regional distribution resembling TREM2 gene expression. Network analysis revealed that microglial activation and tau correlated hierarchically with each other following Braak-like stages. Regression analysis revealed that the longitudinal tau propagation pathways depended on the baseline microglia network rather than the tau network circuits. The co-occurrence of Aβ, tau and microglia abnormalities was the strongest predictor of cognitive impairment in our study population. Our findings support a model where an interaction between Aβ and activated microglia sets the pace for tau spread across Braak stages.
Collapse
|
|
4 |
271 |
2
|
Ashton NJ, Brum WS, Di Molfetta G, Benedet AL, Arslan B, Jonaitis E, Langhough RE, Cody K, Wilson R, Carlsson CM, Vanmechelen E, Montoliu-Gaya L, Lantero-Rodriguez J, Rahmouni N, Tissot C, Stevenson J, Servaes S, Therriault J, Pascoal T, Lleó A, Alcolea D, Fortea J, Rosa-Neto P, Johnson S, Jeromin A, Blennow K, Zetterberg H. Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol 2024; 81:255-263. [PMID: 38252443 PMCID: PMC10804282 DOI: 10.1001/jamaneurol.2023.5319] [Citation(s) in RCA: 190] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Importance Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. Objective To determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid β (Aβ) and longitudinal change across 3 selected cohorts. Design, Setting, and Participants This cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. Exposures Magnetic resonance imaging, Aβ positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (Aβ42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and Measures Accuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. Results The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated Aβ (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal Aβ pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in Aβ-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and Relevance This study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
Collapse
|
research-article |
1 |
190 |
3
|
Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, Tissot C, Qureshi MNI, Kang MS, Mathotaarachchi S, Stevenson J, Hopewell R, Massarweh G, Soucy JP, Gauthier S, Rosa-Neto P. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 2021; 143:2818-2830. [PMID: 32671408 DOI: 10.1093/brain/awaa180] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 11/15/2022] Open
Abstract
Braak stages of tau neurofibrillary tangle accumulation have been incorporated in the criteria for the neuropathological diagnosis of Alzheimer's disease. It is expected that Braak staging using brain imaging can stratify living individuals according to their individual patterns of tau deposition, which may prove crucial for clinical trials and practice. However, previous studies using the first-generation tau PET agents have shown a low sensitivity to detect tau pathology in areas corresponding to early Braak histopathological stages (∼20% of cognitively unimpaired elderly with tau deposition in regions corresponding to Braak I-II), in contrast to ∼80-90% reported in post-mortem cohorts. Here, we tested whether the novel high affinity tau tangles tracer 18F-MK-6240 can better identify individuals in the early stages of tau accumulation. To this end, we studied 301 individuals (30 cognitively unimpaired young, 138 cognitively unimpaired elderly, 67 with mild cognitive impairment, 54 with Alzheimer's disease dementia, and 12 with frontotemporal dementia) with amyloid-β 18F-NAV4694, tau 18F-MK-6240, MRI, and clinical assessments. 18F-MK-6240 standardized uptake value ratio images were acquired at 90-110 min after the tracer injection. 18F-MK-6240 discriminated Alzheimer's disease dementia from mild cognitive impairment and frontotemporal dementia with high accuracy (∼85-100%). 18F-MK-6240 recapitulated topographical patterns consistent with the six hierarchical stages proposed by Braak in 98% of our population. Cognition and amyloid-β status explained most of the Braak stages variance (P < 0.0001, R2 = 0.75). No single region of interest standardized uptake value ratio accurately segregated individuals into the six topographic Braak stages. Sixty-eight per cent of the cognitively unimpaired elderly amyloid-β-positive and 37% of the cognitively unimpaired elderly amyloid-β-negative subjects displayed tau deposition, at least in the transentorhinal cortex (Braak I). Tau deposition solely in the transentorhinal cortex was associated with an elevated prevalence of amyloid-β, neurodegeneration, and cognitive impairment (P < 0.0001). 18F-MK-6240 deposition in regions corresponding to Braak IV-VI was associated with the highest prevalence of neurodegeneration, whereas in Braak V-VI regions with the highest prevalence of cognitive impairment. Our results suggest that the hierarchical six-stage Braak model using 18F-MK-6240 imaging provides an index of early and late tau accumulation as well as disease stage in preclinical and symptomatic individuals. Tau PET Braak staging using high affinity tracers has the potential to be incorporated in the diagnosis of living patients with Alzheimer's disease in the near future.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
156 |
4
|
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Chamoun M, Savard M, Thomas E, Kang MS, Lussier F, Tissot C, Parsons M, Qureshi MNI, Vitali P, Massarweh G, Soucy JP, Rej S, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Association of Apolipoprotein E ε4 With Medial Temporal Tau Independent of Amyloid-β. JAMA Neurol 2020; 77:470-479. [PMID: 31860000 DOI: 10.1001/jamaneurol.2019.4421] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Apolipoprotein E ε4 (APOEε4) is the single most important genetic risk factor for Alzheimer disease. While APOEε4 is associated with increased amyloid-β burden, its association with cerebral tau pathology has been controversial. Objective To determine whether APOEε4 is associated with medial temporal tau pathology independently of amyloid-β, sex, clinical status, and age. Design, Setting, and Participants This is a study of 2 cross-sectional cohorts of volunteers who were cognitively normal, had mild cognitive impairment (MCI), or had Alzheimer disease dementia: the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2019) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) (collected between November 2015 and June 2019). The first cohort (TRIAD) comprised cognitively normal elderly participants (n = 124), participants with MCI (n = 50), and participants with Alzheimer disease (n = 50) who underwent tau positron emission tomography (PET) with fluorine 18-labeled MK6240 and amyloid-β PET with [18F]AZD4694. The second sample (ADNI) was composed of cognitively normal elderly participants (n = 157), participants with MCI (n = 83), and participants with Alzheimer disease (n = 25) who underwent tau PET with [18F]flortaucipir and amyloid-β PET with [18F]florbetapir. Exclusion criteria were a history of other neurological disorders, stroke, or head trauma. There were 489 eligible participants, selected based on availability of amyloid-PET, tau-PET, magnetic resonance imaging, and genotyping for APOEε4. Forty-five young adults (<30 years) from the TRIAD cohort were not selected for this study. Main Outcomes and Measures A main association between APOEε4 and tau-PET standardized uptake value ratio, correcting for age, sex, clinical status, and neocortical amyloid-PET standardized uptake value ratio. Results The mean (SD) age of the 489 participants was 70.5 (7.1) years; 171 were APOEε4 carriers (34.9%), and 230 of 489 were men. In both cohorts, APOEε4 was associated in increased tau-PET uptake in the entorhinal cortex and hippocampus independently of amyloid-β, sex, age, and clinical status after multiple comparisons correction (TRIAD: β = 0.33; 95% CI, 0.19-0.49; ADNI: β = 0.13; 95% CI, 0.08-0.19; P < .001). Conclusions and Relevance Our results indicate that the elevated risk of developing dementia conferred by APOEε4 genotype involves mechanisms associated with both amyloid-β and tau aggregation. These results contribute to an evolving framework in which APOEε4 has deleterious consequences in Alzheimer disease beyond its link with amyloid-β and suggest APOEε4 as a potential target for future disease-modifying therapeutic trials targeting tau pathology.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
152 |
5
|
Milà-Alomà M, Ashton NJ, Shekari M, Salvadó G, Ortiz-Romero P, Montoliu-Gaya L, Benedet AL, Karikari TK, Lantero-Rodriguez J, Vanmechelen E, Day TA, González-Escalante A, Sánchez-Benavides G, Minguillon C, Fauria K, Molinuevo JL, Dage JL, Zetterberg H, Gispert JD, Suárez-Calvet M, Blennow K. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer's disease. Nat Med 2022; 28:1797-1801. [PMID: 35953717 PMCID: PMC9499867 DOI: 10.1038/s41591-022-01925-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
Blood biomarkers indicating elevated amyloid-β (Aβ) pathology in preclinical Alzheimer’s disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient Aβ pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and Aβ42/40) were significantly changed in preclinical Alzheimer’s disease. However, plasma p-tau231 reached abnormal levels with the lowest Aβ burden. Plasma p-tau231 and p-tau217 had the strongest association with Aβ positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in Aβ PET uptake in individuals without overt Aβ pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral Aβ changes, before overt Aβ plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer’s disease clinical trials. A comprehensive comparison of Alzheimer’s disease blood biomarkers in cognitively unimpaired individuals reveals that plasma p-tau231 and p-tau217 capture very early Aβ changes, showing promise as markers to enrich a preclinical population for Alzheimer’s disease clinical trials
Collapse
|
|
3 |
134 |
6
|
Therriault J, Pascoal TA, Lussier FZ, Tissot C, Chamoun M, Bezgin G, Servaes S, Benedet AL, Ashton NJ, Karikari TK, Lantero-Rodriguez J, Kunach P, Wang YT, Fernandez-Arias J, Massarweh G, Vitali P, Soucy JP, Saha-Chaudhuri P, Blennow K, Zetterberg H, Gauthier S, Rosa-Neto P. Biomarker modeling of Alzheimer's disease using PET-based Braak staging. NATURE AGING 2022; 2:526-535. [PMID: 37118445 PMCID: PMC10154209 DOI: 10.1038/s43587-022-00204-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/08/2022] [Indexed: 04/30/2023]
Abstract
Gold-standard diagnosis of Alzheimer's disease (AD) relies on histopathological staging systems. Using the topographical information from [18F]MK6240 tau positron-emission tomography (PET), we applied the Braak tau staging system to 324 living individuals. We used PET-based Braak stage to model the trajectories of amyloid-β, phosphorylated tau (pTau) in cerebrospinal fluid (pTau181, pTau217, pTau231 and pTau235) and plasma (pTau181 and pTau231), neurodegeneration and cognitive symptoms. We identified nonlinear AD biomarker trajectories corresponding to the spatial extent of tau-PET, with modest biomarker changes detectable by Braak stage II and significant changes occurring at stages III-IV, followed by plateaus. Early Braak stages were associated with isolated memory impairment, whereas Braak stages V-VI were incompatible with normal cognition. In 159 individuals with follow-up tau-PET, progression beyond stage III took place uniquely in the presence of amyloid-β positivity. Our findings support PET-based Braak staging as a framework to model the natural history of AD and monitor AD severity in living humans.
Collapse
|
research-article |
3 |
128 |
7
|
Pascoal TA, Shin M, Kang MS, Chamoun M, Chartrand D, Mathotaarachchi S, Bennacef I, Therriault J, Ng KP, Hopewell R, Bouhachi R, Hsiao HH, Benedet AL, Soucy JP, Massarweh G, Gauthier S, Rosa-Neto P. In vivo quantification of neurofibrillary tangles with [ 18F]MK-6240. ALZHEIMERS RESEARCH & THERAPY 2018; 10:74. [PMID: 30064520 PMCID: PMC6069775 DOI: 10.1186/s13195-018-0402-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/06/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Imaging agents capable of quantifying the brain's tau aggregates will allow a more precise staging of Alzheimer's disease (AD). The aim of the present study was to examine the in vitro properties as well as the in vivo kinetics, using gold standard methods, of the novel positron emission tomography (PET) tau imaging agent [18F]MK-6240. METHODS In vitro properties of [18F]MK-6240 were estimated with autoradiography in postmortem brain tissues of 14 subjects (seven AD patients and seven age-matched controls). In vivo quantification of [18F]MK-6240 binding was performed in 16 subjects (four AD patients, three mild cognitive impairment patients, six healthy elderly individuals, and three healthy young individuals) who underwent 180-min dynamic scans; six subjects had arterial sampling for metabolite correction. Simplified approaches for [18F]MK-6240 quantification were validated using full kinetic modeling with metabolite-corrected arterial input function. All participants also underwent amyloid-PET and structural magnetic resonance imaging. RESULTS In vitro [18F]MK-6240 uptake was higher in AD patients than in age-matched controls in brain regions expected to contain tangles such as the hippocampus, whereas no difference was found in the cerebellar gray matter. In vivo, [18F]MK-6240 displayed favorable kinetics with rapid brain delivery and washout. The cerebellar gray matter had low binding across individuals, showing potential for use as a reference region. A reversible two-tissue compartment model well described the time-activity curves across individuals and brain regions. Distribution volume ratios using the plasma input and standardized uptake value ratios (SUVRs) calculated after the binding approached equilibrium (90 min) were correlated and higher in mild cognitive impairment or AD dementia patients than in controls. Reliability analysis revealed robust SUVRs calculated from 90 to 110 min, while earlier time points provided inaccurate estimates. CONCLUSIONS This evaluation shows an [18F]MK-6240 distribution in concordance with postmortem studies and that simplified quantitative approaches such as the SUVR offer valid estimates of neurofibrillary tangle load 90 min post injection. [18F]MK-6240 is a promising tau tracer with the potential to be applied in the disease diagnosis and assessment of therapeutic interventions.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
113 |
8
|
Lussier FZ, Pascoal TA, Chamoun M, Therriault J, Tissot C, Savard M, Kang MS, Mathotaarachchi S, Benedet AL, Parsons M, Qureshi MNI, Thomas ÉM, Shin M, Dion LA, Massarweh G, Soucy JP, Tsai IH, Vitali P, Ismail Z, Rosa-Neto P, Gauthier S. Mild behavioral impairment is associated with β-amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimers Dement 2020; 16:192-199. [PMID: 31914223 PMCID: PMC7041633 DOI: 10.1002/alz.12007] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Mild behavioral impairment (MBI) is characterized by the emergence of neuropsychiatric symptoms in elderly persons. Here, we examine the associations between MBI and Alzheimer's disease (AD) biomarkers in asymptomatic elderly individuals. METHODS Ninety-six cognitively normal elderly individuals underwent MRI, [18 F]AZD4694 β-amyloid-PET, and [18 F]MK6240 tau-PET. MBI was assessed using the MBI Checklist (MBI-C). Pearson's correlations and voxel-based regressions were used to evaluate the relationship between MBI-C score and [18 F]AZD4694 retention, [18 F]MK6240 retention, and gray matter (GM) volume. RESULTS Pearson correlations revealed a positive relationship between MBI-C score and global and striatal [18 F]AZD4694 standardized uptake value ratios (SUVRs). Voxel-based regression analyses revealed a positive correlation between MBI-C score and [18 F]AZD4694 retention. No significant correlations were found between MBI-C score and [18 F]MK6240 retention or GM volume. CONCLUSION We demonstrate for the first time a link between MBI and early AD pathology in a cognitively intact elderly population, supporting the use of the MBI-C as a metric to enhance clinical trial enrolment.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
103 |
9
|
Pascoal TA, Mathotaarachchi S, Shin M, Benedet AL, Mohades S, Wang S, Beaudry T, Kang MS, Soucy JP, Labbe A, Gauthier S, Rosa-Neto P. Synergistic interaction between amyloid and tau predicts the progression to dementia. Alzheimers Dement 2016; 13:644-653. [PMID: 28024995 DOI: 10.1016/j.jalz.2016.11.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Recent literature proposes that amyloid β (Aβ) and phosphorylated tau (p-tau) synergism accelerates biomarker abnormalities in controls. Yet, it remains to be answered whether this synergism is the driving force behind Alzheimer disease (AD) dementia. METHODS We stratified 314 mild cognitive impairment individuals using [18F]florbetapir positron emission tomography Aβ imaging and cerebrospinal fluid p-tau. Regression and voxel-based logistic regression models with interaction terms evaluated 2-year changes in cognition and clinical status as a function of baseline biomarkers. RESULTS We found that the synergism between [18F]florbetapir and p-tau, rather than their additive effects, was associated with the cognitive decline and progression to AD. Furthermore, voxel-based analysis revealed that temporal and inferior parietal were the regions where the synergism determined an increased likelihood of developing AD. DISCUSSION Together, the present results support that progression to AD dementia is driven by the synergistic rather than a mere additive effect between Aβ and p-tau proteins.
Collapse
|
Journal Article |
9 |
80 |
10
|
Brum WS, Cullen NC, Janelidze S, Ashton NJ, Zimmer ER, Therriault J, Benedet AL, Rahmouni N, Tissot C, Stevenson J, Servaes S, Triana-Baltzer G, Kolb HC, Palmqvist S, Stomrud E, Rosa-Neto P, Blennow K, Hansson O. A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases. NATURE AGING 2023; 3:1079-1090. [PMID: 37653254 PMCID: PMC10501903 DOI: 10.1038/s43587-023-00471-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Cost-effective strategies for identifying amyloid-β (Aβ) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-Aβ immunotherapies for Alzheimer's disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining Aβ-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE ε4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of Aβ-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF Aβ42/Aβ40 testing, whereas step 1 alone determined Aβ-status for low- and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting Aβ-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings.
Collapse
|
research-article |
2 |
77 |
11
|
Mathotaarachchi S, Pascoal TA, Shin M, Benedet AL, Kang MS, Beaudry T, Fonov VS, Gauthier S, Rosa-Neto P. Identifying incipient dementia individuals using machine learning and amyloid imaging. Neurobiol Aging 2017; 59:80-90. [DOI: 10.1016/j.neurobiolaging.2017.06.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
|
|
8 |
69 |
12
|
Mathotaarachchi S, Wang S, Shin M, Pascoal TA, Benedet AL, Kang MS, Beaudry T, Fonov VS, Gauthier S, Labbe A, Rosa-Neto P. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis. Front Neuroinform 2016; 10:20. [PMID: 27378902 PMCID: PMC4908129 DOI: 10.3389/fninf.2016.00020] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/01/2016] [Indexed: 11/15/2022] Open
Abstract
In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.
Collapse
|
methods-article |
9 |
68 |
13
|
Therriault J, Benedet AL, Pascoal TA, Savard M, Ashton NJ, Chamoun M, Tissot C, Lussier F, Kang MS, Bezgin G, Wang T, Fernandes-Arias J, Massarweh G, Vitali P, Zetterberg H, Blennow K, Saha-Chaudhuri P, Soucy JP, Gauthier S, Rosa-Neto P. Determining Amyloid-β Positivity Using 18F-AZD4694 PET Imaging. J Nucl Med 2020; 62:247-252. [PMID: 32737243 DOI: 10.2967/jnumed.120.245209] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Amyloid-β deposition into plaques is a pathologic hallmark of Alzheimer disease appearing years before the onset of symptoms. Although cerebral amyloid-β deposition occurs on a continuum, dichotomization into positive and negative groups has advantages for diagnosis, clinical management, and population enrichment for clinical trials. 18F-AZD4694 (also known as 18F-NAV4694) is an amyloid-β imaging ligand with high affinity for amyloid-β plaques. Despite being used in multiple academic centers, no studies have assessed a quantitative cutoff for amyloid-β positivity using 18F-AZD4694 PET. Methods: We assessed 176 individuals [young adults (n = 22), cognitively unimpaired elderly (n = 89), and cognitively impaired (n = 65)] who underwent amyloid-β PET with 18F-AZD4694, lumbar puncture, structural MRI, and genotyping for APOEε4 18F-AZD4694 values were normalized using the cerebellar gray matter as a reference region. We compared 5 methods for deriving a quantitative threshold for 18F-AZD4694 PET positivity: comparison with young-control SUV ratios (SUVRs), receiver-operating-characteristic (ROC) curves based on clinical classification of cognitively unimpaired elderly versus Alzheimer disease dementia, ROC curves based on visual Aβ-positive/Aβ-negative classification, gaussian mixture modeling, and comparison with cerebrospinal fluid measures of amyloid-β, specifically the Aβ42/Aβ40 ratio. Results: We observed good convergence among the 4 methods: ROC curves based on visual classification (optimal cut point, 1.55 SUVR), ROC curves based on clinical classification (optimal cut point, 1.56 SUVR) gaussian mixture modeling (optimal cut point, 1.55 SUVR), and comparison with cerebrospinal fluid measures of amyloid-β (optimal cut point, 1.51 SUVR). Means and 2 SDs from young controls resulted in a lower threshold (1.33 SUVR) that did not agree with the other methods and labeled most elderly individuals as Aβ-positive. Conclusion: Good convergence was obtained among several methods for determining an optimal cutoff for 18F-AZD4694 PET positivity. Despite conceptual and analytic idiosyncrasies linked with dichotomization of continuous variables, an 18F-AZD4694 threshold of 1.55 SUVR had reliable discriminative accuracy. Although clinical use of amyloid PET is currently by visual inspection of scans, quantitative thresholds may be helpful to arbitrate disagreement among raters or in borderline cases.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
67 |
14
|
Pascoal TA, Mathotaarachchi S, Kang MS, Mohaddes S, Shin M, Park AY, Parent MJ, Benedet AL, Chamoun M, Therriault J, Hwang H, Cuello AC, Misic B, Soucy JP, Aston JAD, Gauthier S, Rosa-Neto P. Aβ-induced vulnerability propagates via the brain's default mode network. Nat Commun 2019; 10:2353. [PMID: 31164641 PMCID: PMC6547716 DOI: 10.1038/s41467-019-10217-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
The link between brain amyloid-β (Aβ), metabolism, and dementia symptoms remains a pressing question in Alzheimer's disease. Here, using positron emission tomography ([18F]florbetapir tracer for Aβ and [18F]FDG tracer for glucose metabolism) with a novel analytical framework, we found that Aβ aggregation within the brain's default mode network leads to regional hypometabolism in distant but functionally connected brain regions. Moreover, we found that an interaction between this hypometabolism with overlapping Aβ aggregation is associated with subsequent cognitive decline. These results were also observed in transgenic Aβ rats that do not form neurofibrillary tangles, which support these findings as an independent mechanism of cognitive deterioration. These results suggest a model in which distant Aβ induces regional metabolic vulnerability, whereas the interaction between local Aβ with a vulnerable environment drives the clinical progression of dementia.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
62 |
15
|
Pascoal TA, Benedet AL, Tudorascu DL, Therriault J, Mathotaarachchi S, Savard M, Lussier FZ, Tissot C, Chamoun M, Kang MS, Stevenson J, Massarweh G, Guiot MC, Soucy JP, Gauthier S, Rosa-Neto P. Longitudinal 18F-MK-6240 tau tangles accumulation follows Braak stages. Brain 2021; 144:3517-3528. [PMID: 34515754 DOI: 10.1093/brain/awab248] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Tracking longitudinal tau tangles accumulation across the Alzheimer's disease continuum is crucial to better understand the natural history of tau pathology and for clinical trials. Although the available first-generation tau PET tracers detect tau accumulation in symptomatic individuals, their nanomolar affinity offers limited sensitivity to detect early tau accumulation in asymptomatic subjects. Here, we hypothesized the novel sub-nanomolar affinity tau tangles tracer [18F]MK-6240 can detect longitudinal tau accumulation in asymptomatic and symptomatic subjects. We studied 125 living individuals (65 cognitively unimpaired elderly amyloid-β negative, 22 cognitively unimpaired elderly amyloid-β positive, 21 mild cognitive impairment amyloid-β positive, 17 Alzheimer's disease dementia amyloid-β positive) with baseline amyloid-β [18F]AZD4694 PET and baseline and follow-up tau [18F]MK-6240 PET. [18F]MK-6240 standardized uptake value ratio (SUVR) was calculated at 90-110 min after tracer injection and used the cerebellar crus I as the reference region. In addition, we assessed in vivo [18F]MK-6240 SUVR and postmortem phosphorylated tau pathology in two Alzheimer's disease dementia participants who deceased after the PET scans. We found that cognitively unimpaired amyloid-β negative individuals had significant longitudinal tau accumulation confined to PET Braak-like stage I (3.9%) and II (2.8%) areas. Cognitively unimpaired amyloid-β positive showed greater tau accumulation in Braak-like stage I (8.9%), compared to later Braak stages. Mild cognitive impairment and Alzheimer's dementia amyloid-β positive patients showed tau accumulation in Braak III-VI, but not in Braak I-II regions. Cognitively impaired amyloid-β positive individuals that were Braak II-IV at baseline showed 4.6-7.5% annual increase in tau accumulation in Braak III-IV regions, whereas cognitively impaired amyloid-β positive Braak V-VI at baseline had 8.3-10.7% annual increase in Braak V-VI regions. Neuropathological assessments confirmed the PET-based Braak stages V-VI observed in the two brain donors. Our results suggest that [18F]MK-6240 SUVR is able to detect longitudinal tau accumulation in asymptomatic and symptomatic Alzheimer's disease. The highest magnitude of [18F]MK-6240 SUVR accumulation moved from medial temporal to sensorimotor cortex across the disease clinical spectrum. Trials using [18F]MK-6240 SUVR in cognitively unimpaired would be required to use regions-of-interest corresponding to early Braak stages, whereas trials in cognitively impaired would benefit from using regions-of-interest in late Braak stages. Anti-tau trials should take into consideration individuals' baseline PET Braak-like stage to minimize the variability introduced by the hierarchical accumulation of tau tangles in the human brain. Finally, our postmortem findings supported [18F]MK-6240 SUVR as a biomarker to stage tau pathology in Alzheimer's disease patients.
Collapse
|
|
4 |
54 |
16
|
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Savard M, Chamoun M, Thomas E, Kang MS, Lussier F, Tissot C, Soucy JP, Massarweh G, Rej S, Saha-Chaudhuri P, Poirier J, Gauthier S, Rosa-Neto P. APOEε4 potentiates the relationship between amyloid-β and tau pathologies. Mol Psychiatry 2021; 26:5977-5988. [PMID: 32161362 PMCID: PMC8758492 DOI: 10.1038/s41380-020-0688-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
APOEε4 is the most well-established genetic risk factor for sporadic Alzheimer's disease and is associated with cerebral amyloid-β. However, the association between APOEε4 and tau pathology, the other major proteinopathy of Alzheimer's disease, has been controversial. Here, we sought to determine whether the relationship between APOEε4 and tau pathology is determined by local interactions with amyloid-β. We examined three independent samples of cognitively unimpaired, mild cognitive impairment and Alzheimer's disease subjects: (1) 211 participants who underwent tau-PET with [18F]MK6240 and amyloid-PET with [18F]AZD4694, (2) 264 individuals who underwent tau-PET with [18F]Flortaucipir and amyloid-PET with [18F]Florbetapir and (3) 487 individuals who underwent lumbar puncture and amyloid-PET with [18F]Florbetapir. Using a novel analytical framework, we applied voxel-wise regression models to assess the interactive effect of APOEε4 and amyloid-β on tau load, independently of age and clinical diagnosis. We found that the interaction effect between APOEε4 and amyloid-β, rather than the sum of their independent effects, was related to increased tau load in Alzheimer's disease-vulnerable regions. The interaction between one APOEε4 allele and amyloid-β was related to increased tau load, while the interaction between amyloid-β and two APOEε4 alleles was related to a more widespread pattern of tau aggregation. Our results contribute to an emerging framework in which the elevated risk of developing dementia conferred by APOEε4 genotype involves mechanisms associated with both amyloid-β and tau aggregation. These results may have implications for future disease-modifying therapeutic trials targeting amyloid or tau pathologies.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
52 |
17
|
Therriault J, Ng KP, Pascoal TA, Mathotaarachchi S, Kang MS, Struyfs H, Shin M, Benedet AL, Walpola IC, Nair V, Gauthier S, Rosa-Neto P. Anosognosia predicts default mode network hypometabolism and clinical progression to dementia. Neurology 2018; 90:e932-e939. [PMID: 29444971 PMCID: PMC5858945 DOI: 10.1212/wnl.0000000000005120] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023] Open
Abstract
Objective To identify the pathophysiologic mechanisms and clinical significance of anosognosia for cognitive decline in mild cognitive impairment. Methods We stratified 468 patients with amnestic mild cognitive impairment into intact and impaired awareness groups, determined by the discrepancy between the patient and the informant score on the Everyday Cognition questionnaire. Voxel-based linear regression models evaluated the associations between self-awareness status and baseline β-amyloid load, measured by [18F]florbetapir, and the relationships between awareness status and regional brain glucose metabolism measured by [18F]fluorodeoxyglucose at baseline and at 24-month follow-up. Multivariate logistic regression tested the association of awareness status with conversion from amnestic mild cognitive impairment to dementia. Results We found that participants with impaired awareness had lower [18F]fluorodeoxyglucose uptake and increased [18F]florbetapir uptake in the posterior cingulate cortex at baseline. In addition, impaired awareness in mild cognitive impairment predicted [18F]fluorodeoxyglucose hypometabolism in the posterior cingulate cortex, left basal forebrain, bilateral medial temporal lobes, and right lateral temporal lobe over 24 months. Furthermore, participants with impaired awareness had a nearly 3-fold increase in likelihood of conversion to dementia within a 2-year time frame. Conclusions Our results suggest that anosognosia is linked to Alzheimer disease pathophysiology in vulnerable structures, and predicts subsequent hypometabolism in the default mode network, accompanied by an increased risk of progression to dementia. This highlights the importance of assessing awareness of cognitive decline in the clinical evaluation and management of individuals with amnestic mild cognitive impairment.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
48 |
18
|
Therriault J, Pascoal TA, Benedet AL, Tissot C, Savard M, Chamoun M, Lussier F, Kang MS, Berzgin G, Wang T, Fernandes-Arias J, Massarweh G, Soucy JP, Vitali P, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Frequency of Biologically Defined Alzheimer Disease in Relation to Age, Sex, APOE ε4, and Cognitive Impairment. Neurology 2021; 96:e975-e985. [PMID: 33443136 PMCID: PMC8055338 DOI: 10.1212/wnl.0000000000011416] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To assess the frequency of biologically defined Alzheimer disease (AD) in relation to age, sex, APOE ε4, and clinical diagnosis in a prospective cohort study evaluated with amyloid-PET and tau-PET. METHODS We assessed cognitively unimpaired (CU) elderly (n = 166), patients with amnestic mild cognitive impairment (n = 77), and patients with probable AD dementia (n = 62) who underwent evaluation by dementia specialists and neuropsychologists in addition to amyloid-PET with [18F]AZD4694 and tau-PET with [18F]MK6240. Individuals were grouped according to their AD biomarker profile. Positive predictive value for biologically defined AD was assessed in relation to clinical diagnosis. Frequency of AD biomarker profiles was assessed using logistic regressions with odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The clinical diagnosis of probable AD dementia demonstrated good agreement with biologically defined AD (positive predictive value 85.2%). A total of 7.88% of CU were positive for both amyloid-PET and tau-PET. Frequency of biologically defined AD increased with age (OR 1.14; p < 0.0001) and frequency of APOE ε4 allele carriers (single ε4: OR 3.82; p < 0.0001; double ε4: OR 17.55, p < 0.0001). CONCLUSION Whereas we observed strong, but not complete, agreement between clinically defined probable AD dementia and biomarker positivity for both β-amyloid and tau, we also observed that biologically defined AD was not rare in CU elderly. Abnormal tau-PET was almost exclusively observed in individuals with abnormal amyloid-PET. Our results highlight that even in tertiary care memory clinics, detailed evaluation by dementia specialists systematically underestimates the frequency of biologically defined AD and related entities. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that biologically defined AD (abnormal amyloid PET and tau PET) was observed in 85.2% of people with clinically defined AD and 7.88% of CU elderly.
Collapse
|
research-article |
4 |
45 |
19
|
Therriault J, Benedet AL, Pascoal TA, Lussier FZ, Tissot C, Karikari TK, Ashton NJ, Chamoun M, Bezgin G, Mathotaarachchi S, Gauthier S, Saha-Chaudhuri P, Zetterberg H, Blennow K, Rosa-Neto P. Association of plasma P-tau181 with memory decline in non-demented adults. Brain Commun 2021; 3:fcab136. [PMID: 34222875 PMCID: PMC8249102 DOI: 10.1093/braincomms/fcab136] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is the leading cause of dementia worldwide and is characterized by a long preclinical phase in which amyloid-β and tau accumulate in the absence of cognitive decline. In vivo biomarkers for Alzheimer's disease are expensive, invasive and inaccessible, yet are critical for accurate disease diagnosis and patient management. Recent ultrasensitive methods to measure plasma phosphorylated tau 181 (p-tau181) display strong correlations with tau positron emission tomography, p-tau181 in CSF, and tau pathology at autopsy. The clinical utility of plasma-based p-tau181 biomarkers is unclear. In a longitudinal multicentre observational study, we assessed 1113 non-demented individuals (509 cognitively unimpaired elderly and 604 individuals with mild cognitive impairment) from the Alzheimer's Disease Neuroimaging Initiative who underwent neuropsychological assessments and were evaluated for plasma p-tau181. The primary outcome was a memory composite z-score. Mixed-effect models assessed rates of memory decline in relation to baseline plasma p-tau181, and whether plasma p-tau181 significantly predicted memory decline beyond widely available clinical and genetic data (age, sex, years of education, cardiovascular and metabolic conditions, and APOEε4 status). Participants were followed for a median of 4.1 years. Baseline plasma p-tau181 was associated with lower baseline memory (β estimate: -0.49, standard error: 0.06, t-value: -7.97), as well as faster rates of memory decline (β estimate: -0.11, standard error: 0.01, t-value: -7.37). Moreover, the inclusion of plasma p-tau181 resulted in improved prediction of memory decline beyond clinical and genetic data (marginal R 2 of 16.7-23%, χ2 = 100.81, P < 0.00001). Elevated baseline plasma p-tau181 was associated with higher rates of clinical progression to mild cognitive impairment (hazard ratio = 1.82, 95% confidence interval: 1.2-2.8) and from mild cognitive impairment to dementia (hazard ratio = 2.06, 95% confidence interval: 1.55-2.74). Our results suggest that in elderly individuals without dementia at baseline, plasma p-tau181 biomarkers were associated with greater memory decline and rates of clinical progression to dementia. Plasma p-tau181 improved prediction of memory decline above a model with currently available clinical and genetic data. While the clinical importance of this improvement in the prediction of memory decline is unknown, these results highlight the potential of plasma p-tau181 as a cost-effective and scalable Alzheimer's disease biomarker.
Collapse
|
research-article |
4 |
38 |
20
|
Terada T, Therriault J, Kang MSP, Savard M, Pascoal TA, Lussier F, Tissot C, Wang YT, Benedet A, Matsudaira T, Bunai T, Obi T, Tsukada H, Ouchi Y, Rosa-Neto P. Mitochondrial complex I abnormalities is associated with tau and clinical symptoms in mild Alzheimer's disease. Mol Neurodegener 2021; 16:28. [PMID: 33902654 PMCID: PMC8074456 DOI: 10.1186/s13024-021-00448-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Background Mitochondrial electron transport chain abnormalities have been reported in postmortem pathological specimens of Alzheimer’s disease (AD). However, it remains unclear how amyloid and tau are associated with mitochondrial dysfunction in vivo. The purpose of this study is to assess the local relationships between mitochondrial dysfunction and AD pathophysiology in mild AD using the novel mitochondrial complex I PET imaging agent [18F]BCPP-EF. Methods Thirty-two amyloid and tau positive mild stage AD dementia patients (mean age ± SD: 71.1 ± 8.3 years) underwent a series of PET measurements with [18F]BCPP-EF mitochondrial function, [11C]PBB3 for tau deposition, and [11C] PiB for amyloid deposition. Age-matched normal control subjects were also recruited. Inter and intrasubject comparisons of levels of mitochondrial complex I activity, amyloid and tau deposition were performed. Results The [18F]BCPP-EF uptake was significantly lower in the medial temporal area, highlighting the importance of the mitochondrial involvement in AD pathology. [11C]PBB3 uptake was greater in the temporo-parietal regions in AD. Region of interest analysis in the Braak stage I-II region showed significant negative correlation between [18F]BCPP-EF SUVR and [11C]PBB3 BPND (R = 0.2679, p = 0.04), but not [11C] PiB SUVR. Conclusions Our results indicated that mitochondrial complex I is closely associated with tau load evaluated by [11C]PBB3, which might suffer in the presence of its off-target binding. The absence of association between mitochondrial complex I dysfunction with amyloid load suggests that mitochondrial dysfunction in the trans-entorhinal and entorhinal region is a reflection of neuronal injury occurring in the brain of mild AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00448-1.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
38 |
21
|
Lantero‐Rodriguez J, Snellman A, Benedet AL, Milà‐Alomà M, Camporesi E, Montoliu‐Gaya L, Ashton NJ, Vrillon A, Karikari TK, Gispert JD, Salvadó G, Shekari M, Toomey CE, Lashley TL, Zetterberg H, Suárez‐Calvet M, Brinkmalm G, Rosa Neto P, Blennow K. P-tau235: a novel biomarker for staging preclinical Alzheimer's disease. EMBO Mol Med 2021; 13:e15098. [PMID: 34725927 PMCID: PMC8649868 DOI: 10.15252/emmm.202115098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
32 |
22
|
Therriault J, Pascoal TA, Savard M, Benedet AL, Chamoun M, Tissot C, Lussier F, Kang MS, Thomas E, Terada T, Rej S, Massarweh G, Nasreddine Z, Vitali P, Soucy JP, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Topographic Distribution of Amyloid-β, Tau, and Atrophy in Patients With Behavioral/Dysexecutive Alzheimer Disease. Neurology 2020; 96:e81-e92. [PMID: 33093220 PMCID: PMC7884976 DOI: 10.1212/wnl.0000000000011081] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022] Open
Abstract
Objective To determine the associations between amyloid-PET, tau-PET, and atrophy with the behavioral/dysexecutive presentation of Alzheimer disease (AD), how these differ from amnestic AD, and how they correlate to clinical symptoms. Methods We assessed 15 patients with behavioral/dysexecutive AD recruited from a tertiary care memory clinic, all of whom had biologically defined AD. They were compared with 25 patients with disease severity– and age-matched amnestic AD and a group of 131 cognitively unimpaired (CU) elderly individuals. All participants were evaluated with amyloid-PET with [18F]AZD4694, tau-PET with [18F]MK6240, MRI, and neuropsychological testing. Results Voxelwise contrasts identified patterns of frontal cortical tau aggregation in behavioral/dysexecutive AD, with peaks in medial prefrontal, anterior cingulate, and frontal insular cortices in contrast to amnestic AD. No differences were observed in the distribution of amyloid-PET or atrophy as determined by voxel-based morphometry. Voxelwise area under the receiver operating characteristic curve analyses revealed that tau-PET uptake in the medial prefrontal, anterior cingulate, and frontal insular cortices were best able to differentiate between behavioral/dysexecutive and amnestic AD (area under the curve 0.87). Voxelwise regressions demonstrated relationships between frontal cortical tau load and degree of executive dysfunction. Conclusions Our results provide evidence of frontal cortical involvement of tau pathology in behavioral/dysexecutive AD and highlight the need for consensus clinical criteria in this syndrome.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
32 |
23
|
Paterson RW, Benjamin LA, Mehta PR, Brown RL, Athauda D, Ashton NJ, Leckey CA, Ziff OJ, Heaney J, Heslegrave AJ, Benedet AL, Blennow K, Checkley AM, Houlihan CF, Mummery CJ, Lunn MP, Manji H, Zandi MS, Keddie S, Chou M, Vinayan Changaradil D, Solomon T, Keshavan A, Barker S, Jäger HR, Carletti F, Simister R, Werring DJ, Spyer MJ, Nastouli E, Gauthier S, Rosa-Neto P. Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes. Brain Commun 2021; 3:fcab099. [PMID: 34396099 PMCID: PMC8194666 DOI: 10.1093/braincomms/fcab099] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.
Collapse
|
research-article |
4 |
32 |
24
|
Benedet A, Costa A, De Marchi M, Penasa M. Heritability estimates of predicted blood β-hydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows. J Dairy Sci 2020; 103:6354-6363. [PMID: 32359995 DOI: 10.3168/jds.2019-17916] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
At the beginning of lactation, high-producing cows commonly experience an unbalanced energy status that is often responsible for the onset of metabolic disorders and impaired health and performance. Blood β-hydroxybutyrate (BHB) and nonesterified fatty acids (NEFA) are indicators of excessive fat mobilization and circulating ketone bodies. Recently, prediction models based on mid-infrared (MIR) spectroscopy have been developed to assess blood BHB and NEFA from routinely collected individual milk samples. This study aimed to estimate genetic parameters of blood BHB and NEFA predicted from milk MIR spectra and to assess their phenotypic and genetic correlations with milk production and composition traits in early-lactation Holstein cows. The data set comprised the first test-day record within lactation and spectra of individual milk samples (n = 22,718) of 13,106 Holstein cows collected from 5 to 35 d in milk (DIM). Blood BHB and NEFA were predicted from milk MIR spectra using previously developed prediction models. Genetic parameters of blood metabolites and milk traits were estimated for the whole observational period (5-35 DIM) and within 6 classes of DIM. Blood BHB and NEFA showed similar genetic variation across DIM, with the highest heritability in the first 10 d after calving (0.31 ± 0.06 and 0.19 ± 0.05 for BHB and NEFA, respectively). The genetic correlation between BHB and NEFA was moderate (0.51 ± 0.05). Genetic correlations of BHB with milk yield, SCS, protein percentage, lactose percentage, and urea nitrogen content were similar to, or at least in the same direction as, the correlations of NEFA with the same traits, whereas opposite correlations were observed with fat percentage and fat-to-protein ratio. Results of the current study suggest that blood BHB and NEFA predicted from milk MIR spectra have genetic variation that is potentially exploitable for breeding purposes. Therefore, they could be used as indicator traits of hyperketonemia in a selection index aimed to reduce the susceptibility of dairy cows to metabolic disorders in early lactation.
Collapse
|
Journal Article |
5 |
30 |
25
|
Zettergren A, Lord J, Ashton NJ, Benedet AL, Karikari TK, Lantero Rodriguez J, Snellman A, Suárez-Calvet M, Proitsi P, Zetterberg H, Blennow K. Association between polygenic risk score of Alzheimer's disease and plasma phosphorylated tau in individuals from the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Res Ther 2021; 13:17. [PMID: 33419453 PMCID: PMC7792087 DOI: 10.1186/s13195-020-00754-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recent studies suggest that plasma phosphorylated tau181 (p-tau181) is a highly specific biomarker for Alzheimer's disease (AD)-related tau pathology. It has great potential for the diagnostic and prognostic evaluation of AD, since it identifies AD with the same accuracy as tau PET and CSF p-tau181 and predicts the development of AD dementia in cognitively unimpaired (CU) individuals and in those with mild cognitive impairment (MCI). Plasma p-tau181 may also be used as a biomarker in studies exploring disease pathogenesis, such as genetic or environmental risk factors for AD-type tau pathology. The aim of the present study was to investigate the relation between polygenic risk scores (PRSs) for AD and plasma p-tau181. METHODS Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) was used to examine the relation between AD PRSs, constructed based on findings in recent genome-wide association studies, and plasma p-tau181, using linear regression models. Analyses were performed in the total sample (n = 818), after stratification on diagnostic status (CU (n = 236), MCI (n = 434), AD dementia (n = 148)), and after stratification on Aβ pathology status (Aβ positives (n = 322), Aβ negatives (n = 409)). RESULTS Associations between plasma p-tau181 and APOE PRSs (p = 3e-18-7e-15) and non-APOE PRSs (p = 3e-4-0.03) were seen in the total sample. The APOE PRSs were associated with plasma p-tau181 in all diagnostic groups (CU, MCI, and AD dementia), while the non-APOE PRSs were associated only in the MCI group. The APOE PRSs showed similar results in amyloid-β (Aβ)-positive and negative individuals (p = 5e-5-1e-3), while the non-APOE PRSs were associated with plasma p-tau181 in Aβ positives only (p = 0.02). CONCLUSIONS Polygenic risk for AD including APOE was found to associate with plasma p-tau181 independent of diagnostic and Aβ pathology status, while polygenic risk for AD beyond APOE was associated with plasma p-tau181 only in MCI and Aβ-positive individuals. These results extend the knowledge about the relation between genetic risk for AD and p-tau181, and further support the usefulness of plasma p-tau181 as a biomarker of AD.
Collapse
|
research-article |
4 |
30 |