1
|
Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008; 454:104-8. [PMID: 18480752 DOI: 10.1038/nature06969] [Citation(s) in RCA: 605] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 04/01/2008] [Indexed: 11/10/2022]
Abstract
Understanding the origins and roles of cardiac progenitor cells is important for elucidating the pathogenesis of congenital and acquired heart diseases. Moreover, manipulation of cardiac myocyte progenitors has potential for cell-based repair strategies for various myocardial disorders. Here we report the identification in mouse of a previously unknown cardiac myocyte lineage that derives from the proepicardial organ. These progenitor cells, which express the T-box transcription factor Tbx18, migrate onto the outer cardiac surface to form the epicardium, and then make a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Tbx18-expressing cardiac progenitors also give rise to cardiac fibroblasts and coronary smooth muscle cells. The pluripotency of Tbx18 proepicardial cells provides a theoretical framework for applying these progenitors to effect cardiac repair and regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
605 |
2
|
Abstract
Growth and remodeling in tissues may be modulated by mechanical factors such as stress. For example, in cardiac hypertrophy, alterations in wall stress arising from changes in mechanical loading lead to cardiac growth and remodeling. A general continuum formulation for finite volumetric growth in soft elastic tissues is therefore proposed. The shape change of an unloaded tissue during growth is described by a mapping analogous to the deformation gradient tensor. This mapping is decomposed into a transformation of the local zero-stress reference state and an accompanying elastic deformation that ensures the compatibility of the total growth deformation. Residual stress arises from this elastic deformation. Hence, a complete kinematic formulation for growth in general requires a knowledge of the constitutive law for stress in the tissue. Since growth may in turn be affected by stress in the tissue, a general form for the stress-dependent growth law is proposed as a relation between the symmetric growth-rate tensor and the stress tensor. With a thick-walled hollow cylinder of incompressible, isotropic hyperelastic material as an example, the mechanics of left ventricular hypertrophy are investigated. The results show that transmurally uniform pure circumferential growth, which may be similar to eccentric ventricular hypertrophy, changes the state of residual stress in the heart wall. A model of axially loaded bone is used to test a simple stress-dependent growth law in which growth rate depends on the difference between the stress due to loading and a predetermined growth equilibrium stress.
Collapse
|
|
31 |
601 |
3
|
Knöll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 2002; 111:943-55. [PMID: 12507422 DOI: 10.1016/s0092-8674(02)01226-6] [Citation(s) in RCA: 573] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Muscle cells respond to mechanical stretch stimuli by triggering downstream signals for myocyte growth and survival. The molecular components of the muscle stretch sensor are unknown, and their role in muscle disease is unclear. Here, we present biophysical/biochemical studies in muscle LIM protein (MLP) deficient cardiac muscle that support a selective role for this Z disc protein in mechanical stretch sensing. MLP interacts with and colocalizes with telethonin (T-cap), a titin interacting protein. Further, a human MLP mutation (W4R) associated with dilated cardiomyopathy (DCM) results in a marked defect in T-cap interaction/localization. We propose that a Z disc MLP/T-cap complex is a key component of the in vivo cardiomyocyte stretch sensor machinery, and that defects in the complex can lead to human DCM and associated heart failure.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Animals, Newborn
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cell Membrane/ultrastructure
- Cells, Cultured
- Connectin
- Female
- Humans
- Intercellular Junctions/metabolism
- Intercellular Junctions/pathology
- Intercellular Junctions/ultrastructure
- LIM Domain Proteins
- Male
- Mice
- Mice, Knockout
- Microscopy, Electron
- Middle Aged
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle Spindles/metabolism
- Muscle Spindles/ultrastructure
- Mutation, Missense/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocardium/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- Protein Structure, Tertiary/genetics
- Stress, Mechanical
Collapse
|
|
23 |
573 |
4
|
Guccione JM, McCulloch AD, Waldman LK. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 1991; 113:42-55. [PMID: 2020175 DOI: 10.1115/1.2894084] [Citation(s) in RCA: 343] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The equatorial region of the canine left ventricle was modeled as a thick-walled cylinder consisting of an incompressible hyperelastic material with homogeneous exponential properties. The anisotropic properties of the passive myocardium were assumed to be locally transversely isotropic with respect to a fiber axis whose orientation varied linearly across the wall. Simultaneous inflation, extension, and torsion were applied to the cylinder to produce epicardial strains that were measured previously in the potassium-arrested dog heart. Residual stress in the unloaded state was included by considering the stress-free configuration to be a warped cylindrical arc. In the special case of isotropic material properties, torsion and residual stress both significantly reduced the high circumferential stress peaks predicted at the endocardium by previous models. However, a resultant axial force and moment were necessary to cause the observed epicardial deformations. Therefore, the anisotropic material parameters were found that minimized these resultants and allowed the prescribed displacements to occur subject to the known ventricular pressure loads. The global minimum solution of this parameter optimization problem indicated that the stiffness of passive myocardium (defined for a 20 percent equibiaxial extension) would be 2.4 to 6.6 times greater in the fiber direction than in the transverse plane for a broad range of assumed fiber angle distributions and residual stresses. This agrees with the results of biaxial tissue testing. The predicted transmural distributions of fiber stress were relatively flat with slight peaks in the subepicardium, and the fiber strain profiles agreed closely with experimentally observed sarcomere length distributions. The results indicate that torsion, residual stress and material anisotropy associated with the fiber architecture all can act to reduce endocardial stress gradients in the passive left ventricle.
Collapse
|
|
34 |
343 |
5
|
Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Salameh P, O'Doherty S, Wang RH, Porter L, Miller BR. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 2001; 292:1882-8. [PMID: 11337586 DOI: 10.1126/science.1058673] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hydroxyl radical (OH) is the dominant oxidizing chemical in the atmosphere. It destroys most air pollutants and many gases involved in ozone depletion and the greenhouse effect. Global measurements of 1,1,1-trichloroethane (CH3CCl3, methyl chloroform) provide an accurate method for determining the global and hemispheric behavior of OH. Measurements show that CH3CCl3 levels rose steadily from 1978 to reach a maximum in 1992 and then decreased rapidly to levels in 2000 that were lower than the levels when measurements began in 1978. Analysis of these observations shows that global OH levels were growing between 1978 and 1988, but the growth rate was decreasing at a rate of 0.23 +/- 0.18% year(-2), so that OH levels began declining after 1988. Overall, the global average OH trend between 1978 and 2000 was -0.64 +/- 0.60% year(-1). These variations imply important and unexpected gaps in current understanding of the capability of the atmosphere to cleanse itself.
Collapse
|
|
24 |
305 |
6
|
Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, Chirinos JA, Collins S, Deo RC, Gladwin MT, Granzier H, Hummel SL, Kass DA, Redfield MM, Sam F, Wang TJ, Desvigne-Nickens P, Adhikari B. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020; 141:1001-1026. [PMID: 32202936 PMCID: PMC7101072 DOI: 10.1161/circulationaha.119.041886] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a major public health problem that is rising in prevalence, is associated with high morbidity and mortality and is considered to be the greatest unmet need in cardiovascular medicine today because of a general lack of effective treatments. To address this challenging syndrome, the National Heart, Lung, and Blood Institute convened a working group made up of experts in HFpEF and novel research methodologies to discuss research gaps and to prioritize research directions over the next decade. Here, we summarize the discussion of the working group, followed by key recommendations for future research priorities. There was uniform recognition that HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach in both humans and animal models to improve understanding of mechanisms and treatment of HFpEF. It was recognized that advances in the understanding of basic mechanisms and the roles of inflammation, macrovascular and microvascular dysfunction, fibrosis, and tissue remodeling are needed and ideally would be obtained from (1) improved animal models, including large animal models, which incorporate the effects of aging and associated comorbid conditions; (2) repositories of deeply phenotyped physiological data and human tissue, made accessible to researchers to enhance collaboration and research advances; and (3) novel research methods that take advantage of computational advances and multiscale modeling for the analysis of complex, high-density data across multiple domains. The working group emphasized the need for interactions among basic, translational, clinical, and epidemiological scientists and across organ systems and cell types, leveraging different areas or research focus, and between research centers. A network of collaborative centers to accelerate basic, translational, and clinical research of pathobiological mechanisms and treatment strategies in HFpEF was discussed as an example of a strategy to advance research progress. This resource would facilitate comprehensive, deep phenotyping of a multicenter HFpEF patient cohort with standardized protocols and a robust biorepository. The research priorities outlined in this document are meant to stimulate scientific advances in HFpEF by providing a road map for future collaborative investigations among a diverse group of scientists across multiple domains.
Collapse
|
research-article |
5 |
284 |
7
|
Hunter PJ, McCulloch AD, ter Keurs HE. Modelling the mechanical properties of cardiac muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 69:289-331. [PMID: 9785944 DOI: 10.1016/s0079-6107(98)00013-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A model of passive and active cardiac muscle mechanics is presented, suitable for use in continuum mechanics models of the whole heart. The model is based on an extensive review of experimental data from a variety of preparations (intact trabeculae, skinned fibres and myofibrils) and species (mainly rat and ferret) at temperatures from 20 to 27 degrees C. Experimental tests include isometric tension development, isotonic loading, quick-release/restretch, length step and sinusoidal perturbations. We show that all of these experiments can be interpreted with a four state variable model which includes (i) the passive elasticity of myocardial tissue, (ii) the rapid binding of Ca2+ to troponin C and its slower tension-dependent release, (iii) the kinetics of tropomyosin movement and availability of crossbridge binding sites and the length dependence of this process and (iv) the kinetics of crossbridge tension development under perturbations of myofilament length.
Collapse
|
Review |
27 |
227 |
8
|
Sheikh F, Raskin A, Chu PH, Lange S, Domenighetti AA, Zheng M, Liang X, Zhang T, Yajima T, Gu Y, Dalton ND, Mahata SK, Dorn GW, Brown JH, Heller-Brown J, Peterson KL, Omens JH, McCulloch AD, Chen J. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest 2008; 118:3870-80. [PMID: 19033658 DOI: 10.1172/jci34472] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 09/24/2008] [Indexed: 11/17/2022] Open
Abstract
The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the dysfunction of these pathways may lead to disease. Here, we found that four-and-a-half LIM domains 1 (FHL1) is part of a complex within the cardiomyocyte sarcomere that senses the biomechanical stress-induced responses important for cardiac hypertrophy. Mice lacking Fhl1 displayed a blunted hypertrophic response and a beneficial functional response to pressure overload induced by transverse aortic constriction. A link to the Galphaq (Gq) signaling pathway was also observed, as Fhl1 deficiency prevented the cardiomyopathy observed in Gq transgenic mice. Mechanistic studies demonstrated that FHL1 plays an important role in the mechanism of pathological hypertrophy by sensing biomechanical stress responses via the N2B stretch sensor domain of titin and initiating changes in the titin- and MAPK-mediated responses important for sarcomere extensibility and intracellular signaling. These studies shed light on the physiological regulation of the sarcomere in response to hypertrophic stress.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
195 |
9
|
Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ. Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 1995; 27:2347-57. [PMID: 8576949 DOI: 10.1016/s0022-2828(95)91983-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiotensin II (Ang II) has been implicated in the development of cardiac hypertrophy and myocardial fibrosis. While recent in vivo and in vitro studies performed in cultured cardiac myocytes and fibroblasts support this role for Ang II, the mechanisms of Ang II action at the cellular level remain unclear. In the present study, we postulated that Ang II action in adult cardiac fibroblasts may stimulate the autocrine production and release of transforming growth factor-beta 1 (TGF-beta 1), a known regulator of cardiac fibroblast and myocyte function. We examined the ability of Ang II to regulate the gene expression, biological activity, and protein production of TGF-beta 1 in cultured adult rat cardiac fibroblasts. Treatment of fibroblast cultures with Ang II (10(-9) M) induced a two-fold increase in TGF-beta 1 mRNA levels within 4 h that was sustained through 24 h (P < 0.01). TGF-beta 1-like activity in Ang II-treated cultures was significantly increased compared with control as measured by bioassay (P < 0.001). Specificity for TGF-beta 1-like activity was confirmed through its neutralization with a TGF-beta 1 specific antibody (100 micrograms/ml). Total concentration of TGF-beta 1 (latent plus active forms) in conditioned media from Ang II-treated cardiac fibroblasts was also found to be greater than control (P < 0.01). These findings suggest that the effects of Ang II in the adult myocardium may be mediated in part by autocrine/paracrine mechanisms, including the production and release of TGF-beta 1 by cardiac fibroblasts.
Collapse
|
|
30 |
194 |
10
|
Guccione JM, Costa KD, McCulloch AD. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J Biomech 1995; 28:1167-77. [PMID: 8550635 DOI: 10.1016/0021-9290(94)00174-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A three-dimensional finite element model was used to explore whether or not transmural distributions of end-diastolic and end-systolic fiber stress are uniform from the apex to the base of the canine left ventricular wall. An elastance model for active fiber stress was incorporated in an axisymmetric model that accurately represented the geometry and fiber angle distribution of the anterior free wall. The nonlinear constitutive equation for the resting myocardium was transversely isotropic with respect to the local fiber axis. Transmural distributions of end-diastolic fiber stress became increasingly nonuniform from midventricle toward the apex or the base. At a typical diastolic left ventricular pressure (1 kPa), the differences between largest and smallest fiber stresses were only 0.5 kPa near midventricle, compared with 4.6 kPa at the apex, and 3.3 kPa at the base. Transmural fiber stress differences at end-systole (14 kPa) were relatively small in regions from the base to the midventricle (13-22 kPa), but were larger between midventricle and the apex (30-43 kPa). All six three-dimensional end-diastolic strain components were within or very close to one standard deviation of published measurements through the midanterior left ventricular free wall of the passive canine heart [Omens et al., Am. J. Physiol. 261, H918-H928 (1991)]. End-systolic in-plane normal and shear strains also agreed closely with published experimental measurements in the beating dog heart [Waldman et al., Circ. Res. 63, 550-562 (1988)]. The results indicate that, unlike in the midventricle region that has been studied most fully, there may be significant regional nonhomogeneity of fiber stress in the normal left ventricle associated with regional variations in shape and fiber angle.
Collapse
|
|
30 |
185 |
11
|
Kita-Matsuo H, Barcova M, Prigozhina N, Salomonis N, Wei K, Jacot JG, Nelson B, Spiering S, Haverslag R, Kim C, Talantova M, Bajpai R, Calzolari D, Terskikh A, McCulloch AD, Price JH, Conklin BR, Chen HSV, Mercola M. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS One 2009; 4:e5046. [PMID: 19352491 PMCID: PMC2662416 DOI: 10.1371/journal.pone.0005046] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/17/2009] [Indexed: 01/26/2023] Open
Abstract
Background Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes. Methodology/Principal Findings Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and α-myosin heavy chain (αMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function. Conclusion/Significance The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
177 |
12
|
Kerckhoffs RCP, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 2007; 35:1-18. [PMID: 17111210 PMCID: PMC2872168 DOI: 10.1007/s10439-006-9212-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
176 |
13
|
Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD. Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 2003; 278:47997-8003. [PMID: 12972422 DOI: 10.1074/jbc.m308362200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.
Collapse
|
|
22 |
172 |
14
|
Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol 2007; 27:7522-37. [PMID: 17785437 PMCID: PMC2169049 DOI: 10.1128/mcb.00728-07] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/17/2007] [Accepted: 08/24/2007] [Indexed: 11/20/2022] Open
Abstract
Vinculin is a ubiquitously expressed multiliganded protein that links the actin cytoskeleton to the cell membrane. In myocytes, it is localized in protein complexes which anchor the contractile apparatus to the sarcolemma. Its function in the myocardium remains poorly understood. Therefore, we developed a mouse model with cardiac-myocyte-specific inactivation of the vinculin (Vcl) gene by using Cre-loxP technology. Sudden death was found in 49% of the knockout (cVclKO) mice younger than 3 months of age despite preservation of contractile function. Conscious telemetry documented ventricular tachycardia as the cause of sudden death, while defective myocardial conduction was detected by optical mapping. cVclKO mice that survived through the vulnerable period of sudden death developed dilated cardiomyopathy and died before 6 months of age. Prior to the onset of cardiac dysfunction, ultrastructural analysis of cVclKO heart tissue showed abnormal adherens junctions with dissolution of the intercalated disc structure, expression of the junctional proteins cadherin and beta1D integrin were reduced, and the gap junction protein connexin 43 was mislocalized to the lateral myocyte border. This is the first report of tissue-specific inactivation of the Vcl gene and shows that it is required for preservation of normal cell-cell and cell-matrix adhesive structures.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
161 |
15
|
Costa KD, Takayama Y, McCulloch AD, Covell JW. Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H595-607. [PMID: 9950861 DOI: 10.1152/ajpheart.1999.276.2.h595] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that the laminar architecture of left ventricular myocardium may be critical for normal ventricular mechanics. However, systolic three-dimensional deformation of the laminae has never been measured. Therefore, end-systolic finite strains relative to end diastole, from biplane radiography of transmural markers near the apex and base of the anesthetized open-chest canine anterior left ventricular free wall (n = 6), were referred to three-dimensional laminar microstructural axes reconstructed from histology. Whereas fiber shortening was uniform [-0.07 +/- 0.04 (SD)], radial wall thickening increased from base (0. 10 +/- 0.09) to apex (0.14 +/- 0.13). Extension of the laminae transverse to the muscle fibers also increased from base (0.08 +/- 0. 07) to apex (0.11 +/- 0.08), and interlaminar shear changed sign [0. 05 +/- 0.07 (base) and -0.07 +/- 0.09 (apex)], reflecting variations in laminar architecture. Nevertheless, the apex and base were similar in that at each site laminar extension and shear contributed approximately 60 and 40%, respectively, of mean transmural thickening. Kinematic considerations suggest that these dual wall-thickening mechanisms may have distinct ultrastructural origins.
Collapse
|
|
26 |
158 |
16
|
Vetter FJ, McCulloch AD. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 69:157-83. [PMID: 9785937 DOI: 10.1016/s0079-6107(98)00006-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The three-dimensional geometry and anisotropic properties of the heart give rise to nonhomogeneous distributions of stress, strain, electrical activation and repolarization. In this article we review the ventricular geometry and myofiber architecture of the heart, and the experimental and modeling studies of three-dimensional cardiac mechanics and electrophysiology. The development of a three-dimensional finite element model of the rabbit ventricular geometry and fiber architecture is described in detail. Finally, we review the experimental results, from the level of the cell to the intact organ, which motivate the development of coupled three-dimensional models of cardiac electromechanics and mechanoelectric feedback.
Collapse
|
Review |
27 |
157 |
17
|
Herum KM, Choppe J, Kumar A, Engler AJ, McCulloch AD. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell 2017; 28:1871-1882. [PMID: 28468977 PMCID: PMC5541838 DOI: 10.1091/mbc.e17-01-0014] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Cardiac fibroblasts are essential for beneficial myocardial healing but also cause detrimental adverse remodeling following myocardial infarction. The mechanical properties of the infarcted myocardium and border regions display temporal and spatial characteristics that regulate different aspects of the profibrotic cardiac fibroblast phenotypes. Cardiac fibrosis is a serious condition currently lacking effective treatments. It occurs as a result of cardiac fibroblast (CFB) activation and differentiation into myofibroblasts, characterized by proliferation, extracellular matrix (ECM) production and stiffening, and contraction due to the expression of smooth muscle α-actin. The mechanical properties of myocardium change regionally and over time after myocardial infarction (MI). Although mechanical cues are known to activate CFBs, it is unclear which specific mechanical stimuli regulate which specific phenotypic trait; thus we investigated these relationships using three in vitro models of CFB mechanical activation and found that 1) paracrine signaling from stretched cardiomyocytes induces CFB proliferation under mechanical conditions similar to those of the infarct border region; 2) direct stretch of CFBs mimicking the mechanical environment of the infarct region induces a synthetic phenotype with elevated ECM production; and 3) progressive matrix stiffening, modeling the mechanical effects of infarct scar maturation, causes smooth muscle α-actin fiber formation, up-regulation of collagen I, and down-regulation of collagen III. These findings suggest that myocyte stretch, fibroblast stretch, and matrix stiffening following MI may separately regulate different profibrotic traits of activated CFBs.
Collapse
|
Journal Article |
8 |
154 |
18
|
Guccione JM, Waldman LK, McCulloch AD. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle. J Biomech Eng 1993; 115:82-90. [PMID: 8445902 DOI: 10.1115/1.2895474] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Models of contracting ventricular myocardium were used to study the effects of different assumptions concerning active tension development on the distributions of stress and strain in the equatorial region of the intact left ventricle during systole. Three models of cardiac muscle contraction were incorporated in a cylindrical model for passive left ventricular mechanics developed previously [Guccione et al. ASME Journal of Biomechanical Engineering, Vol. 113, pp. 42-55 (1991)]. Systolic sarcomere length and fiber stresses predicted by a general "deactivation" model of cardiac contraction [Guccione and McCulloch, ASME Journal of Biomechanical Engineering, Vol. 115, pp. 72-81 (1993)] were compared with those computed using two less complex models of active fiber stress: In a time-varying "elastance" model, isometric tension development was computed from a function of peak intracellular calcium concentration, time after contraction onset and sarcomere length; a "Hill" model was formulated by scaling this isometric tension using the force-velocity relation derived from the deactivation model. For the same calcium ion concentration, the sarcomeres in the deactivation model shortened approximately 0.1 microns less throughout the wall at end-systole than those in the other models. Thus, muscle fibers in the intact ventricle are subjected to rapid length changes that cause deactivation during the ejection phase of a normal cardiac cycle. The deactivation model predicted rather uniform transmural profiles of fiber stress and cross-fiber stress distributions that were almost identical to those of the radial component. These three components were indistinguishable from the principal stresses. Transmural strain distributions predicted at end-systole by the deactivation model agreed closely with experimental measurements from the anterior free wall of the canine left ventricle.
Collapse
|
Comparative Study |
32 |
152 |
19
|
Rogers JM, McCulloch AD. A collocation--Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 1994; 41:743-57. [PMID: 7927397 DOI: 10.1109/10.310090] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
Collapse
|
|
31 |
145 |
20
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
140 |
21
|
Krishnamurthy A, Villongco CT, Chuang J, Frank LR, Nigam V, Belezzuoli E, Stark P, Krummen DE, Narayan S, Omens JH, McCulloch AD, Kerckhoffs RCP. Patient-Specific Models of Cardiac Biomechanics. JOURNAL OF COMPUTATIONAL PHYSICS 2013; 244:4-21. [PMID: 23729839 PMCID: PMC3667962 DOI: 10.1016/j.jcp.2012.09.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.
Collapse
|
research-article |
12 |
132 |
22
|
Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, Omens JH, McCulloch AD. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng 2003; 81:578-87. [PMID: 12514807 DOI: 10.1002/bit.10506] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because cell shape and alignment, cell-matrix adhesion, and cell-cell contact can all affect growth, and because mechanical strains in vivo are multiaxial and anisotropic, we developed an in vitro system for engineering aligned, rod-shaped, neonatal cardiac myocyte cultures. Photolithographic and microfluidic techniques were used to micropattern extracellular matrices in parallel lines on deformable silicone elastomers. Confluent, elongated, aligned myocytes were produced by varying the micropattern line width and collagen density. An elliptical cell stretcher applied 2:1 anisotropic strain statically to the elastic substrate, with the axis of greatest stretch (10%) either parallel or transverse to the myofibrils. After 24 h, the principal strain parallel to myocytes did not significantly alter myofibril accumulation or expression of atrial natriuretic factor (ANF), connexin-43 (Cx-43), or N-cadherin (by indirect immunofluorescent antibody labeling and immunoblotting) compared with unstretched controls. In contrast, 10% transverse principal strain resulted in continuous staining of actin filaments (rhodamine phalloidin); increased immunofluorescent labeling of ANF, Cx-43, and N-cadherin; and upregulation of protein signal intensity by western blotting. By using microfabrication and microfluidics to control cell shape and alignment on an elastic substrate, we found greater effects for transverse than for longitudinal stretch in regulating sarcomere organization, hypertrophy, and cell-to-cell junctions.
Collapse
|
|
22 |
132 |
23
|
Sheikh F, Ouyang K, Campbell SG, Lyon RC, Chuang J, Fitzsimons D, Tangney J, Hidalgo CG, Chung CS, Cheng H, Dalton ND, Gu Y, Kasahara H, Ghassemian M, Omens JH, Peterson KL, Granzier HL, Moss RL, McCulloch AD, Chen J. Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. J Clin Invest 2012; 122:1209-21. [PMID: 22426213 DOI: 10.1172/jci61134] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/18/2012] [Indexed: 11/17/2022] Open
Abstract
Actin-myosin interactions provide the driving force underlying each heartbeat. The current view is that actin-bound regulatory proteins play a dominant role in the activation of calcium-dependent cardiac muscle contraction. In contrast, the relevance and nature of regulation by myosin regulatory proteins (for example, myosin light chain-2 [MLC2]) in cardiac muscle remain poorly understood. By integrating gene-targeted mouse and computational models, we have identified an indispensable role for ventricular Mlc2 (Mlc2v) phosphorylation in regulating cardiac muscle contraction. Cardiac myosin cycling kinetics, which directly control actin-myosin interactions, were directly affected, but surprisingly, Mlc2v phosphorylation also fed back to cooperatively influence calcium-dependent activation of the thin filament. Loss of these mechanisms produced early defects in the rate of cardiac muscle twitch relaxation and ventricular torsion. Strikingly, these defects preceded the left ventricular dysfunction of heart disease and failure in a mouse model with nonphosphorylatable Mlc2v. Thus, there is a direct and early role for Mlc2 phosphorylation in regulating actin-myosin interactions in striated muscle contraction, and dephosphorylation of Mlc2 or loss of these mechanisms can play a critical role in heart failure.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
125 |
24
|
Guimarães-Camboa N, Stowe J, Aneas I, Sakabe N, Cattaneo P, Henderson L, Kilberg MS, Johnson RS, Chen J, McCulloch AD, Nobrega MA, Evans SM, Zambon AC. HIF1α Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes. Dev Cell 2015; 33:507-21. [PMID: 26028220 DOI: 10.1016/j.devcel.2015.04.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/18/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Transcriptional mediators of cell stress pathways, including HIF1α, ATF4, and p53, are key to normal development and play critical roles in disease, including ischemia and cancer. Despite their importance, mechanisms by which pathways mediated by these transcription factors interact with one another are not fully understood. In addressing the controversial role of HIF1α in cardiomyocytes (CMs) during heart development, we discovered a mid-gestational requirement for HIF1α for proliferation of hypoxic CMs, involving metabolic switching and a complex interplay among HIF1α, ATF4, and p53. Loss of HIF1α resulted in activation of ATF4 and p53, the latter inhibiting CM proliferation. Bioinformatic and biochemical analyses revealed unexpected mechanisms by which HIF1α intersects with ATF4 and p53 pathways. Our results highlight previously undescribed roles of HIF1α and interactions among major cell stress pathways that could be targeted to enhance proliferation of CMs in ischemia and may have relevance to other diseases, including cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
120 |
25
|
Herum KM, Lunde IG, McCulloch AD, Christensen G. The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. J Clin Med 2017; 6:jcm6050053. [PMID: 28534817 PMCID: PMC5447944 DOI: 10.3390/jcm6050053] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Cardiac fibrosis, the excessive accumulation of extracellular matrix (ECM), remains an unresolved problem in most forms of heart disease. In order to be successful in preventing, attenuating or reversing cardiac fibrosis, it is essential to understand the processes leading to ECM production and accumulation. Cardiac fibroblasts are the main producers of cardiac ECM, and harbor great phenotypic plasticity. They are activated by the disease-associated changes in mechanical properties of the heart, including stretch and increased tissue stiffness. Despite much remaining unknown, an interesting body of evidence exists on how mechanical forces are translated into transcriptional responses important for determination of fibroblast phenotype and production of ECM constituents. Such mechanotransduction can occur at multiple cellular locations including the plasma membrane, cytoskeleton and nucleus. Moreover, the ECM functions as a reservoir of pro-fibrotic signaling molecules that can be released upon mechanical stress. We here review the current status of knowledge of mechanotransduction signaling pathways in cardiac fibroblasts that culminate in pro-fibrotic gene expression.
Collapse
|
Review |
8 |
119 |