1
|
Pitt JA, Kozal JS, Jayasundara N, Massarsky A, Trevisan R, Geitner N, Wiesner M, Levin ED, Di Giulio RT. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:185-194. [PMID: 29197232 PMCID: PMC6959514 DOI: 10.1016/j.aquatox.2017.11.017] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 05/02/2023]
Abstract
Plastic pollution is a critical environmental concern and comprises the majority of anthropogenic debris in the ocean, including macro, micro, and likely nanoscale (less than 100nm in at least one dimension) plastic particles. While the toxicity of macroplastics and microplastics is relatively well studied, the toxicity of nanoplastics is largely uncharacterized. Here, fluorescent polystyrene nanoparticles (PS NPs) were used to investigate the potential toxicity of nanoplastics in developing zebrafish (Danio rerio), as well as to characterize the uptake and distribution of the particles within embryos and larvae. Zebrafish embryos at 6h post-fertilization (hpf) were exposed to PS NPs (0.1, 1, or 10ppm) until 120 hpf. Our results demonstrate that PS NPs accumulated in the yolk sac as early as 24 hpf and migrated to the gastrointestinal tract, gallbladder, liver, pancreas, heart, and brain throughout development (48-120 hpf). Accumulation of PS NPs decreased during the depuration phase (120-168 hpf) in all organs, but at a slower rate in the pancreas and gastrointestinal tract. Notably, exposure to PS NPs did not induce significant mortality, deformities, or changes to mitochondrial bioenergetics, but did decrease the heart rate. Lastly, exposure to PS NPs altered larval behavior as evidenced by swimming hypoactivity in exposed larvae. Taken together, these data suggest that at least some nanoplastics can penetrate the chorion of developing zebrafish, accumulate in the tissues, and affect physiology and behavior, potentially affecting organismal fitness in contaminated aquatic ecosystems.
Collapse
|
research-article |
7 |
367 |
2
|
Pitt JA, Trevisan R, Massarsky A, Kozal JS, Levin ED, Di Giulio RT. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:324-334. [PMID: 29940444 PMCID: PMC7012458 DOI: 10.1016/j.scitotenv.2018.06.186] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 05/18/2023]
Abstract
Plastics are ubiquitous anthropogenic contaminants that are a growing concern in aquatic environments. The ecological implications of macroplastics pollution are well documented, but less is known about nanoplastics. The current study investigates the potential adverse effects of nanoplastics, which likely contribute to the ecological burden of plastic pollution. To this end, we examined whether a dietary exposure of adult zebrafish (Danio rerio) to polystyrene nanoparticles (PS NPs) could lead to the transfer of nanoplastics to the offspring, and whether nanoplastics exposure affects zebrafish physiology. Specifically, adult female and male zebrafish (F0 generation) were exposed to PS NPs via diet for one week and bred to produce the F1 generation. Four F1 groups were generated: control (unexposed females and males), maternal (exposed females), paternal (exposed males), and co-parental (exposed males and females). Co-parental PS NP exposure did not significantly affect reproductive success. Assessment of tissues from F0 fish revealed that exposure to PS NPs significantly reduced glutathione reductase activity in brain, muscle, and testes, but did not affect mitochondrial function parameters in heart or gonads. Assessment of F1 embryos and larvae revealed that PS NPs were present in the yolk sac, gastrointestinal tract, liver, and pancreas of the maternally and co-parentally exposed F1 embryos/larvae. Bradycardia was also observed in embryos from maternal and co-parental exposure groups. In addition, the activity of glutathione reductase and the levels of thiols were reduced in F1 embryos/larvae from maternal and/or co-parental exposure groups. Mitochondrial function and locomotor activity were not affected in F1 larvae. This study demonstrates that (i) PS NPs are transferred from mothers to offspring, and (ii) exposure to PS NPs modifies the antioxidant system in adult tissues and F1 larvae. We conclude that PS NPs could bioaccumulate and be passed on to the offspring, but this does not lead to major physiological disturbances.
Collapse
|
research-article |
7 |
221 |
3
|
Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. CHEMOSPHERE 2013; 92:59-66. [PMID: 23548591 DOI: 10.1016/j.chemosphere.2013.02.060] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
Nanomaterials (NMs) including silver nanoparticles (AgNPs) are incorporated into an increasing number of consumer and medical products. However, the potential toxicity of AgNPs to aquatic organisms is largely unknown. This study characterizes the effects of AgNPs on zebrafish (Danio rerio) development. The effects of silver ions (Ag(+)) and AgNPs were examined at equivalent Ag concentrations, which ranged from 0.03 to 1.55 μg mL(-1) total Ag. The Ag(+) was more toxic than AgNPs but both lead to death and delayed hatching in surviving embryos. Both silver types depleted glutathione levels but generally did not affect antioxidant enzymes activities. In addition to silver some of the embryos were also exposed to cysteine, which generally reduced the toxicity of both silver types. This study demonstrates that AgNPs and Ag(+) are capable of inducing toxicity in zebrafish embryos including the induction of oxidative stress.
Collapse
|
|
12 |
96 |
4
|
Massarsky A, Trudeau VL, Moon TW. Predicting the environmental impact of nanosilver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:861-873. [PMID: 25461546 DOI: 10.1016/j.etap.2014.10.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (AgNPs) are incorporated into many consumer and medical products due to their antimicrobial properties; however, the potential environmental risks of AgNPs are yet to be fully understood. This mini-review aims to predict the environmental impact of AgNPs, thus supplementing previous reviews on this topic. To this end, the AgNP production, environmental release and fate, predicted environmental concentrations in surface water, sediment, and sludge-activated soil, as well as reported toxicity and proposed toxic mechanisms are discussed, focusing primarily on fish. Furthermore, knowledge gaps and recommendations for future research are addressed.
Collapse
|
Review |
11 |
93 |
5
|
Massarsky A, Trudeau VL, Moon TW. β-blockers as endocrine disruptors: the potential effects of human β-blockers on aquatic organisms. ACTA ACUST UNITED AC 2011; 315:251-65. [DOI: 10.1002/jez.672] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/15/2010] [Accepted: 02/01/2011] [Indexed: 12/12/2022]
|
|
14 |
61 |
6
|
Katuli KK, Massarsky A, Hadadi A, Pourmehran Z. Silver nanoparticles inhibit the gill Na⁺/K⁺-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:173-180. [PMID: 24840880 DOI: 10.1016/j.ecoenv.2014.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles (AgNPs) are the most commonly used metallic nanoparticles in industrial applications, including medical and consumer products. In the recent years, however, concerns regarding their environmental and health impacts have emerged. Aquatic organisms are of special concern since water bodies often serve as sinks for anthropogenic activities. This study assessed the effects of AgNPs on the activities of the gill Na(+)/K(+)-ATPase and erythrocyte acetylcholinestrase (AChE), as well as the plasma biochemistry in adult zebrafish (Danio rerio). In an acute exposure scenario the fish were exposed for 4d to 16.76 mg/L AgNPs, which was the 96 h LC50 value determined in preliminary experiments. In a prolonged exposure scenario the fish were exposed for 1, 2, or 3 weeks to AgNPs at concentrations of 2 and 4 mg/L, corresponding to the 1/10th and 2/10th of the 96 h LC50 value. Generally the activity of the gill Na(+)/K(+)-ATPase decreased, but this was only significant starting at 14 d of the prolonged exposure scenario, whereas the activity of the erythrocyte AChE was significantly decreased in both exposure scenarios. Finally, the plasma electrolytes levels were reduced and the plasma glucose and cortisol levels were increased in exposed fish. This study demonstrates that AgNPs could inhibit the activities of Na(+)/K(+)-ATPase and AChE, thus interfering with the proper ionoregulation and neuroregulation, respectively, and act as stressors.
Collapse
|
|
11 |
58 |
7
|
Massarsky A, Kozal JS, Di Giulio RT. Glutathione and zebrafish: Old assays to address a current issue. CHEMOSPHERE 2017; 168:707-715. [PMID: 27836271 PMCID: PMC5182135 DOI: 10.1016/j.chemosphere.2016.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 05/16/2023]
Abstract
Several xenobiotic agents (e.g. metals, polycyclic aromatic hydrocarbons, nanoparticles, etc.) commonly involve the generation of reactive oxygen species (ROS) and oxidative stress as part of their toxic mode of action. Among piscine models, the zebrafish is a popular vertebrate model to study toxicity of various xenobiotic agents. Similarly to other vertebrates, zebrafish possess an extensive antioxidant system, including the reduced form of glutathione (GSH), which is an important antioxidant that acts alone or in conjunction with enzymes, such as glutathione peroxidase (GPx). Upon interaction with ROS, GSH is oxidized, resulting in the formation of glutathione disulfide (GSSG). GSSG is recycled by an auxiliary antioxidant enzyme glutathione reductase (GR). This article outlines detailed methods to measure the concentrations of GSH and GSSG, as well as the activities of GPx and GR in zebrafish larvae as robust and economical means to assess oxidative stress. The studies that have assessed these endpoints in zebrafish and alternative methods are also discussed. We conclude that the availability of these robust and economical methods support the use of zebrafish as a model organism in studies evaluating redox biology, as well as the induction of oxidative stress following exposure to toxic agents.
Collapse
|
research-article |
8 |
58 |
8
|
Nguyen KC, Seligy VL, Massarsky A, Moon TW, Rippstein P, Tan J, Tayabali AF. Comparison of toxicity of uncoated and coated silver nanoparticles. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/429/1/012025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
12 |
56 |
9
|
Massarsky A, Jayasundara N, Bailey JM, Oliveri AN, Levin ED, Prasad GL, Di Giulio RT. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine. Neurotoxicol Teratol 2015; 51:77-88. [PMID: 26391568 PMCID: PMC4821439 DOI: 10.1016/j.ntt.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
34 |
10
|
Babich R, Ulrich JC, Ekanayake EMDV, Massarsky A, De Silva PMCS, Manage PM, Jackson BP, Ferguson PL, Di Giulio RT, Drummond IA, Jayasundara N. Kidney developmental effects of metal-herbicide mixtures: Implications for chronic kidney disease of unknown etiology. ENVIRONMENT INTERNATIONAL 2020; 144:106019. [PMID: 32818823 DOI: 10.1016/j.envint.2020.106019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an emerging global concern affecting several agricultural communities in the Americas and South Asia. Environmental contaminants such as heavy metals (e.g., Cd, As, Pb, and V) and organic pesticides (e.g., glyphosate) in the drinking water have been hypothesized to play a role in childhood onset and progression of this disease. However, a comprehensive analysis of chemical contaminants in the drinking water and effects of these compounds and their mixtures on kidney development and function remains unknown. Here, we conducted targeted and non-targeted chemical analyses of sediment and drinking water in CKDu affected regions in Sri Lanka, one of the most affected countries. Using zebrafish Danio rerio, a toxicology and kidney disease model, we then examined kidney developmental effects of exposure to (i) environmentally derived samples from CKDu endemic and non-endemic regions and (ii) Cd, As, V, Pb, and glyphosate as individual compounds and in mixtures. We found that drinking water is contaminated with various organic chemicals including nephrotoxic compounds as well as heavy metals, but at levels considered safe for drinking. Histological studies and gene expression analyses examining markers of kidney development (pax2a) and kidney injury (kim1) showed novel metal and glyphosate-metal mixture specific effects on kidney development. Mitochondrial dysfunction is directly linked to kidney failure, and examination of mixture specific mitochondrial toxicity showed altered mitochondrial function following treatment with environmental samples from endemic regions. Collectively, we show that metals in drinking water, even at safe levels, can impede kidney development at an early age, potentiating increased susceptibility to other agrochemicals such as glyphosate. Drinking water contaminant effects on mitochondria can further contribute to progression of kidney dysfunction and our mitochondrial assay may help identify regions at risk of CKDu.
Collapse
|
|
5 |
34 |
11
|
Galván Márquez I, Ghiyasvand M, Massarsky A, Babu M, Samanfar B, Omidi K, Moon TW, Smith ML, Golshani A. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae. PLoS One 2018; 13:e0193111. [PMID: 29554091 PMCID: PMC5858749 DOI: 10.1371/journal.pone.0193111] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
31 |
12
|
Katuli KK, Amiri BM, Massarsky A, Yelghi S, Ghasemzadeh J. Impact of a short-term diazinon exposure on the osmoregulation potentiality of Caspian roach (Rutilus rutilus) fingerlings. CHEMOSPHERE 2014; 108:396-404. [PMID: 24630256 DOI: 10.1016/j.chemosphere.2014.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
The stocks of Caspian roach (Rutilus rutilus), an economically important species in the Caspian Sea, are depleting. Each year millions of artificially produced fingerlings of this species are restocked in the mouth of rivers of the Southern Caspian Sea (e.g. Qare Soo River), where they are exposed to pesticides originating from regional rice and orchard fields. This early exposure to pesticides could affect the hypo-osmoregulatory ability of juvenile fish. Thus, in this study, Caspian roach fingerlings were exposed to environmentally-relevant concentrations of the organophosphate insecticide diazinon for 96 h in fresh water and then transferred to diazinon-free brackish water (BW) for another 96 h. We report that cortisol and glucose levels were significantly increased in all diazinon treatments at all sampling time points in comparison to the control group. Moreover, the thyroid hormone levels of TSH, T4, and T3 significantly decreased in diazinon-exposed fish even after the transfer to BW. The electrolytes were differentially affected during the exposure to diazinon and after the transfer to BW. The number of chloride cells in the gill tissue was significantly increased during diazinon exposure at the higher concentrations and decreased to control levels after transfer to BW. Finally, gill and kidney tissues showed many histopathological changes in diazinon-exposed fish even after 240 h in BW. These results suggest that the release of Caspian roach fingerlings into the diazinon-contaminated Caspian Sea regions may alter their physiology and jeopardize their survival, which could lead to a failure in rebuilding the Caspian roach stocks in the Caspian Sea.
Collapse
|
|
11 |
31 |
13
|
Massarsky A, Abraham R, Nguyen KC, Rippstein P, Tayabali AF, Trudeau VL, Moon TW. Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:10-21. [PMID: 24096131 DOI: 10.1016/j.cbpc.2013.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are present in a multitude of consumer and medical products; however, the toxicity of AgNPs is not fully understood. This research aimed to elucidate the relationship between AgNP cytotoxicity and oxidative stress and damage in rainbow trout (Oncorhynchus mykiss) hepatocytes and erythrocytes in comparison to silver ions (Ag(+)). Generally the cytotoxicity of AgNPs and Ag(+) was similar, such that both silver types generated reactive oxygen species, decreased glutathione levels, and decreased activities of glutathione reductase and glutathione-S-transferase. Nonetheless, the two silver types had different cellular targets; AgNPs increased lipid peroxidation without apparent uptake into the cells whereas Ag(+) increased DNA damage. Furthermore, the toxicity of both silver types was generally decreased in cells treated with cysteine while treatment with buthionine sulfoximine increased the toxicity of both silver types.
Collapse
|
|
11 |
31 |
14
|
Nguyen KC, Richards L, Massarsky A, Moon TW, Tayabali AF. Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells. Toxicol In Vitro 2016; 33:163-73. [DOI: 10.1016/j.tiv.2016.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022]
|
|
9 |
30 |
15
|
Jasinska EJ, Goss GG, Gillis PL, Van Der Kraak GJ, Matsumoto J, de Souza Machado AA, Giacomin M, Moon TW, Massarsky A, Gagné F, Servos MR, Wilson J, Sultana T, Metcalfe CD. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:140-153. [PMID: 26026416 DOI: 10.1016/j.scitotenv.2015.05.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Contaminants of emerging concern (CECs), including pharmaceuticals, personal care products and estrogens, are detected in wastewater treatment plant (WWTP) discharges. However, analytical monitoring of wastewater and surface water does not indicate whether CECs are affecting the organisms downstream. In this study, fathead minnows (Pimephales promelas) and freshwater mussels Pyganodon grandis Say, 1829 (synonym: Anodonta grandis Say, 1829) were caged for 4 weeks in the North Saskatchewan River, upstream and downstream of the discharge from the WWTP that serves the Edmonton, AB, Canada. Passive samplers deployed indicated that concentrations of pharmaceuticals, personal care products, an estrogen (estrone) and an androgen (androstenedione) were elevated at sites downstream of the WWTP discharge. Several biomarkers of exposure were significantly altered in the tissues of caged fathead minnows and freshwater mussels relative to the upstream reference sites. Biomarkers altered in fish included induction of CYP3A metabolism, an increase in vitellogenin (Vtg) gene expression in male minnows, elevated ratios of oxidized to total glutathione (i.e. GSSG/TGSH), and an increase in the activity of antioxidant enzymes (i.e. glutathione reductase, glutathione-S-transferase). In mussels, there were no significant changes in biomarkers of oxidative stress and the levels of Vtg-like proteins were reduced, not elevated, indicating a generalized stress response. Immune function was altered in mussels, as indicated by elevated lysosomal activity per hemocyte in P. grandis caged closest to the wastewater discharge. This immune response may be due to exposure to bacterial pathogens in the wastewater. Multivariate analysis indicated a response to the CECs Carbamazepine (CBZ) and Trimethoprim (TPM). Overall, these data indicate that there is a 1 km zone of impact for aquatic organisms downstream of WWTP discharge. However, multiple stressors in municipal wastewater make measurement and interpretation of impact of CECs difficult since water temperature, conductivity and bacteria are also inducing biomarker responses in both fish and mussels.
Collapse
|
|
10 |
26 |
16
|
Gilmour KM, Kirkpatrick S, Massarsky A, Pearce B, Saliba S, Stephany CÉ, Moon TW. The Influence of Social Status on Hepatic Glucose Metabolism in Rainbow Trout Oncorhynchus mykiss. Physiol Biochem Zool 2012; 85:309-20. [DOI: 10.1086/666497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
13 |
25 |
17
|
Nguyen KC, Zhang Y, Todd J, Kittle K, Patry D, Caldwell D, Lalande M, Smith S, Parks D, Navarro M, Massarsky A, Moon TW, Willmore WG, Tayabali AF. Biodistribution and Systemic Effects in Mice Following Intravenous Administration of Cadmium Telluride Quantum Dot Nanoparticles. Chem Res Toxicol 2019; 32:1491-1503. [DOI: 10.1021/acs.chemrestox.8b00397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
6 |
23 |
18
|
Garnick L, Massarsky A, Mushnick A, Hamaji C, Scott P, Monnot A. An evaluation of health-based federal and state PFOA drinking water guidelines in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144107. [PMID: 33360549 DOI: 10.1016/j.scitotenv.2020.144107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic, perfluorinated organic acid previously used in fluoropolymer production in the United States. PFOA has been a recent focal point for regulation because of its ubiquitous presence in drinking water throughout the United States. In 2016, the United States Environmental Protection Agency (US EPA) issued a lifetime drinking water Health Advisory (HA) for PFOA of 0.07 μg/L; several states have also implemented their own drinking water guidelines for PFOA. The current study aimed to evaluate the basis and derivation of state and federal guidelines for PFOA in drinking water, with particular emphasis on the exposure parameters utilized. Twelve distinct PFOA drinking water standards were identified ranging from 0.0051 to 2 μg/L. The US EPA HA assumptions were evaluated using a Monte Carlo analysis that included distributions for drinking water intake (DWI) rate and the relative source contribution (RSC). We determined that US EPA's HA of 0.07 μg/L is protective of 99% of the population of lactating women. We also demonstrated that the health-based guidelines were highly variable across states and that the actual RSC of PFOA from drinking water is likely greater than 20%, based on studies of actual PFOA exposures from dust, water, and food. A sensitivity analysis was performed using the same equations as the US EPA, while substituting the RSC and DWI variables; resulting in HAs ranging from 0.074 to 0.346 μg/L. We also evaluated the contribution of PFOA in drinking water to the systemic PFOA body burden of the general population using an available biokinetic model. We conclude that more rigorous efforts are warranted to establish consistent health-based drinking water guidelines for PFOA, given that drinking water is a primary source of human exposure to PFOA in the United States.
Collapse
|
|
4 |
19 |
19
|
Massarsky A, Prasad G, Di Giulio RT. Total particulate matter from cigarette smoke disrupts vascular development in zebrafish brain (Danio rerio). Toxicol Appl Pharmacol 2018; 339:85-96. [DOI: 10.1016/j.taap.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/09/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022]
|
|
7 |
14 |
20
|
Massarsky A, Abdel A, Glazer L, Levin ED, Di Giulio RT. Exposure to 1,2-Propanediol Impacts Early Development of Zebrafish (Danio rerio) and Induces Hyperactivity. Zebrafish 2017; 14:216-222. [PMID: 28266909 DOI: 10.1089/zeb.2016.1400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The use of electronic cigarettes (e-cigarettes) is increasing as an alternative to tobacco burning cigarettes; however, their safety remains to be fully determined. The long-term effects of e-cigarettes are unknown, including the effects of maternal e-cigarette use on pre- and postnatal development. Additional research on the safety of e-cigarettes is needed. Especially useful would be information from high- and moderate-throughput economic model systems. This study investigates the effects of 1,2-propanediol, which was identified as the main component of e-cigarette liquid, on early development of zebrafish (an in vivo high-throughput model system that was recently proposed for the study of tobacco cigarette and e-cigarette toxicity). Zebrafish embryos were exposed to 1.25% or 2.5% 1,2-propanediol from 6 to 72 h post-fertilization (hpf). We show that exposure to 1,2-propanediol did not significantly affect mortality. Hatching success was significantly lower in 2.5% 1,2-propanediol-exposed embryos at 48 hpf, but at 72 hpf no significant differences were noted. Moreover, exposure to 1,2-propanediol reduced growth and increased the incidence of string heart, pericardial edema, and yolk sac edema. Most importantly, developmental exposure to 1.25% 1,2-propanediol caused hyperactive swimming behavior in larvae. This study demonstrates that 1,2-propanediol has adverse impacts on early development in zebrafish.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
13 |
21
|
Massarsky A, Bone AJ, Dong W, Hinton DE, Prasad GL, Di Giulio RT. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos. Toxicol Appl Pharmacol 2016; 309:63-76. [PMID: 27576004 DOI: 10.1016/j.taap.2016.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/26/2022]
Abstract
The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
13 |
22
|
Craig PM, Massarsky A, Moon TW. Understanding glucose uptake during methionine deprivation in incubated rainbow trout (Oncorhynchus mykiss) hepatocytes using a non-radioactive method. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:23-9. [DOI: 10.1016/j.cbpb.2013.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022]
|
|
12 |
11 |
23
|
Massarsky A, Abdel A, Glazer L, Levin ED, Di Giulio RT. Neurobehavioral effects of 1,2-propanediol in zebrafish (Danio rerio). Neurotoxicology 2018; 65:111-124. [PMID: 29432853 DOI: 10.1016/j.neuro.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
The use of electronic cigarettes (e-cigarettes) is increasing despite insufficient information concerning their long-term effects, including the effects of maternal e-cigarette use on pre- and postnatal development. Our previous study demonstrated that developmental exposure to 1,2-propanediol (a principal component of e-cigarette liquid) affected early development of zebrafish, causing reduced growth, deformities, and hyperactive swimming behavior in larvae. The current study extends assessment of the developmental toxicity of 1,2-propanediol by examining additional long-term behavioral effects. We demonstrate that embryonic/larval exposure of zebrafish to 1,2-propanediol (0.625% or 1.25%) not only affected behavioral parameters in the larvae, but also caused persisting behavioral effects in adults after early developmental exposure. Additional parameters, including neural and vascular development in larvae, stress response in adults, and concentration of neurotransmitters dopamine and serotonin in adult brain were examined, in order to explain the behavioral differences. These additional assessments did not find 1,2-propanediol exposure to significantly affect Tg(Neurog1:GFP) or the transcript abundance of neural genes (Neurog1, Ascl1a, Elavl3, and Lef1). Vascular development was not found to be affected by 1,2-propanediol exposure, as inferred from experiments with Tg(Flk1:eGFP) zebrafish; however, transcript abundance of vascular genes (Flk1, Vegf, Tie-2, and Angpt1) was decreased. No statistically significant changes were noted for plasma cortisol or brain neurotransmitters in adult fish. Lastly, analysis of gene transcripts involved with 1,2-propanediol metabolism (Adh5, Aldh2.1, and Ldha) showed an increase in Adh5 transcript. This is the first study to demonstrate that developmental exposure to 1,2-propanediol has long-term neurobehavioral consequences in adult zebrafish, showing that e-cigarettes contain substances potentially harmful to neurodevelopment.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
10 |
24
|
Massarsky A, Labarre J, Trudeau VL, Moon TW. Silver nanoparticles stimulate glycogenolysis in rainbow trout (Oncorhynchus mykiss) hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:68-75. [PMID: 24374849 DOI: 10.1016/j.aquatox.2013.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/25/2013] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles (AgNPs) are found in many consumer products yet their biological effects on non-target aquatic organisms are yet to be fully understood. This research aimed to investigate the effects of AgNPs on cell signaling in rainbow trout (Oncorhynchus mykiss) hepatocytes. We focused on the β-adrenoreceptor (AR), which mediates glycogenolysis, and the glucocorticoid receptor (GCR), which mediates gluconeogenesis. These two receptors have been extensively studied in trout hepatocytes due to their key roles during the stress response to increase glucose availability (among other things), allowing the organisms to cope with the stressor. We show for the first time that AgNPs at a concentration of 1 μg/mL did not interfere with the function of either the β-AR or the GCR systems in rainbow trout hepatocytes, but at the concentration of 10 μg/mL AgNPs stimulated glycogenolysis which was apparently receptor-independent. This study suggests that AgNPs could affect hormone-regulated cell signaling pathways at a concentration of 10 μg/mL.
Collapse
|
|
11 |
10 |
25
|
Massarsky A, Strek L, Craig PM, Eisa-Beygi S, Trudeau VL, Moon TW. Acute embryonic exposure to nanosilver or silver ion does not disrupt the stress response in zebrafish (Danio rerio) larvae and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 478:133-140. [PMID: 24530593 DOI: 10.1016/j.scitotenv.2014.01.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
The antibacterial properties of silver nanoparticles (AgNPs) are widely exploited in a variety of medical and consumer products. AgNPs in these products can be released into the aquatic environment, however, the potential toxicity of AgNPs to organisms, including fish, is yet to be fully understood. The present study aimed to investigate the effects of the early life exposure to AgNPs on the hypothalamic-pituitary-interrenal (HPI) axis-mediated stress response in zebrafish (Danio rerio) larvae and adults. Zebrafish embryos were treated with AgNPs (0.5 μg/mL) or Ag(+) (0.05 μg/mL) starting at 2h post fertilization (hpf). At 96 hpf the larvae were either subjected to a swirling stress and euthanized, or raised to adulthood (10 months) in silver-free water and then net-stressed, euthanized, and sampled. Whole-body basal or stress-induced cortisol levels in larvae were not affected by either AgNPs or Ag(+); however, the transcript levels of corticotropin releasing factor (CRF), CRF-binding protein (CRF-BP), CRF-receptor 2 (CRF-R2), and pro-opiomelanocortin (POMCb) were significantly decreased by Ag(+). The ability of the adult fish to release cortisol in response to a stressor was also not affected, although the transcript levels of CRF, CRF-BP, and CRF-R1 in the telencephalon were differentially affected in fish exposed to Ag(+) as embryos. This is the first study that investigated the potential endocrine-disrupting effects of AgNPs during the early life stages and although AgNPs or Ag(+) did not affect the ability of zebrafish to elevate cortisol levels in response to a stressor, the effects on transcript levels by Ag(+) should be investigated further since CRF does not solely regulate the HPI axis but is also implicated in other physiological processes.
Collapse
|
|
11 |
8 |