1
|
Marin-Felix Y, Groenewald J, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, de Beer Z, Dissanayake A, Edwards J, Giraldo A, Hernández-Restrepo M, Hyde K, Jayawardena R, Lombard L, Luangsa-ard J, McTaggart A, Rossman A, Sandoval-Denis M, Shen M, Shivas R, Tan Y, van der Linde E, Wingfield M, Wood A, Zhang J, Zhang Y, Crous P. Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 2017; 86:99-216. [PMID: 28663602 PMCID: PMC5486355 DOI: 10.1016/j.simyco.2017.04.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.
Collapse
|
research-article |
8 |
208 |
2
|
Crous P, Wingfield M, Richardson D, Le Roux J, Strasberg D, Edwards J, Roets F, Hubka V, Taylor P, Heykoop M, Martín M, Moreno G, Sutton D, Wiederhold N, Barnes C, Carlavilla J, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón J, Pascoe I, Popov E, Sandoval-Denis M, Woudenberg J, Acharya K, Alexandrova A, Alvarado P, Barbosa R, Baseia I, Blanchette R, Boekhout T, Burgess T, Cano-Lira J, Čmoková A, Dimitrov R, Dyakov M, Dueñas M, Dutta A, Esteve-Raventós F, Fedosova A, Fournier J, Gamboa P, Gouliamova D, Grebenc T, Groenewald M, Hanse B, Hardy G, Held B, Jurjević Ž, Kaewgrajang T, Latha K, Lombard L, Luangsa-ard J, Lysková P, Mallátová N, Manimohan P, Miller A, Mirabolfathy M, Morozova O, Obodai M, Oliveira N, Ordóñez M, Otto E, Paloi S, Peterson S, Phosri C, Roux J, Salazar W, Sánchez A, Sarria G, Shin HD, Silva B, Silva G, Smith M, Souza-Motta C, Stchigel A, Stoilova-Disheva M, Sulzbacher M, Telleria M, Toapanta C, Traba J, Valenzuela-Lopez N, Watling R, Groenewald J. Fungal Planet description sheets: 400-468. PERSOONIA 2016; 36:316-458. [PMID: 27616795 PMCID: PMC4988374 DOI: 10.3767/003158516x692185] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
Novel species of fungi described in the present study include the following from Australia: Vermiculariopsiella eucalypti, Mulderomyces natalis (incl. Mulderomyces gen. nov.), Fusicladium paraamoenum, Neotrimmatostroma paraexcentricum, and Pseudophloeospora eucalyptorum on leaves of Eucalyptus spp., Anungitea grevilleae (on leaves of Grevillea sp.), Pyrenochaeta acaciae (on leaves of Acacia sp.), and Brunneocarpos banksiae (incl. Brunneocarpos gen. nov.) on cones of Banksia attenuata. Novel foliicolous taxa from South Africa include Neosulcatispora strelitziae (on Strelitzia nicolai), Colletotrichum ledebouriae (on Ledebouria floridunda), Cylindrosympodioides brabejum (incl. Cylindrosympodioides gen. nov.) on Brabejum stellatifolium, Sclerostagonospora ericae (on Erica sp.), Setophoma cyperi (on Cyperus sphaerocephala), and Phaeosphaeria breonadiae (on Breonadia microcephala). Novelties described from Robben Island (South Africa) include Wojnowiciella cissampeli and Diaporthe cissampeli (both on Cissampelos capensis), Phaeotheca salicorniae (on Salicornia meyeriana), Paracylindrocarpon aloicola (incl. Paracylindrocarpon gen. nov.) on Aloe sp., and Libertasomyces myopori (incl. Libertasomyces gen. nov.) on Myoporum serratum. Several novelties are recorded from La Réunion (France), namely Phaeosphaeriopsis agapanthi (on Agapanthus sp.), Roussoella solani (on Solanum mauritianum), Vermiculariopsiella acaciae (on Acacia heterophylla), Dothiorella acacicola (on Acacia mearnsii), Chalara clidemiae (on Clidemia hirta), Cytospora tibouchinae (on Tibouchina semidecandra), Diaporthe ocoteae (on Ocotea obtusata), Castanediella eucalypticola, Phaeophleospora eucalypticola and Fusicladium eucalypticola (on Eucalyptus robusta), Lareunionomyces syzygii (incl. Lareunionomyces gen. nov.) and Parawiesneriomyces syzygii (incl. Parawiesneriomyces gen. nov.) on leaves of Syzygium jambos. Novel taxa from the USA include Meristemomyces arctostaphylos (on Arctostaphylos patula), Ochroconis dracaenae (on Dracaena reflexa), Rasamsonia columbiensis (air of a hotel conference room), Paecilomyces tabacinus (on Nicotiana tabacum), Toxicocladosporium hominis (from human broncoalveolar lavage fluid), Nothophoma macrospora (from respiratory secretion of a patient with pneumonia), and Penidiellopsis radicularis (incl. Penidiellopsis gen. nov.) from a human nail. Novel taxa described from Malaysia include Prosopidicola albizziae (on Albizzia falcataria), Proxipyricularia asari (on Asarum sp.), Diaporthe passifloricola (on Passiflora foetida), Paramycoleptodiscus albizziae (incl. Paramycoleptodiscus gen. nov.) on Albizzia falcataria, and Malaysiasca phaii (incl. Malaysiasca gen. nov.) on Phaius reflexipetalus. Two species are newly described from human patients in the Czech Republic, namely Microascus longicollis (from toenails of patient with suspected onychomycosis), and Chrysosporium echinulatum (from sole skin of patient). Furthermore, Alternaria quercicola is described on leaves of Quercus brantii (Iran), Stemphylium beticola on leaves of Beta vulgaris (The Netherlands), Scleroderma capeverdeanum on soil (Cape Verde Islands), Scleroderma dunensis on soil, and Blastobotrys meliponae from bee honey (Brazil), Ganoderma mbrekobenum on angiosperms (Ghana), Geoglossum raitviirii and Entoloma kruticianum on soil (Russia), Priceomyces vitoshaensis on Pterostichus melas (Carabidae) (Bulgaria) is the only one for which the family is listed, Ganoderma ecuadoriense on decaying wood (Ecuador), Thyrostroma cornicola on Cornus officinalis (Korea), Cercophora vinosa on decorticated branch of Salix sp. (France), Coprinus pinetorum, Coprinus littoralis and Xerocomellus poederi on soil (Spain). Two new genera from Colombia include Helminthosporiella and Uwemyces on leaves of Elaeis oleifera. Two species are described from India, namely Russula intervenosa (ectomycorrhizal with Shorea robusta), and Crinipellis odorata (on bark of Mytragyna parviflora). Novelties from Thailand include Cyphellophora gamsii (on leaf litter), Pisolithus aureosericeus and Corynascus citrinus (on soil). Two species are newly described from Citrus in Italy, namely Dendryphiella paravinosa on Citrus sinensis, and Ramularia citricola on Citrus floridana. Morphological and culture characteristics along with ITS nrDNA barcodes are provided for all taxa.
Collapse
|
research-article |
9 |
160 |
3
|
Crous P, Luangsa-ard J, Wingfield M, Carnegie A, Hernández-Restrepo M, Lombard L, Roux J, Barreto R, Baseia I, Cano-Lira J, Martín M, Morozova O, Stchigel A, Summerell B, Brandrud T, Dima B, García D, Giraldo A, Guarro J, Gusmão L, Khamsuntorn P, Noordeloos M, Nuankaew S, Pinruan U, Rodríguez-Andrade E, Souza-Motta C, Thangavel R, van Iperen A, Abreu V, Accioly T, Alves J, Andrade J, Bahram M, Baral HO, Barbier E, Barnes C, Bendiksen E, Bernard E, Bezerra J, Bezerra J, Bizio E, Blair J, Bulyonkova T, Cabral T, Caiafa M, Cantillo T, Colmán A, Conceição L, Cruz S, Cunha A, Darveaux B, da Silva A, da Silva G, da Silva G, da Silva R, de Oliveira R, Oliveira R, De Souza J, Dueñas M, Evans H, Epifani F, Felipe M, Fernández-López J, Ferreira B, Figueiredo C, Filippova N, Flores J, Gené J, Ghorbani G, Gibertoni T, Glushakova A, Healy R, Huhndorf S, Iturrieta-González I, Javan-Nikkhah M, Juciano R, Jurjević Ž, Kachalkin A, Keochanpheng K, Krisai-Greilhuber I, Li YC, Lima A, Machado A, Madrid H, Magalhães O, Marbach P, Melanda G, Miller A, Mongkolsamrit S, Nascimento R, Oliveira T, Ordoñez M, Orzes R, Palma M, Pearce C, Pereira O, Perrone G, Peterson S, Pham T, Piontelli E, Pordel A, Quijada L, Raja H, Rosas de Paz E, Ryvarden L, Saitta A, Salcedo S, Sandoval-Denis M, Santos T, Seifert K, Silva B, Smith M, Soares A, Sommai S, Sousa J, Suetrong S, Susca A, Tedersoo L, Telleria M, Thanakitpipattana D, Valenzuela-Lopez N, Visagie C, Zapata M, Groenewald J. Fungal Planet description sheets: 785-867. PERSOONIA 2018; 41:238-417. [PMID: 30728607 PMCID: PMC6344811 DOI: 10.3767/persoonia.2018.41.12] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.
Collapse
|
research-article |
7 |
133 |
4
|
Crous P, Wingfield M, Schumacher R, Summerell B, Giraldo A, Gené J, Guarro J, Wanasinghe D, Hyde K, Camporesi E, Gareth Jones E, Thambugala K, Malysheva E, Malysheva V, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes C, Bartlett J, Blanchette R, Burgess T, Carlavilla J, Coetzee M, Damm U, Decock C, den Breeÿen A, de Vries B, Dutta A, Holdom D, Rooney-Latham S, Manjón J, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadeh Fazeli S, Amoozegar M, Romberg M, Shivas R, Stalpers J, Stielow B, Stukely M, Swart W, Tan Y, van der Bank M, Wood A, Zhang Y, Groenewald J. Fungal Planet description sheets: 281-319. PERSOONIA 2014; 33:212-89. [PMID: 25737601 PMCID: PMC4312934 DOI: 10.3767/003158514x685680] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 11/25/2022]
Abstract
Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera. Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Corymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Collapse
|
research-article |
11 |
119 |
5
|
Pastor JC, Fernández I, Rodríguez de la Rúa E, Coco R, Sanabria-Ruiz Colmenares MR, Sánchez-Chicharro D, Martinho R, Ruiz Moreno JM, García Arumi J, Suárez de Figueroa M, Giraldo A, Manzanas L. Surgical outcomes for primary rhegmatogenous retinal detachments in phakic and pseudophakic patients: the Retina 1 Project--report 2. Br J Ophthalmol 2008; 92:378-82. [PMID: 18303159 DOI: 10.1136/bjo.2007.129437] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
|
17 |
93 |
6
|
Castilla EE, Ashton-Prolla P, Barreda-Mejia E, Brunoni D, Cavalcanti DP, Correa-Neto J, Delgadillo JL, Dutra MG, Felix T, Giraldo A, Juarez N, Lopez-Camelo JS, Nazer J, Orioli IM, Paz JE, Pessoto MA, Pina-Neto JM, Quadrelli R, Rittler M, Rueda S, Saltos M, Sánchez O, Schüler L. Thalidomide, a current teratogen in South America. TERATOLOGY 1996; 54:273-7. [PMID: 9098920 DOI: 10.1002/(sici)1096-9926(199612)54:6<273::aid-tera1>3.0.co;2-#] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thalidomide, mainly used for the treatment of leprosy, is a current teratogen in South America, and it is reasonable to assume that at present this situation is affecting many births in underdeveloped countries. Moreover, the potential re-marketing of thalidomide for the treatment of a large variety of diseases may extend the problem to the developed world. When the drug is available, the control of its intake during early pregnancy is very difficult since most pregnancies are unintended. The ongoing occurrence of thalidomide embryopathy cases went undetected by the ECLAMC, due to several factors: (1) low populational coverage through this monitoring system; (2) pre-existence of the teratogen with its effects present in both baseline (expected) and monitored (observed) materials; and (3) lack of a defined phenotype to be monitored. Thus, if thalidomide re-enters the market throughout the world, due to the wide range of new applications, occurrence of phocomelia alone might not be sufficient to detect its effects. By a case-reference approach, the ECLAMC registered 34 thalidomide embryopathy cases born in South America after 1965 whose birthplaces correspond to endemic areas for leprosy. Phocomelia was found in five of eleven fully described cases. Thus, phocomelia alone is neither specific nor sufficient to serve as a suitable phenotype to survey the teratogenic effects of thalidomide. Therefore, a thalidomide-like phenotype, defined as any bilateral upper and/or lower limb reduction defect of the preaxial and/or phocomelia types, should be included in the routine surveillance of birth defects in all programmes.
Collapse
|
|
29 |
85 |
7
|
Crous P, Schumacher R, Akulov A, Thangavel R, Hernández-Restrepo M, Carnegie A, Cheewangkoon R, Wingfield M, Summerell B, Quaedvlieg W, Coutinho T, Roux J, Wood A, Giraldo A, Groenewald J. New and Interesting Fungi. 2. Fungal Syst Evol 2019; 3:57-134. [PMID: 32467898 PMCID: PMC7235984 DOI: 10.3114/fuse.2019.03.06] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One order, seven families, 28 new genera, 72 new species, 13 new combinations, four epitypes, and interesting new host and / or geographical records are introduced in this study. Pseudorobillardaceae is introduced for Pseudorobillarda (based on P. phragmitis). New genera include: Jeremyomyces (based on J. labinae) on twigs of Salix alba (Germany); Neodothidotthia (based on N. negundinicola) on Acer negundo (Ukraine); Neomedicopsis (based on N. prunicola) on fallen twigs of Prunus padus (Ukraine); Neophaeoappendicospora (based on N. leucaenae) on Leucaena leucocephala (France) (incl. Phaeoappendicosporaceae); Paradevriesia (incl. Paradevriesiaceae) (based on P. americana) from air (USA); Phaeoseptoriella (based on P. zeae) on leaves of Zea mays (South Africa); Piniphoma (based on P. wesendahlina) on wood debris of Pinus sylvestris (Germany); Pseudoconiothyrium (based on P. broussonetiae) on branch of Broussonetia papyrifera (Italy); Sodiomyces (based on S. alkalinus) from soil (Mongolia), and Turquoiseomyces (incl. Turquoiseomycetales and Turquoiseomycetaceae) (based on T. eucalypti) on leaves of Eucalyptus leptophylla (Australia); Typhicola (based on T. typharum) on leaves of Typha sp. (Germany); Xenodevriesia (incl. Xenodevriesiaceae) (based on X. strelitziicola) on leaves of Strelitzia sp. (South Africa). New species include: Bacillicladium clematidis on branch of Clematis vitalbae (Austria); Cercospora gomphrenigena on leaves of Gomphrena globosa (South Africa); Cyphellophora clematidis on Clematis vitalba (Austria); Exophiala abietophila on bark of Abies alba (Norway); Exophiala lignicola on fallen decorticated trunk of Quercus sp. (Ukraine); Fuscostagonospora banksiae on Banksia sp. (Australia); Gaeumannomycella caricicola on dead leaf of Carex remota (Germany); Hansfordia pruni on Prunus persica twig (Italy) (incl. Hansfordiaceae); Microdochium rhopalostylidis on Rhopalostylis sapida (New Zealand); Neocordana malayensis on leaves of Musa sp. (Malaysia); Neocucurbitaria prunicola on fallen twigs of Prunus padus (Ukraine); Neocucurbitaria salicis-albae on Salix alba twig (Ukraine); Neohelicomyces deschampsiae on culm base of dead leaf sheath of Deschampsia cespitosa (Germany); Pararoussoella juglandicola on twig of Juglans regia (Germany); Pezicula eucalyptigena on leaves of Eucalyptus sp. (South Africa); Phlogicylindrium dunnii on leaves of Eucalyptus dunnii (Australia); Phyllosticta hagahagaensis on leaf litter of Carissa bispinosa (South Africa); Phyllosticta austroafricana on leaf spots of unidentified deciduous tree host (South Africa); Pseudosigmoidea alnicola on Alnus glutinosa leaf litter (Germany); Pseudoteratosphaeria africana on leaf spot on unidentified host (Angola); Porodiplodia vitis on canes of Vitis vinifera (USA); Sodiomyces alkalinus from soil (Mongolia), Sodiomyces magadiensis and Sodiomyces tronii from soil (Kenya), Sympodiella quercina on fallen leaf of Quercus robur (Germany) and Zasmidium hakeicola on leaves of Hakea corymbosa (Australia). Epitypes are designated for: Cryptostictis falcata on leaves of E. alligatrix (Australia), Hendersonia phormii on leaves of Phormium tenax (New Zealand), Sympodiella acicola on needles of Pinus sylvestris (Netherlands), and Sphaeria scirpicola var. typharum on leaf of Typha sp. (Germany). Several taxa originally described from rocks are validated in this study. New taxa include: Extremaceae fam. nov., and new genera, Arthrocatena, Catenulomyces, Constantinomyces, Extremus, Hyphoconis, Incertomyces, Lapidomyces, Lithophila, Monticola, Meristemomyces, Oleoguttula, Perusta, Petrophila, Ramimonilia, Saxophila and Vermiconidia. New species include: Arthrocatena tenebrosa, Catenulomyces convolutus, Constantinomyces virgultus, C. macerans, C. minimus, C. nebulosus, C. virgultus, Exophiala bonariae, Extremus adstrictus, E. antarcticus, Hyphoconis sterilis, Incertomyces perditus, Knufia karalitana, K. marmoricola, K. mediterranea, Lapidomyces hispanicus, Lithophila guttulata, Monticola elongata, Meristemomyces frigidus, M. arctostaphyli, Neodevriesia bulbillosa, N. modesta, N. sardiniae, N. simplex, Oleoguttula mirabilis, Paradevriesia compacta, Perusta inaequalis, Petrophila incerta, Rachicladosporium alpinum, R. inconspicuum, R. mcmurdoi, R. monterosanum, R. paucitum, Ramimonilia apicalis, Saxophila tyrrhenica, Vermiconidia antarctica, V. calcicola, V. foris, and V. flagrans.
Collapse
|
research-article |
6 |
79 |
8
|
Restrepo M, Muñoz N, Day N, Parra JE, Hernandez C, Blettner M, Giraldo A. Birth defects among children born to a population occupationally exposed to pesticides in Colombia. Scand J Work Environ Health 1990; 16:239-46. [PMID: 2389130 DOI: 10.5271/sjweh.1789] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A case-referent study of birth defects was nested in a prevalence survey of adverse reproductive outcomes carried out among 8867 floriculture workers in Bogotá, Colombia. A total of 535 children born to these workers and reported by their parents as malformed and 1070 children selected at random as referents were invited to a medical examination including consultation with a geneticist and a clinical teratologist and a review of the medical records. Seventy-six percent of both groups attended the examination. Of 403 children reported as malformed, a birth defect was confirmed for only 154 (38%). On the other hand, of the 817 children reported as normal, 735 (90%) were normal, but 68 had a birth defect and 14 had other conditions. A case-referent analysis was then carried out including 222 children with birth defects and 443 referents. An increased risk was found only for birthmarks, and specifically for hemangiomas, for children with parents exposed to pesticides in the floriculture industry.
Collapse
|
|
35 |
70 |
9
|
Petit JY, Veronesi U, Luini A, Orecchia R, Rey PC, Martella S, Didier F, De Lorenzi F, Rietjens M, Garusi C, Sonzogni A, Galimberti V, Leida E, Lazzari R, Giraldo A. When mastectomy becomes inevitable: The nipple-sparing approach. Breast 2005; 14:527-31. [PMID: 16226028 DOI: 10.1016/j.breast.2005.08.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The preservation of the nipple areola complex (NAC) could improve the quality of life in cases of mastectomy. A novel radiosurgical treatment combining subcutaneous mastectomy with intraoperative radiotherapy is proposed. Three hundred nipple-sparing mastectomies (NSM) were performed. Invasive (58%) and in situ (42%) carcinomas were included. Clinical complications, aesthetic results, oncological and psychological results were recorded. The NAC necrosed totally in 10 cases and partially in 29 and it was removed in 12. Nine infections (3%) were observed and 10 prostheses removed. Good results were rated by 82.3% of the patients and by 84.8% of the surgeons. In 7.5% a radiodystrophy was observed. The sensitivity of the NAC recovered partially in 48%. Two local recurrences occurred outside the radiated field. Overall, we observed three metastases and no deaths. Sixty-eight of the patients were satisfied with their reconstructed breast and 85.5% were satisfied having preserved the NAC.
Collapse
|
|
20 |
62 |
10
|
Curigliano G, Petit JY, Bertolini F, Colleoni M, Peruzzotti G, de Braud F, Gandini S, Giraldo A, Martella S, Orlando L, Munzone E, Pietri E, Luini A, Goldhirsch A. Systemic effects of surgery: quantitative analysis of circulating basic fibroblast growth factor (bFGF), Vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF-beta) in patients with breast cancer who underwent limited or extended surgery. Breast Cancer Res Treat 2005; 93:35-40. [PMID: 16184456 DOI: 10.1007/s10549-005-3381-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To assess if feature, extent and duration of surgery could influence levels of systemic proangiogenic cytokines vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF-beta). PATIENTS AND METHODS We collected blood samples from 82 consecutive breast cancer patients who underwent various types of surgery, classified according to the magnitude of tissue injury in: minimal (quadrantectomy), moderate (mastectomy without reconstruction), and heavy [mastectomy followed by reconstruction with transversus recto-abdominal muscle cutaneous flap (TRAM)]. Samples were collected one day before surgery (D(-1)), at the end of surgical tumor removal (D0), and on 1st (D(+1)), 2nd (D(+2)) and 5th (D(+5)) day after surgery. Serum VEGF, bFGF and TGF-beta levels were measured by the enzyme immunoassay method. RESULTS On average a continuous decrease was observed for all growth factors from the day before operation to the 5th day after operation. On day (D(+5)) an increase was observed for patients who underwent extended respect to moderate surgery. These differences were found statistically significant for bFGF and VEGF (p = 0.05 and p = 0.025 respectively). A statistically different trend for type of operation was observed also for TGF-beta at 24-48 h: a minor reduction, compared to time of operation, was observed for minimal surgery, an intermediate reduction for moderate surgery and a higher decrease for extended surgery. CONCLUSIONS Angiogenic cytokines perioperative levels could be increased on 5th day (D(+5)) by extent of surgery and should induce perioperative stimulation of residual cancer cells. A better understanding of the time interval during which the sequelae of events in wound healing occur may be the basis for defining new therapeutic strategies that can interfere with tumor outgrowth sparing wound healing processes.
Collapse
|
Journal Article |
20 |
49 |
11
|
Giraldo A, Montes R, Rodil R, Quintana JB, Vidal-Liñán L, Beiras R. Ecotoxicological Evaluation of the UV Filters Ethylhexyl Dimethyl p-Aminobenzoic Acid and Octocrylene Using Marine Organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:606-611. [PMID: 28391487 DOI: 10.1007/s00244-017-0399-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The growing concern regarding the negative effects of solar radiation on the skin has led to a drastic increase in the use of sunscreens containing in its composition up to 10% of aromatic chemicals, such as ethylhexyl dimethyl p-aminobenzoic acid (OD-PABA) and octocrylene (OC). The objective of this study was to evaluate the toxicity and to assess the environmental risk posed by these two ultraviolet filters, widely used in cosmetics and as plastic additives, in the marine environment. Several ecotoxicological bioassays were performed with three model organisms belonging to different trophic levels: the microalgae Isochrysis galbana, the mussel Mytilus galloprovincialis, and the sea urchin Paracentrotus lividus. The results show remarkable toxicity to marine species for both OD-PABA (EC10 values range 26,5-127 µg L-1) and OC (EC10 range 103-511 µg L-1). The cell division in the microalgae I. galbana was the most sensitive endpoint tested. To determine the environmental risk of these substances, the risk coefficient (RQ) was calculated. Due to the higher concentrations reported, OC showed remarkable risk (RQ = 0.27), whereas for OD-PABA the risk was low (RQ = 0.007).
Collapse
|
|
8 |
46 |
12
|
Yunis E, García-Conti FL, de Caballero OM, Giraldo A. Yq deletion, aspermia, and short stature. Hum Genet 1977; 39:117-22. [PMID: 924439 DOI: 10.1007/bf00273161] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A large Yq deletion involving both the fluorescent and part of the non-fluorescent segment in a 36-year-old phenotypic normal male is presented. His short stature and aspermia gives strong support, after a complete review of the literature, to the existence of factors involved in the control of both characteristics in the non-fluorescent segment of the long arm of chromosome Y, distally within band 11.
Collapse
|
Case Reports |
48 |
45 |
13
|
Jarron P, Anelli G, Calin T, Cosculluela J, Campbell M, Delmastro M, Faccio F, Giraldo A, Heijne E, Kloukinas K, Letheren M, Nicolaidis M, Moreira P, Paccagnella A, Marchioro A, Snoeys W, Velazco R. Deep submicron CMOS technologies for the LHC experiments. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0920-5632(99)00615-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
26 |
39 |
14
|
Rey P, Martinelli G, Petit JY, Youssef O, De Lorenzi F, Rietjens M, Garusi C, Giraldo A. Immediate Breast Reconstruction and High-Dose Chemotherapy. Ann Plast Surg 2005; 55:250-4. [PMID: 16106161 DOI: 10.1097/01.sap.0000174762.36678.7c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Immediate breast reconstruction (IBR) is considered as a safe procedure nowadays, and it can be proposed in the majority of patients requiring a mastectomy. In fact, recent studies have demonstrated that immediate breast reconstruction is not detrimental also to patients with locally advanced breast cancers. However, IBR should be reevaluated in case of locally advanced breast cancer requiring high-dose chemotherapy (HDCT). The aim of this study is to evaluate both the risk of chemotherapy delay due to surgical complications and the risk of late surgical complications related to the association with HDCT. We considered 3 series of 23, 67, and 15 patients requiring a mastectomy at the European Institute of Oncology in Milan. After mastectomy, these groups respectively received an IBR and HDCT, an IBR and conventional chemotherapy, and only HDCT with no IBR. METHODS Files of 105 patients who were admitted to our department from October 1999 to January 2002 were reviewed. Twenty-three patients underwent a mastectomy, followed by IBR and HDCT; 67 underwent a mastectomy plus IBR plus conventional CT; and, finally, 15 underwent a mastectomy alone followed by HDCT. The reconstructive techniques performed were 72 permanent prosthesis and 18 temporary expanders. We excluded all patients with IBR by flap (latissimus dorsi or pedicled rectus abdominis) to improve the homogeneity of the sample. RESULTS All patients who underwent IBR started high-dose chemotherapy without any delay; the time elapsed between surgery and HDCT is not significantly different for patients with and without IBR (54 versus 60 days, P = 0.13). The early complication rate (before CT) was 2.9% (2 patients with infection). The late complication rate (after CT) was higher for the group that underwent IBR followed by HDCT (39% versus 20%). CONCLUSION We did not observe any delay for the administration of high-dose chemotherapy after mastectomy with IBR surgery. The complication rate before HDCT is similar to the complication rates published in the literature. On the contrary, we observed a higher rate of infections (13% versus 0%, P = 0,014) after HDCT than after conventional CT, which can be related to the association with high-dose chemotherapy, inducing a decrease of the immune defenses. These results seems to demonstrate that the association of IBR with HDCT is not detrimental to patients from the oncological point of view, but the impact of HDCT on the reconstruction is more negative. Further studies are needed to verify if this risk exists, although lower, in the association with conventional CT. However, a careful evaluation of the risk of infections should be considered preoperatively, and perioperative contaminations should be carefully prevented.
Collapse
|
|
20 |
30 |
15
|
Abstract
The family Plectosphaerellaceae (Glomerellales, Sordariomycetes) includes numerous plant pathogenic genera and soil-borne fungal species. Ten genera are currently accepted, including several taxa that occupy an unresolved position within the family. To address this issue, a multilocus sequence analysis was carried out using partial gene sequences from the 28S large subunit nrRNA gene (LSU), the internal transcribed spacer (ITS) regions of the nrDNA region, including the 5.8S nrRNA gene, the translation elongation factor 1-alpha (TEF1-α), tryptophan synthase (TS), actin (ACT) and the RNA polymerase II second largest subunit (RPB2), based on a large set of isolates mainly from the CBS collection. Results of the molecular data combined with a detailed morphological study resolved 22 genera in the family, of which 12 are newly described. Additionally, 15 new species and 10 new combinations are proposed. An epitype and neotype are also introduced for Stachylidium bicolor and Plectosphaerella cucumerina, respectively.
Collapse
|
research-article |
6 |
26 |
16
|
Rodriguez de la Rúa E, Pastor JC, Aragón J, Mayo-Iscar A, Martínez V, García-Arumí J, Giraldo A, Sanabria-Ruiz Colmenares MR, Miranda I. Interaction between surgical procedure for repairing retinal detachment and clinical risk factors for proliferative vitreoretinopathy. Curr Eye Res 2005; 30:147-53. [PMID: 15814473 DOI: 10.1080/02713680490904142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To asses risk factors of proliferative vitreoretinopathy (PVR) and a model for predicting it. METHODS Observational, case-control. 335 patients with non-complicated retinal detachment (RD) were included: 134 developed PVR (Cases); 201 patients did not (Controls). Risk factors for PVR were identified by multivariate analysis. Influence of variables was assayed according to the surgical approach. By logistic regression analysis a model to predict the risk of developing PVR and odds ratio (OR) values for each clinical factor were estimated. RESULTS Risk was higher in patients > 70 years and with intraocular pressure lower than 14 (OR: 3.84; CI 95%: 2.04-7.30) and in retinal breaks larger than "1 clock hour" (OR: 2.54; CI: 1.28-5.05), extended retinal detachments (OR: 4.01; CI: 1.98-8.10) and reinterventions (OR: 1.55; CI: 1.14-9.22). Scleral surgery also was a risk factor (OR: 3.89; CI: 2.12-7.14) and aphakia/pseudophakia when scleral surgery is performed (OR: 3.33; CI: 1.54-7.22). A model to predict PVR was proposed with these results. CONCLUSIONS Surgical approach modifies risk factors of PVR, and should be taken into account to improve the models for predicting it.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
21 |
17
|
Giraldo A, Pino W, García-Ramírez LF, Pineda M, Iglesias A. Vitamin D dependent rickets type II and normal vitamin D receptor cDNA sequence. A cluster in a rural area of Cauca, Colombia, with more than 200 affected children. Clin Genet 1995; 48:57-65. [PMID: 7586652 DOI: 10.1111/j.1399-0004.1995.tb04056.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vitamin D dependent rickets type II is an autosomal recessive disease caused by the vitamin D defective receptor. More than 200 patients with different types of lower limb deformities were detected in a rural area of the Cauca department in the southwest part of Colombia. Patients were well nourished and in good physical condition in spite of their deformities. None of them presented alopecia, myopathy, seizures or aminoaciduria. Serum analysis showed significantly lower serum calcium as compared to normal relatives, though in the normal low range, normal phosphorus, high alkaline phosphatase, normal 25-hydroxyvitamin D3 and high 1,25-dihydroxyvitamin D3, indicating target organ resistance. The cDNA analysis showed normal nucleotide sequence. We suggest that our patients represent a distinct form of receptor-positive resistance to vitamin D. This report is the first extensive study on this class of patients.
Collapse
|
|
30 |
15 |
18
|
Hou L, Giraldo A, Groenewald J, Rämä T, Summerbell R, Huang G, Cai L, Crous P. Redisposition of acremonium-like fungi in Hypocreales. Stud Mycol 2023; 105:23-203. [PMID: 38895703 PMCID: PMC11182610 DOI: 10.3114/sim.2023.105.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2024] Open
Abstract
Acremonium is acknowledged as a highly ubiquitous genus including saprobic, parasitic, or endophytic fungi that inhabit a variety of environments. Species of this genus are extensively exploited in industrial, commercial, pharmaceutical, and biocontrol applications, and proved to be a rich source of novel and bioactive secondary metabolites. Acremonium has been recognised as a taxonomically difficult group of ascomycetes, due to the reduced and high plasticity of morphological characters, wide ecological distribution and substrate range. Recent advances in molecular phylogenies, revealed that Acremonium is highly polyphyletic and members of Acremonium s. lat. belong to at least three distinct orders of Sordariomycetes, of which numerous orders, families and genera with acremonium-like morphs remain undefined. To infer the phylogenetic relationships and establish a natural classification for acremonium-like taxa, systematic analyses were conducted based on a large number of cultures with a global distribution and varied substrates. A total of 633 cultures with acremonium-like morphology, including 261 ex-type cultures from 89 countries and a variety of substrates including soil, plants, fungi, humans, insects, air, and water were examined. An overview phylogenetic tree based on three loci (ITS, LSU, rpb2) was generated to delimit the orders and families. Separate trees based on a combined analysis of four loci (ITS, LSU, rpb2, tef-1α) were used to delimit species at generic and family levels. Combined with the morphological features, host associations and ecological analyses, acremonium-like species evaluated in the present study are currently assigned to 63 genera, and 14 families in Cephalothecales, Glomerellales and Hypocreales, mainly in the families Bionectriaceae, Plectosphaerellaceae and Sarocladiaceae and five new hypocrealean families, namely Chrysonectriaceae, Neoacremoniaceae, Nothoacremoniaceae, Pseudoniessliaceae and Valsonectriaceae. Among them, 17 new genera and 63 new combinations are proposed, with descriptions of 65 new species. Furthermore, one epitype and one neotype are designated to stabilise the taxonomy and use of older names. Results of this study demonstrated that most species of Acremonium s. lat. grouped in genera of Bionectriaceae, including the type A. alternatum. A phylogenetic backbone tree is provided for Bionectriaceae, in which 183 species are recognised and 39 well-supported genera are resolved, including 10 new genera. Additionally, rpb2 and tef-1α are proposed as potential DNA barcodes for the identification of taxa in Bionectriaceae. Taxonomic novelties: New families: Chrysonectriaceae L.W. Hou, L. Cai & Crous, Neoacremoniaceae L.W. Hou, L. Cai & Crous, Nothoacremoniaceae L.W. Hou, L. Cai & Crous, Pseudoniessliaceae L.W. Hou, L. Cai & Crous, Valsonectriaceae L.W. Hou, L. Cai & Crous. New genera: Bionectriaceae: Alloacremonium L.W. Hou, L. Cai & Crous, Gossypinidium L.W. Hou, L. Cai & Crous, Monohydropisphaera L.W. Hou, L. Cai & Crous, Musananaesporium L.W. Hou, L. Cai & Crous, Paragliomastix L.W. Hou, L. Cai & Crous, Proliferophialis L.W. Hou, L. Cai & Crous, Proxiovicillium L.W. Hou, L. Cai & Crous, Ramosiphorum L.W. Hou, L. Cai & Crous, Verruciconidia L.W. Hou, L. Cai & Crous, Waltergamsia L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium L.W. Hou, L. Cai & Crous, Parafuscohypha L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia L.W. Hou, L. Cai & Crous; Sarocladiaceae: Polyphialocladium L.W. Hou, L. Cai & Crous. New species: Bionectriaceae: Alloacremonium ferrugineum L.W. Hou, L. Cai & Crous, Al. humicola L.W. Hou, L. Cai & Crous, Acremonium aerium L.W. Hou, L. Cai & Crous, A. brunneisporum L.W. Hou, L. Cai & Crous, A. chlamydosporium L.W. Hou, L. Cai & Crous, A. ellipsoideum L.W. Hou, Rämä, L. Cai & Crous, A. gamsianum L.W. Hou, L. Cai & Crous, A. longiphialidicum L.W. Hou, L. Cai & Crous, A. multiramosum L.W. Hou, Rämä, L. Cai & Crous, A. mycoparasiticum L.W. Hou, L. Cai & Crous, A. stroudii K. Fletcher, F.C. Küpper & P. van West, A. subulatum L.W. Hou, L. Cai & Crous, A. synnematoferum L.W. Hou, Rämä, L. Cai & Crous, Bulbithecium ammophilae L.W. Hou, L. Cai & Crous, B. ellipsoideum L.W. Hou, L. Cai & Crous, B. truncatum L.W. Hou, L. Cai & Crous, Emericellopsis brunneiguttula L.W. Hou, L. Cai & Crous, Gliomastix musae L.W. Hou, L. Cai & Crous, Gossypinidium sporodochiale L.W. Hou, L. Cai & Crous, Hapsidospora stercoraria L.W. Hou, L. Cai & Crous, H. variabilis L.W. Hou, L. Cai & Crous, Mycocitrus odorus L.W. Hou, L. Cai & Crous, Nectriopsis ellipsoidea L.W. Hou, L. Cai & Crous, Paracylindrocarpon aurantiacum L.W. Hou, L. Cai & Crous, Pn. foliicola Lechat & J. Fourn., Paragliomastix rosea L.W. Hou, L. Cai & Crous, Proliferophialis apiculata L.W. Hou, L. Cai & Crous, Protocreopsis finnmarkica L.W. Hou, L. Cai, Rämä & Crous, Proxiovicillium lepidopterorum L.W. Hou, L. Cai & Crous, Ramosiphorum echinoporiae L.W. Hou, L. Cai & Crous, R. polyporicola L.W. Hou, L. Cai & Crous, R. thailandicum L.W. Hou, L. Cai & Crous, Verruciconidia erythroxyli L.W. Hou, L. Cai & Crous, Ve. infuscata L.W. Hou, L. Cai & Crous, Ve. quercina L.W. Hou, L. Cai & Crous, Ve. siccicapita L.W. Hou, L. Cai & Crous, Ve. unguis L.W. Hou, L. Cai & Crous, Waltergamsia alkalina L.W. Hou, L. Cai & Crous, W. catenata L.W. Hou, L. Cai & Crous, W. moroccensis L.W. Hou, L. Cai & Crous, W. obpyriformis L.W. Hou, L. Cai & Crous; Chrysonectriaceae: Chrysonectria crystallifera L.W. Hou, L. Cai & Crous; Nectriaceae: Xenoacremonium allantoideum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium distortum L.W. Hou, L. Cai & Crous, N. flavum L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium subcylindricum L.W. Hou, L. Cai & Crous, No. vesiculophorum L.W. Hou, L. Cai & Crous; Myrotheciomycetaceae: Trichothecium hongkongense L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Brunneomyces polyphialidus L.W. Hou, L. Cai & Crous, Parafuscohypha proliferata L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium acaciae L.W. Hou, L. Cai & Crous, C. antarcticum L.W. Hou, L. Cai & Crous, C. guttulatum L.W. Hou, L. Cai & Crous, C. lolii L.W. Hou, L. Cai & Crous, C. soli L.W. Hou, L. Cai & Crous, C. terrestre L.W. Hou, L. Cai & Crous, Parasarocladium chondroidum L.W. Hou, L. Cai & Crous,Polyphialocladium fusisporum L.W. Hou, L. Cai & Crous, Sarocladium agarici L.W. Hou, L. Cai & Crous, S. citri L.W. Hou, L. Cai & Crous, S. ferrugineum L.W. Hou, L. Cai & Crous, S. fuscum L.W. Hou, L. Cai & Crous,S. theobromae L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria crystalligena L.W. Hou, L. Cai & Crous, V. hilaris L.W. Hou, L. Cai & Crous. New combinations: Bionectriaceae: Acremonium purpurascens (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous, Bulbithecium arxii (Malloch) L.W. Hou, L. Cai & Crous, Bu. borodinense (Tad. Ito et al.) L.W. Hou, L. Cai & Crous, Bu. pinkertoniae (W. Gams) L.W. Hou, L. Cai & Crous, Bu. spinosum (Negroni) L.W. Hou, L. Cai & Crous, Emericellopsis exuviara (Sigler et al.) L.W. Hou, L. Cai & Crous, E. fimetaria (Pers.) L.W. Hou, L. Cai & Crous, E. fuci (Summerb. et al.) L.W. Hou, L. Cai & Crous, E. moniliformis (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, E. salmonea (W. Gams & Lodha) L.W. Hou, L. Cai & Crous, E. tubakii (Gams) L.W. Hou, L. Cai & Crous, Fusariella arenula (Berk. & Broome) L.W. Hou, L. Cai & Crous, Hapsidospora chrysogena (Thirum. & Sukapure) L.W. Hou, L. Cai & Crous, H. flava (W. Gams) L.W. Hou, L. Cai & Crous, H. globosa (Malloch & Cain) L.W. Hou, L. Cai & Crous, H. inversa (Malloch & Cain) L.W. Hou, L. Cai & Crous, Hydropisphaera aurantiaca (C.A. Jørg.) L.W. Hou, L. Cai & Crous, Lasionectria atrorubra (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, L. bisepta (W. Gams) L.W. Hou, L. Cai & Crous, L. castaneicola (Lechat & Gardiennet) L.W. Hou, L. Cai & Crous, L. cerealis (P. Karst.) L.W. Hou, L. Cai & Crous, L. olida (W. Gams) L.W. Hou, L. Cai & Crous, Lasionectriopsis dentifera (Samuels) L.W. Hou, L. Cai & Crous, Lasionectriella arenuloides (Samuels) L.W. Hou, L. Cai & Crous, La. marigotensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Monohydropisphaera fusigera (Berk. & Broome) L.W. Hou, L. Cai & Crous, Musananaesporium tectonae (R.F. Castañeda) L.W. Hou, L. Cai & Crous, Mycocitrus zonatus (Sawada) L.W. Hou, L. Cai & Crous, Nectriopsis microspora (Jaap) L.W. Hou, L. Cai & Crous, Ovicillium asperulatum (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, O. variecolor (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, Paracylindrocarpon multiloculatum (Samuels) L.W. Hou, L. Cai & Crous, Pn. multiseptatum (Samuels)L.W. Hou, L. Cai & Crous, Paragliomastix chiangraiensis (J.F. Li et al.) L.W. Hou, L. Cai & Crous, Px. luzulae (Fuckel) L.W. Hou, L. Cai & Crous, Px. znieffensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Protocreopsis rutila (W. Gams) L.W. Hou, L. Cai & Crous, Proxiovicillium blochii (Matr.)L.W. Hou, L. Cai & Crous, Stanjemonium dichromosporum (Gams & Sivasith.) L.W. Hou, L. Cai & Crous, Verruciconidia persicina (Nicot) L.W. Hou, L. Cai & Crous, Ve. verruculosa (W. Gams & Veenb.-Rijks) L.W. Hou, L. Cai & Crous, Waltergamsia citrina (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. dimorphospora (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. epimycota (Samuels) L.W. Hou, L. Cai & Crous, W. fusidioides (Nicot) L.W. Hou, L. Cai & Crous, W. hennebertii (W. Gams) L.W. Hou, L. Cai & Crous, W. parva (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. pilosa (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. zeylanica (Petch) L.W. Hou, L. Cai & Crous; Cephalothecaceae: Phialemonium thermophilum (W. Gams & J. Lacey) L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum camptosporum (W. Gams) L.W. Hou, L. Cai & Crous; Coniochaetaceae: Coniochaeta psammospora (W. Gams) L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium exiguum (W. Gams) L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium minutisporum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Ne. taiwanense (K.L. Pang et al.) L.W. Hou, L. Cai & Crous; Ne. vitellinum (W. Gams) L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium domschii (W. Gams) L.W. Hou, L. Cai & Crous, Brunneomyces pseudozeylanicus (W. Gams) L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia minutispora (W. Gams et al.) L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium curvulum (W. Gams) L.W. Hou, L. Cai & Crous, Parasarocladium funiculosum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria inflata (C.H. Dickinson) L.W. Hou, L. Cai & Crous, V. roseola (G. Sm.) L.W. Hou, L. Cai & Crous. Epitype (basionym): Sphaeria violacea J.C. Schmidt ex Fr. Neotype (basionym): Mastigocladium blochii Matr. Citation: Hou LW, Giraldo A, Groenewald JZ, Rämä T, Summerbell RC, Zang P, Cai L, Crous PW (2023). Redisposition of acremonium-like fungi in Hypocreales. Studies in Mycology 105: 23-203. doi: 10.3114/sim.2023.105.02.
Collapse
|
research-article |
2 |
15 |
19
|
Gomez-Marin JE, Gonzalez MM, Montoya MT, Giraldo A, Castaño JC. A newborn screening programme for congenital toxoplasmosis in the setting of a country with less income. Arch Dis Child 2007; 92:88. [PMID: 17185454 PMCID: PMC2083157 DOI: 10.1136/adc.2006.106922] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
letter |
18 |
15 |
20
|
Giraldo A, Silva E, Martínez I, Campos C, Guzmán J. Pericentric inversion of chromosome 1 in three sterile brothers. Hum Genet 1981; 58:226-7. [PMID: 7287009 DOI: 10.1007/bf00278718] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
Case Reports |
44 |
14 |
21
|
Formolo JM, Giraldo A, Shors CM. Fatal pulmonary embolism from massive right atrial thrombus postcoronary artery bypass surgery. Am Heart J 1981; 101:510. [PMID: 6971050 DOI: 10.1016/0002-8703(81)90148-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
Case Reports |
44 |
11 |
22
|
Gatti G, Simsek S, Zurrida S, Kurne A, Giannetti I, Demirer S, Smeets A, Caldarella P, Vento AR, Giraldo A, Luini A. Possible role of nitric oxide in the biology of breast carcinoma: review of the available literature. Breast 2004; 13:1-6. [PMID: 14759709 DOI: 10.1016/j.breast.2003.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 06/26/2003] [Accepted: 09/02/2003] [Indexed: 10/26/2022] Open
Abstract
Nitric oxide was studied to investigate its possible involvement in the promotion of breast carcinoma: both the development of the primary tumour and the process of metastasis seem to be influenced by the presence and the amount of nitric oxide. We review the available literature on this topic, which seems to suggest an influence of nitric oxide on the cancer cell biology in breast carcinoma, but the argument is still controversial. More studies are needed to clarify the sequence of events and the real impact of nitric oxide on the behaviour of the disease.
Collapse
|
|
21 |
10 |
23
|
Garbin B, Giraldo A, Peters KJH, Broderick NGR, Spakman A, Raineri F, Levenson A, Rodriguez SRK, Krauskopf B, Yacomotti AM. Spontaneous Symmetry Breaking in a Coherently Driven Nanophotonic Bose-Hubbard Dimer. PHYSICAL REVIEW LETTERS 2022; 128:053901. [PMID: 35179911 DOI: 10.1103/physrevlett.128.053901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We report on the first experimental observation of spontaneous mirror symmetry breaking (SSB) in coherently driven-dissipative coupled optical cavities. SSB is observed as the breaking of the spatial or mirror Z_{2} symmetry between two symmetrically pumped and evanescently coupled photonic crystal nanocavities, and manifests itself as random intensity localization in one of the two cavities. We show that, in a system featuring repulsive boson interactions (U>0), the observation of a pure pitchfork bifurcation requires negative photon hopping energies (J<0), which we have realized in our photonic crystal molecule. SSB is observed over a wide range of the two-dimensional parameter space of driving intensity and detuning, where we also find a region that exhibits bistable symmetric behavior. Our results pave the way for the experimental study of limit cycles and deterministic chaos arising from SSB, as well as the study of nonclassical photon correlations close to SSB transitions.
Collapse
|
|
3 |
9 |
24
|
Abstract
A large pedigree with a satellited Yq chromosome is described, Q, C, and NOR banding were performed. Family C proband suffers from a Klinefelter syndrome.
Collapse
|
|
44 |
9 |
25
|
Duque A, Martínez PJ, Giraldo A, Gualtero DF, Ardila CM, Contreras A, Duarte S, Lafaurie GI. Accuracy of cotinine serum test to detect the smoking habit and its association with periodontal disease in a multicenter study. Med Oral Patol Oral Cir Bucal 2017; 22:e425-e431. [PMID: 28578367 PMCID: PMC5549515 DOI: 10.4317/medoral.21292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023] Open
Abstract
Background The validity of the surveys on self-reported smoking status is often questioned because smokers underestimate cigarette use and deny the habit. It has been suggested that self-report should be accompanied by cotinine test. This report evaluates the usefulness of serum cotinine test to assess the association between smoking and periodontal status in a study with a large sample population to be used in studies with other serum markers in epidemiologic and periodontal medicine researches. Material and Methods 578 patients who were part of a multicenter study on blood biomarkers were evaluated about smoking and its relation to periodontal disease. Severity of periodontal disease was determinate using clinical attachment loss (CAL). Smoking was assessed by a questionnaire and a blood sample drawn for serum cotinine determination. Results The optimal cut-off point for serum cotinine was 10 ng/ml. Serum cotinine showed greater association with severity of CAL than self-report for mild-moderate CAL [OR 2.03 (CI95% 1.16-3.53) vs. OR 1.08 (CI95% 0.62-1.87) ] advanced periodontitis [OR 2.36 (CI95% 1.30- 4.31) vs. OR 2.06 (CI95% 0.97-4.38) ] and extension of CAL > 3 mm [ OR 1.78 (CI95% 1.16-1.71) vs. 1.37 (CI95% 0.89-2.11)]. When the two tests were evaluated together were not shown to be better than serum cotinine test. Conclusions Self-reported smoking and serum cotinine test ≥ 10ng/ml are accurate, complementary and more reliable methods to assess the patient’s smoking status and could be used in studies evaluating serum samples in large population and multicenter studies.
Clinical Relevance: The serum cotinine level is more reliable to make associations with the patient’s periodontal status than self-report questionnaire and could be used in multicenter and periodontal medicine studies. Key words:Biological markers, serum, cotinine, periodontitis, smoking.
Collapse
|
Multicenter Study |
8 |
8 |