1
|
Claireaux M, Caniels TG, de Gast M, Han J, Guerra D, Kerster G, van Schaik BDC, Jongejan A, Schriek AI, Grobben M, Brouwer PJM, van der Straten K, Aldon Y, Capella-Pujol J, Snitselaar JL, Olijhoek W, Aartse A, Brinkkemper M, Bontjer I, Burger JA, Poniman M, Bijl TPL, Torres JL, Copps J, Martin IC, de Taeye SW, de Bree GJ, Ward AB, Sliepen K, van Kampen AHC, Moerland PD, Sanders RW, van Gils MJ. A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nat Commun 2022; 13:4539. [PMID: 35927266 PMCID: PMC9352689 DOI: 10.1038/s41467-022-32232-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/22/2022] [Indexed: 12/21/2022] Open
Abstract
Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.
Collapse
|
research-article |
3 |
40 |
2
|
Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW. Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host Microbe 2022; 30:1759-1772.e12. [PMID: 36400021 PMCID: PMC9794196 DOI: 10.1016/j.chom.2022.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.
Collapse
|
research-article |
3 |
31 |
3
|
Radić L, Sliepen K, Yin V, Brinkkemper M, Capella-Pujol J, Schriek AI, Torres JL, Bangaru S, Burger JA, Poniman M, Bontjer I, Bouhuijs JH, Gideonse D, Eggink D, Ward AB, Heck AJ, Van Gils MJ, Sanders RW, Schinkel J. Bispecific antibodies combine breadth, potency, and avidity of parental antibodies to neutralize sarbecoviruses. iScience 2023; 26:106540. [PMID: 37063468 PMCID: PMC10065043 DOI: 10.1016/j.isci.2023.106540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure the formation of antibody:spike complexes, we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses.
Collapse
|
research-article |
2 |
9 |
4
|
Schriek AI, van Haaren MM, Poniman M, Dekkers G, Bentlage AEH, Grobben M, Vidarsson G, Sanders RW, Verrips T, Geijtenbeek TBH, Heukers R, Kootstra NA, de Taeye SW, van Gils MJ. Anti-HIV-1 Nanobody-IgG1 Constructs With Improved Neutralization Potency and the Ability to Mediate Fc Effector Functions. Front Immunol 2022; 13:893648. [PMID: 35651621 PMCID: PMC9150821 DOI: 10.3389/fimmu.2022.893648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The most effective treatment for HIV-1, antiretroviral therapy, suppresses viral replication and averts the disease from progression. Nonetheless, there is a need for alternative treatments as it requires daily administration with the possibility of side effects and occurrence of drug resistance. Broadly neutralizing antibodies or nanobodies targeting the HIV-1 envelope glycoprotein are explored as alternative treatment, since they mediate viral suppression and contribute to the elimination of virus-infected cells. Besides neutralization potency and breadth, Fc-mediated effector functions of bNAbs also contribute to the in vivo efficacy. In this study multivalent J3, 2E7 and 1F10 anti-HIV-1 broadly neutralizing nanobodies were generated to improve neutralization potency and IgG1 Fc fusion was utilized to gain Fc-mediated effector functions. Bivalent and trivalent nanobodies, coupled using long glycine-serine linkers, showed increased binding to the HIV-1 Env and enhanced neutralization potency compared to the monovalent variant. Fusion of an IgG1 Fc domain to J3 improved neutralization potency compared to the J3-bihead and restored Fc-mediated effector functions such as antibody-dependent cellular phagocytosis and trogocytosis, and natural killer cell activation. Due to their neutralization breadth and potency and their ability to induce effector functions these nanobody-IgG1 constructs may prove to be valuable towards alternative HIV-1 therapies.
Collapse
|
|
3 |
4 |
5
|
de Taeye SW, Schriek AI, Umotoy JC, Grobben M, Burger JA, Sanders RW, Vidarsson G, Wuhrer M, Falck D, Kootstra NA, van Gils MJ. Afucosylated broadly neutralizing antibodies enhance clearance of HIV-1 infected cells through cell-mediated killing. Commun Biol 2024; 7:964. [PMID: 39122901 PMCID: PMC11316088 DOI: 10.1038/s42003-024-06659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to delay viral rebound when administered to people with HIV-1 (PWH) during anti-retroviral therapy (ART) interruption. To further enhance the performance of bNAbs through their Fc effector functions, in particular NK cell-mediated killing of HIV-1 infected cells, we have produced a panel of glyco-engineered (afucosylated) bNAbs with enhanced affinity for Fc gamma receptor IIIa. These afucosylated anti-HIV-1 bNAbs enhance NK cell activation and degranulation compared to fucosylated counterparts even at low antigen density. NK cells from PWH expressing exhaustion markers PD-1 and TIGIT are activated in a similar fashion by afucosylated bNAbs as NK cell from HIV-1 negative individuals. Killing of HIV-1 infected cells is most effective with afucosylated bNAbs 2G12, N6, PGT151 and PGDM1400, whereas afucosylated PGT121 and non-neutralizing antibody A32 only induce minor NK cell-mediated killing. These data indicate that the approach angle and affinity of Abs influence the capacity to induce antibody-dependent cellular cytotoxicity. Thus, afucosylated bNAbs have the capacity to induce NK cell-mediated killing of infected cells, which warrants further investigation of afucosylated bNAb administration in vivo, aiming for reduction of the viral reservoir and ART free durable control.
Collapse
|
research-article |
1 |
|
6
|
de Taeye SW, Faye L, Morel B, Schriek AI, Umotoy JC, Yuan M, Kuzmina NA, Turner HL, Zhu X, Grünwald-Gruber C, Poniman M, Burger JA, Caniels TG, Fitchette AC, Desgagnés R, Stordeur V, Mirande L, Beauverger G, de Bree G, Ozorowski G, Ward AB, Wilson IA, Bukreyev A, Sanders RW, Vezina LP, Beaumont T, van Gils MJ, Gomord V. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:4-16. [PMID: 39563066 DOI: 10.1111/pbi.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 11/21/2024]
Abstract
Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants. Our plant-produced mAbs demonstrated comparable neutralizing activity with COVA2-15 produced in mammalian cells. Furthermore, they exhibited similar capacity to prevent SARS-CoV-2 infection in a hamster model. To further enhance these biosimilars, we performed three glyco- and protein engineering techniques. First, to increase antibody half-life, we introduced YTE-mutation in the Fc tail; second, optimization of N-linked glycosylation by the addition of a C-terminal ER-retention motif (HDEL), and finally; production of mAb in plant production lines lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO). These engineered biosimilars exhibited optimized glycosylation, enhanced phagocytosis and NK cell activation capacity compared to conventional plant-produced S15 and M15 biosimilars, in some cases outperforming mammalian cell produced COVA2-15. These engineered antibodies hold great potential for enhancing in vivo efficacy of mAb treatment against COVID-19 and provide a platform for the development of antibodies against other emerging viruses in a cost-effective manner.
Collapse
|
|
1 |
|
7
|
Anbuhl SM, Dervillez X, Neubacher S, Schriek AI, Bobkov V, de Taeye SW, Szpakowska M, Siderius M, Grossmann TN, Chevigné A, Smit MJ, Heukers R. Multivalent CXCR4-targeting nanobody formats differently affect affinity, receptor clustering, and antagonism. Biochem Pharmacol 2024; 227:116457. [PMID: 39098732 DOI: 10.1016/j.bcp.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The chemokine receptor CXCR4 is involved in the development and migration of stem and immune cells but is also implicated in tumor progression and metastasis for a variety of cancers. Antagonizing ligand (CXCL12)-induced CXCR4 signaling is, therefore, of therapeutic interest. Currently, there are two small-molecule CXCR4 antagonists on the market for the mobilization of hematopoietic stem cells. Other molecules with improved potencies and safety profiles are being developed for different indications, including cancer. Moreover, multiple antagonistic nanobodies targeting CXCR4 displayed similar or better potencies as compared to the CXCR4-targeting molecule AMD3100 (Plerixafor), which was further enhanced through avid binding of bivalent derivatives. In this study, we aimed to compare the affinities of various multivalent nanobody formats which might be differently impacted by avidity. By fusion to a flexible GS-linker, Fc-region of human IgG1, different C4bp/CLR multimerization domains, or via site-directed conjugation to a trivalent linker scaffold, we generated different types of multivalent nanobodies with varying valencies ranging from bivalent to decavalent. Of these, C-terminal fusion, especially to human Fc, was most advantageous with a 2-log-fold and 3-log-fold increased potency in inhibiting CXCL12-mediated Gαi- or β-arrestin recruitment, respectively. Overall, we describe strategies for generating multivalent and high-potency CXCR4 antagonistic nanobodies able to induce receptor clustering and conclude that fusion to an Fc-tail results in the highest avidity effect irrespective of the hinge linker.
Collapse
|
|
1 |
|
8
|
Umotoy JC, Kroon PZ, Man S, van Dort KA, Atabey T, Schriek AI, Dekkers G, Herrera-Carrillo E, Geijtenbeek TB, Heukers R, Kootstra NA, van Gils MJ, de Taeye SW. Inhibition of HIV-1 replication by nanobodies targeting tetraspanin CD9. iScience 2024; 27:110958. [PMID: 39391729 PMCID: PMC11465043 DOI: 10.1016/j.isci.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
HIV-1 alters the dynamics and distribution of tetraspanins, a group of proteins integral to membrane organization, to facilitate both entry and egress. Notably, the tetraspanin CD9 is dysregulated during HIV-1 infection, correlating with multifaceted effects on viral replication. Here, we generated llama-derived nanobodies against CD9 to restrict HIV-1 replication. We immunized llamas with recombinant large extracellular loop of CD9 and identified eight clonally distinct nanobodies targeting CD9, each exhibiting a range of affinities and differential binding to cell surface-expressed CD9. Notably, nanobodies T2C001 and T2C002 demonstrated low nanomolar affinities and exhibited differential sensitivities against endogenous and overexpressed CD9 on the cell surface. Although CD9-directed nanobodies did not impede the early stages of HIV-1 life cycle, they effectively inhibited virus-induced syncytia formation and virus replication in T cells and monocyte-derived macrophages. This discovery opens new avenues for host-targeted therapeutic strategies, potentially augmenting existing antiretroviral treatments for HIV-1.
Collapse
|
research-article |
1 |
|
9
|
Schriek AI, van Haaren MM, Poniman M, Dekkers G, Bentlage AEH, Grobben M, Vidarsson G, Sanders RW, Verrips T, Geijtenbeek TBH, Heukers R, Kootstra NA, de Taeye SW, van Gils MJ. Corrigendum: Anti-HIV-1 nanobody-IgG1 constructs with improved neutralization potency and the ability to mediate Fc effector functions. Front Immunol 2022; 13:1091668. [DOI: 10.3389/fimmu.2022.1091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
|
|
3 |
|
10
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
|
Review |
1 |
|
11
|
Schriek AI, Falck D, Wuhrer M, Kootstra NA, van Gils MJ, de Taeye SW. Functional comparison of Fc-engineering strategies to improve anti-HIV-1 antibody effector functions. Antiviral Res 2024; 231:106015. [PMID: 39343065 DOI: 10.1016/j.antiviral.2024.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Substantial reduction of the intact proviral reservoir is essential towards HIV-1 cure. In vivo administration of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) trimer can decrease the viral reservoir, through Fc-mediated killing of infected cells. In this study, we compared three commonly used antibody engineering strategies to enhance Fc-mediated effector functions: (i) glyco-engineering, (ii) protein engineering, and (iii) subclass/hinge modifications in a panel of anti-HIV-1 antibodies. We found that antibody-dependent cellular phagocytosis (ADCP) was improved by elongating the hinge domain and switching to an IgG3 constant domain. In addition, potent NK cell activation and ADCC activity was observed for afucosylated antibodies and antibodies bearing the GASDALIE mutations. The combination of these engineering strategies further increased NK cell activation and induced antibody dependent cytotoxicity (ADCC) of infected cells at low antibody concentrations. The bNAb N6 was most effective at killing HIV-1 infected cells, likely due to its high affinity and optimal angle of approach. Overall, the findings of this study are applicable to other antibody formats, and can aid the development of effective immunotherapies and antibody-based treatments for HIV-1 cure strategies.
Collapse
|
Comparative Study |
1 |
|
12
|
Grobben M, Bakker M, Schriek AI, Levels LJ, Umotoy JC, Tejjani K, van Breemen MJ, Lin RN, de Taeye SW, Ozorowski G, Kootstra NA, Ward AB, Kent SJ, Hogarth PM, Wines BD, Sanders RW, Chung AW, van Gils MJ. Polyfunctionality and breadth of HIV-1 antibodies are associated with delayed disease progression. PLoS Pathog 2024; 20:e1012739. [PMID: 39661636 PMCID: PMC11634010 DOI: 10.1371/journal.ppat.1012739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
HIV-1 infection leads to chronic disease requiring life-long treatment and therefore alternative therapeutics, a cure and/or a protective vaccine are needed. Antibody-mediated effector functions could have a role in the fight against HIV-1. However, the properties underlying the potential beneficial effects of antibodies during HIV-1 infection are poorly understood. To identify a specific profile of antibody features associated with delayed disease progression, we studied antibody polyfunctionality during untreated HIV-1 infection in the well-documented Amsterdam Cohort Studies. Serum samples were analyzed from untreated individuals with HIV-1 at approximately 6 months (n = 166) and 3 years (n = 382) post-seroconversion (post-SC). A Luminex antibody Fc array was used to profile 15 different Fc features for serum antibodies against 20 different HIV-1 envelope glycoprotein antigens and the resulting data was also compared with data on neutralization breadth. We found that high HIV-1 specific IgG1 levels and low IgG2 and IgG4 levels at 3 years post-SC were associated with delayed disease progression. Moreover, delayed disease progression was associated with a broad and polyfunctional antibody response. Specifically, the capacity to interact with all Fc γ receptors (FcγRs) and C1q, and in particular with FcγRIIa, correlated positively with delayed disease progression. There were strong correlations between antibody Fc features and neutralization breadth and several antibody features that were associated with delayed disease progression were also associated with the development of broad and potent antibody neutralization. In summary, we identified a strong association between broad, polyfunctional antibodies and delayed disease progression. These findings contribute new information for the fight against HIV-1, especially for new antibody-based therapy and cure strategies.
Collapse
|
research-article |
1 |
|
13
|
van der Straten K, Guerra D, Kerster G, Claireaux M, Grobben M, Schriek AI, Boyd A, van Rijswijk J, Tejjani K, Eggink D, Beaumont T, de Taeye SW, de Bree GJ, Sanders RW, van Gils MJ. Primary SARS-CoV-2 variant of concern infections elicit broad antibody Fc-mediated effector functions and memory B cell responses. PLoS Pathog 2024; 20:e1012453. [PMID: 39146376 PMCID: PMC11349224 DOI: 10.1371/journal.ppat.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.
Collapse
|
research-article |
1 |
|