1
|
Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, LeWinter MM, Deswal A, Rouleau JL, Ofili EO, Anstrom KJ, Hernandez AF, McNulty SE, Velazquez EJ, Kfoury AG, Chen HH, Givertz MM, Semigran MJ, Bart BA, Mascette AM, Braunwald E, O'Connor CM. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 2011; 364:797-805. [PMID: 21366472 PMCID: PMC3412356 DOI: 10.1056/nejmoa1005419] [Citation(s) in RCA: 1180] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Loop diuretics are an essential component of therapy for patients with acute decompensated heart failure, but there are few prospective data to guide their use. METHODS In a prospective, double-blind, randomized trial, we assigned 308 patients with acute decompensated heart failure to receive furosemide administered intravenously by means of either a bolus every 12 hours or continuous infusion and at either a low dose (equivalent to the patient's previous oral dose) or a high dose (2.5 times the previous oral dose). The protocol allowed specified dose adjustments after 48 hours. The coprimary end points were patients' global assessment of symptoms, quantified as the area under the curve (AUC) of the score on a visual-analogue scale over the course of 72 hours, and the change in the serum creatinine level from baseline to 72 hours. RESULTS In the comparison of bolus with continuous infusion, there was no significant difference in patients' global assessment of symptoms (mean AUC, 4236±1440 and 4373±1404, respectively; P=0.47) or in the mean change in the creatinine level (0.05±0.3 mg per deciliter [4.4±26.5 μmol per liter] and 0.07±0.3 mg per deciliter [6.2±26.5 μmol per liter], respectively; P=0.45). In the comparison of the high-dose strategy with the low-dose strategy, there was a nonsignificant trend toward greater improvement in patients' global assessment of symptoms in the high-dose group (mean AUC, 4430±1401 vs. 4171±1436; P=0.06). There was no significant difference between these groups in the mean change in the creatinine level (0.08±0.3 mg per deciliter [7.1±26.5 μmol per liter] with the high-dose strategy and 0.04±0.3 mg per deciliter [3.5±26.5 μmol per liter] with the low-dose strategy, P=0.21). The high-dose strategy was associated with greater diuresis and more favorable outcomes in some secondary measures but also with transient worsening of renal function. CONCLUSIONS Among patients with acute decompensated heart failure, there were no significant differences in patients' global assessment of symptoms or in the change in renal function when diuretic therapy was administered by bolus as compared with continuous infusion or at a high dose as compared with a low dose. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov number, NCT00577135.).
Collapse
|
Comparative Study |
14 |
1180 |
2
|
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. J Am Coll Cardiol 2022; 79:e263-e421. [PMID: 35379503 DOI: 10.1016/j.jacc.2021.12.012] [Citation(s) in RCA: 1157] [Impact Index Per Article: 385.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM The "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure" replaces the "2013 ACCF/AHA Guideline for the Management of Heart Failure" and the "2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure." The 2022 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with heart failure. METHODS A comprehensive literature search was conducted from May 2020 to December 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (PubMed), EMBASE, the Cochrane Collaboration, the Agency for Healthcare Research and Quality, and other relevant databases. Additional relevant clinical trials and research studies, published through September 2021, were also considered. This guideline was harmonized with other American Heart Association/American College of Cardiology guidelines published through December 2021. STRUCTURE Heart failure remains a leading cause of morbidity and mortality globally. The 2022 heart failure guideline provides recommendations based on contemporary evidence for the treatment of these patients. The recommendations present an evidence-based approach to managing patients with heart failure, with the intent to improve quality of care and align with patients' interests. Many recommendations from the earlier heart failure guidelines have been updated with new evidence, and new recommendations have been created when supported by published data. Value statements are provided for certain treatments with high-quality published economic analyses.
Collapse
|
|
3 |
1157 |
3
|
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022; 145:e895-e1032. [PMID: 35363499 DOI: 10.1161/cir.0000000000001063] [Citation(s) in RCA: 1004] [Impact Index Per Article: 334.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM The "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure" replaces the "2013 ACCF/AHA Guideline for the Management of Heart Failure" and the "2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure." The 2022 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with heart failure. METHODS A comprehensive literature search was conducted from May 2020 to December 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (PubMed), EMBASE, the Cochrane Collaboration, the Agency for Healthcare Research and Quality, and other relevant databases. Additional relevant clinical trials and research studies, published through September 2021, were also considered. This guideline was harmonized with other American Heart Association/American College of Cardiology guidelines published through December 2021. Structure: Heart failure remains a leading cause of morbidity and mortality globally. The 2022 heart failure guideline provides recommendations based on contemporary evidence for the treatment of these patients. The recommendations present an evidence-based approach to managing patients with heart failure, with the intent to improve quality of care and align with patients' interests. Many recommendations from the earlier heart failure guidelines have been updated with new evidence, and new recommendations have been created when supported by published data. Value statements are provided for certain treatments with high-quality published economic analyses.
Collapse
|
Review |
3 |
1004 |
4
|
Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, LeWinter MM, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili EO, O'Connor CM, Felker GM, Goldsmith SR, Bart BA, McNulty SE, Ibarra JC, Lin G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF, Mascette AM, Braunwald E. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 2013; 309:1268-77. [PMID: 23478662 PMCID: PMC3835156 DOI: 10.1001/jama.2013.2024] [Citation(s) in RCA: 917] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IMPORTANCE Studies in experimental and human heart failure suggest that phosphodiesterase-5 inhibitors may enhance cardiovascular function and thus exercise capacity in heart failure with preserved ejection fraction (HFPEF). OBJECTIVE To determine the effect of the phosphodiesterase-5 inhibitor sildenafil compared with placebo on exercise capacity and clinical status in HFPEF. DESIGN Multicenter, double-blind, placebo-controlled, parallel-group, randomized clinical trial of 216 stable outpatients with HF, ejection fraction ≥50%, elevated N-terminal brain-type natriuretic peptide or elevated invasively measured filling pressures, and reduced exercise capacity. Participants were randomized from October 2008 through February 2012 at 26 centers in North America. Follow-up was through August 30, 2012. INTERVENTIONS Sildenafil (n = 113) or placebo (n = 103) administered orally at 20 mg, 3 times daily for 12 weeks, followed by 60 mg, 3 times daily for 12 weeks. MAIN OUTCOME MEASURES Primary end point was change in peak oxygen consumption after 24 weeks of therapy. Secondary end points included change in 6-minute walk distance and a hierarchical composite clinical status score (range, 1-n, a higher value indicates better status; expected value with no treatment effect, 95) based on time to death, time to cardiovascular or cardiorenal hospitalization, and change in quality of life for participants without cardiovascular or cardiorenal hospitalization at 24 weeks. RESULTS Median age was 69 years, and 48% of patients were women. At baseline, median peak oxygen consumption (11.7 mL/kg/min) and 6-minute walk distance (308 m) were reduced. The median E/e' (16), left atrial volume index (44 mL/m2), and pulmonary artery systolic pressure (41 mm Hg) were consistent with chronically elevated left ventricular filling pressures. At 24 weeks, median (IQR) changes in peak oxygen consumption (mL/kg/min) in patients who received placebo (-0.20 [IQR, -0.70 to 1.00]) or sildenafil (-0.20 [IQR, -1.70 to 1.11]) were not significantly different (P = .90) in analyses in which patients with missing week-24 data were excluded, and in sensitivity analysis based on intention to treat with multiple imputation for missing values (mean between-group difference, 0.01 mL/kg/min, [95% CI, -0.60 to 0.61]). The mean clinical status rank score was not significantly different at 24 weeks between placebo (95.8) and sildenafil (94.2) (P = .85). Changes in 6-minute walk distance at 24 weeks in patients who received placebo (15.0 m [IQR, -26.0 to 45.0]) or sildenafil (5.0 m [IQR, -37.0 to 55.0]; P = .92) were also not significantly different. Adverse events occurred in 78 placebo patients (76%) and 90 sildenafil patients (80%). Serious adverse events occurred in 16 placebo patients (16%) and 25 sildenafil patients (22%). CONCLUSION AND RELEVANCE Among patients with HFPEF, phosphodiesterase-5 inhibition with administration of sildenafil for 24 weeks, compared with placebo, did not result in significant improvement in exercise capacity or clinical status. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00763867.
Collapse
|
Multicenter Study |
12 |
917 |
5
|
Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001; 103:2055-9. [PMID: 11319194 DOI: 10.1161/01.cir.103.16.2055] [Citation(s) in RCA: 735] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous reports have shown that elevated circulating levels of cytokines and/or cytokine receptors predict adverse outcomes in patients with heart failure. However, these studies were limited by small numbers of patients and/or they were performed in a single center. In addition, these studies did not have sufficient size to address the influence of age, race, sex, and cause of heart failure on the circulating levels of these inflammatory mediators in patients with heart failure. METHODS AND RESULTS We analyzed circulating levels of cytokines (tumor necrosis factor [TNF] and interleukin-6) and their cognate receptors in 1200 consecutive patients who were enrolled in a multicenter clinical trial of patients with advanced heart failure. This analysis constitutes the largest analysis of cytokines and cytokine receptors to date. Analysis of the patients receiving placebo showed that increasing circulating levels of TNF, interleukin-6, and the soluble TNF receptors were associated with increased mortality. In men, there was a linear increase in circulating levels of TNF with advancing age. Women < or = 50 years of age had relatively low levels of TNF, but TNF levels were disproportionately higher in women >50 years of age. No differences existed in cytokines and/or cytokine receptors in whites versus nonwhites, and circulating levels of cytokines and cytokine receptors were significantly greater in patients with ischemic heart disease. CONCLUSIONS Cytokines and cytokine receptors are independent predictors of mortality in patients with advanced heart failure. Moreover, circulating levels of cytokines are modified by age, sex, and cause of heart failure.
Collapse
|
|
24 |
735 |
6
|
Bart BA, Goldsmith SR, Lee KL, Givertz MM, O'Connor CM, Bull DA, Redfield MM, Deswal A, Rouleau JL, LeWinter MM, Ofili EO, Stevenson LW, Semigran MJ, Felker GM, Chen HH, Hernandez AF, Anstrom KJ, McNulty SE, Velazquez EJ, Ibarra JC, Mascette AM, Braunwald E. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 2012; 367:2296-304. [PMID: 23131078 PMCID: PMC3690472 DOI: 10.1056/nejmoa1210357] [Citation(s) in RCA: 718] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ultrafiltration is an alternative strategy to diuretic therapy for the treatment of patients with acute decompensated heart failure. Little is known about the efficacy and safety of ultrafiltration in patients with acute decompensated heart failure complicated by persistent congestion and worsened renal function. METHODS We randomly assigned a total of 188 patients with acute decompensated heart failure, worsened renal function, and persistent congestion to a strategy of stepped pharmacologic therapy (94 patients) or ultrafiltration (94 patients). The primary end point was the bivariate change from baseline in the serum creatinine level and body weight, as assessed 96 hours after random assignment. Patients were followed for 60 days. RESULTS Ultrafiltration was inferior to pharmacologic therapy with respect to the bivariate end point of the change in the serum creatinine level and body weight 96 hours after enrollment (P=0.003), owing primarily to an increase in the creatinine level in the ultrafiltration group. At 96 hours, the mean change in the creatinine level was -0.04±0.53 mg per deciliter (-3.5±46.9 μmol per liter) in the pharmacologic-therapy group, as compared with +0.23±0.70 mg per deciliter (20.3±61.9 μmol per liter) in the ultrafiltration group (P=0.003). There was no significant difference in weight loss 96 hours after enrollment between patients in the pharmacologic-therapy group and those in the ultrafiltration group (a loss of 5.5±5.1 kg [12.1±11.3 lb] and 5.7±3.9 kg [12.6±8.5 lb], respectively; P=0.58). A higher percentage of patients in the ultrafiltration group than in the pharmacologic-therapy group had a serious adverse event (72% vs. 57%, P=0.03). CONCLUSIONS In a randomized trial involving patients hospitalized for acute decompensated heart failure, worsened renal function, and persistent congestion, the use of a stepped pharmacologic-therapy algorithm was superior to a strategy of ultrafiltration for the preservation of renal function at 96 hours, with a similar amount of weight loss with the two approaches. Ultrafiltration was associated with a higher rate of adverse events. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov number, NCT00608491.).
Collapse
|
Comparative Study |
13 |
718 |
7
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149:e1-e156. [PMID: 38033089 PMCID: PMC11095842 DOI: 10.1161/cir.0000000000001193] [Citation(s) in RCA: 681] [Impact Index Per Article: 681.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
|
Practice Guideline |
1 |
681 |
8
|
Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, Wehrens XHT, Deswal A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol 2012; 59:998-1005. [PMID: 22402071 DOI: 10.1016/j.jacc.2011.11.040] [Citation(s) in RCA: 546] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the prevalence and prognostic impacts of noncardiac comorbidities in patients with heart failure (HF) with preserved ejection fraction (HFpEF) compared with those with HF with reduced ejection fraction (HFrEF). BACKGROUND There is a paucity of information on the comparative prognostic significance of comorbidities between patients with HFpEF and those with HFrEF. METHODS In a national ambulatory cohort of veterans with HF, the comorbidity burden of 15 noncardiac comorbidities and the impacts of these comorbidities on hospitalization and mortality were compared between patients with HFpEF and those with HFrEF. RESULTS The cohort consisted of 2,843 patients with HFpEF and 6,599 with HFrEF with 2-year follow-up. Compared with patients with HFrEF, those with HFpEF were older and had higher prevalence of chronic obstructive pulmonary disease, diabetes, hypertension, psychiatric disorders, anemia, obesity, peptic ulcer disease, and cancer but a lower prevalence of chronic kidney disease. Patients with HFpEF had lower HF hospitalization, higher non-HF hospitalization, and similar overall hospitalization compared with those with HFrEF (p < 0.001, p < 0.001, and p = 0.19, respectively). An Increasing number of noncardiac comorbidities was associated with a higher risk for all-cause admissions (p < 0.001). Comorbidities had similar impacts on mortality in patients with HFpEF compared with those with HFrEF, except for chronic obstructive pulmonary disease, which was associated with a higher hazard (1.62 [95% confidence interval: 1.36 to 1.92] vs. 1.23 [95% confidence interval: 1.11 to 1.37], respectively, p = 0.01 for interaction) in patients with HFpEF. CONCLUSIONS There is a higher noncardiac comorbidity burden associated with higher non-HF hospitalizations in patients with HFpEF compared with those with HFrEF. However, individually, most comorbidities have similar impacts on mortality in both groups. Aggressive management of comorbidities may have an overall greater prognostic impact in HFpEF compared to HFrEF.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
546 |
9
|
Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, Francis GS, Lenihan D, Lewis EF, McNamara DM, Pahl E, Vasan RS, Ramasubbu K, Rasmusson K, Towbin JA, Yancy C. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association. Circulation 2016; 134:e579-e646. [PMID: 27832612 DOI: 10.1161/cir.0000000000000455] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
Practice Guideline |
9 |
474 |
10
|
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2020; 76:e159-e240. [PMID: 33229116 DOI: 10.1016/j.jacc.2020.08.045] [Citation(s) in RCA: 415] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
Practice Guideline |
5 |
415 |
11
|
Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, Bart BA, Bull DA, Stehlik J, LeWinter MM, Konstam MA, Huggins GS, Rouleau JL, O’Meara E, Tang WW, Starling RC, Butler J, Deswal A, Felker GM, O’Connor CM, Bonita RE, Margulies KB, Cappola TP, Ofili EO, Mann DL, Dávila-Román VG, McNulty SE, Borlaug BA, Velazquez EJ, Lee KL, Shah MR, Hernandez AF, Braunwald E, Redfield MM. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA 2013; 310:2533-43. [PMID: 24247300 PMCID: PMC3934929 DOI: 10.1001/jama.2013.282190] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Small studies suggest that low-dose dopamine or low-dose nesiritide may enhance decongestion and preserve renal function in patients with acute heart failure and renal dysfunction; however, neither strategy has been rigorously tested. OBJECTIVE To test the 2 independent hypotheses that, compared with placebo, addition of low-dose dopamine (2 μg/kg/min) or low-dose nesiritide (0.005 μg/kg/min without bolus) to diuretic therapy will enhance decongestion and preserve renal function in patients with acute heart failure and renal dysfunction. DESIGN, SETTING, AND PARTICIPANTS Multicenter, double-blind, placebo-controlled clinical trial (Renal Optimization Strategies Evaluation [ROSE]) of 360 hospitalized patients with acute heart failure and renal dysfunction (estimated glomerular filtration rate of 15-60 mL/min/1.73 m2), randomized within 24 hours of admission. Enrollment occurred from September 2010 to March 2013 across 26 sites in North America. INTERVENTIONS Participants were randomized in an open, 1:1 allocation ratio to the dopamine or nesiritide strategy. Within each strategy, participants were randomized in a double-blind, 2:1 ratio to active treatment or placebo. The dopamine (n = 122) and nesiritide (n = 119) groups were independently compared with the pooled placebo group (n = 119). MAIN OUTCOMES AND MEASURES Coprimary end points included 72-hour cumulative urine volume (decongestion end point) and the change in serum cystatin C from enrollment to 72 hours (renal function end point). RESULTS Compared with placebo, low-dose dopamine had no significant effect on 72-hour cumulative urine volume (dopamine, 8524 mL; 95% CI, 7917-9131 vs placebo, 8296 mL; 95% CI, 7762-8830 ; difference, 229 mL; 95% CI, -714 to 1171 mL; P = .59) or on the change in cystatin C level (dopamine, 0.12 mg/L; 95% CI, 0.06-0.18 vs placebo, 0.11 mg/L; 95% CI, 0.06-0.16; difference, 0.01; 95% CI, -0.08 to 0.10; P = .72). Similarly, low-dose nesiritide had no significant effect on 72-hour cumulative urine volume (nesiritide, 8574 mL; 95% CI, 8014-9134 vs placebo, 8296 mL; 95% CI, 7762-8830; difference, 279 mL; 95% CI, -618 to 1176 mL; P = .49) or on the change in cystatin C level (nesiritide, 0.07 mg/L; 95% CI, 0.01-0.13 vs placebo, 0.11 mg/L; 95% CI, 0.06-0.16; difference, -0.04; 95% CI, -0.13 to 0.05; P = .36). Compared with placebo, there was no effect of low-dose dopamine or nesiritide on secondary end points reflective of decongestion, renal function, or clinical outcomes. CONCLUSION AND RELEVANCE In participants with acute heart failure and renal dysfunction, neither low-dose dopamine nor low-dose nesiritide enhanced decongestion or improved renal function when added to diuretic therapy. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01132846.
Collapse
|
Multicenter Study |
12 |
367 |
12
|
Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, Deswal A, Dickson VV, Kosiborod MN, Lekavich CL, McCoy RG, Mentz RJ, Piña IL. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 2019; 140:e294-e324. [PMID: 31167558 DOI: 10.1161/cir.0000000000000691] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus is a risk factor for incident heart failure and increases the risk of morbidity and mortality in patients with established disease. Secular trends in the prevalence of diabetes mellitus and heart failure forecast a growing burden of disease and underscore the need for effective therapeutic strategies. Recent clinical trials have demonstrated the shared pathophysiology between diabetes mellitus and heart failure, the synergistic effect of managing both conditions, and the potential for diabetes mellitus therapies to modulate the risk of heart failure outcomes. This scientific statement on diabetes mellitus and heart failure summarizes the epidemiology, pathophysiology, and impact of diabetes mellitus and its control on outcomes in heart failure; reviews the approach to pharmacological therapy and lifestyle modification in patients with diabetes mellitus and heart failure; highlights the value of multidisciplinary interventions to improve clinical outcomes in this population; and outlines priorities for future research.
Collapse
|
Review |
6 |
357 |
13
|
Rosamond WD, Chang PP, Baggett C, Johnson A, Bertoni AG, Shahar E, Deswal A, Heiss G, Chambless LE. Classification of heart failure in the atherosclerosis risk in communities (ARIC) study: a comparison of diagnostic criteria. Circ Heart Fail 2012; 5:152-9. [PMID: 22271752 DOI: 10.1161/circheartfailure.111.963199] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Population-based research on heart failure (HF) is hindered by lack of consensus on diagnostic criteria. Framingham (FRM), National Health and Nutrition Examination Survey (NHANES), Modified Boston (MBS), Gothenburg (GTH), and International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) code criteria, do not differentiate acute decompensated heart failure (ADHF) from chronic stable HF. We developed a new classification protocol for identifying ADHF in the Atherosclerosis Risk in Communities (ARIC) Study and compared it with these other schemes. METHODS AND RESULTS A sample of 1180 hospitalizations with a patient address in 4 study communities and eligible discharge codes were selected. After assessing whether the chart contained evidence of possible HF signs, 705 were fully abstracted. Two independent reviewers classified each case as ADHF, chronic stable HF, or no HF, using ARIC classification guidelines. Fifty-nine percent of cases met ARIC criteria for ADHF and 13.9% and 27.1% were classified as chronic stable HF or no HF, respectively. Among events classified as HF by FRM criteria, 68.4% were validated as ADHF, 9.6% as chronic stable HF, and 21.9% as no HF. However, 92.5% of hospitalizations with a primary ICD-9-CM 428 "heart failure" code were validated as ADHF. Sensitivities of comparison criteria to classify ADHF ranged from 38-95%, positive predictive values from 62-92%, and specificities from 19-96%. CONCLUSIONS Although comparison criteria for classifying HF were moderately sensitive in identifying ADHF, specificity varied when applied to a randomly selected set of suspected HF hospitalizations in the community.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
287 |
14
|
Palaskas N, Lopez‐Mattei J, Durand JB, Iliescu C, Deswal A. Immune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment. J Am Heart Assoc 2020; 9:e013757. [PMID: 31960755 PMCID: PMC7033840 DOI: 10.1161/jaha.119.013757] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
|
Review |
5 |
276 |
15
|
Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, Mann DL. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 1999; 99:3224-6. [PMID: 10385494 DOI: 10.1161/01.cir.99.25.3224] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although previous studies suggested that TNF may contribute to heart failure progression, it is unclear whether antagonizing TNF is beneficial in heart failure patients. METHODS AND RESULTS Eighteen NYHA class III heart failure patients were randomized into a double-blind dose-escalation study to examine the safety and potential efficacy of etanercept, a specific TNF antagonist (Enbrel). Patients received placebo (6 patients) or an escalating dose (1, 4, or 10 mg/m2) of etanercept (12 patients) given as a single intravenous infusion. Safety parameters and patient functional status were assessed at baseline and at days 1, 2, 7, and 14. There were no significant side effects or clinically significant changes in laboratory indices. There was, however, a decrease in TNF bioactivity and a significant overall increase in quality-of-life scores, 6-minute walk distance, and ejection fraction in the cohort that received 4 or 10 mg/m2 of etanercept; there was no significant change in these parameters in the placebo group. CONCLUSIONS A single intravenous infusion of etanercept was safe and well tolerated in patients with NYHA class III heart failure. These studies provide provisional evidence that suggests that etanercept is sufficient to lower levels of biologically active TNF and may lead to improvement in the functional status of patients with heart failure.
Collapse
|
Clinical Trial |
26 |
261 |
16
|
House AA, Wanner C, Sarnak MJ, Piña IL, McIntyre CW, Komenda P, Kasiske BL, Deswal A, deFilippi CR, Cleland JGF, Anker SD, Herzog CA, Cheung M, Wheeler DC, Winkelmayer WC, McCullough PA. Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2019; 95:1304-1317. [PMID: 31053387 DOI: 10.1016/j.kint.2019.02.022] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/24/2022]
Abstract
The incidence and prevalence of heart failure (HF) and chronic kidney disease (CKD) are increasing, and as such a better understanding of the interface between both conditions is imperative for developing optimal strategies for their detection, prevention, diagnosis, and management. To this end, Kidney Disease: Improving Global Outcomes (KDIGO) convened an international, multidisciplinary Controversies Conference titled Heart Failure in CKD. Breakout group discussions included (i) HF with preserved ejection fraction (HFpEF) and nondialysis CKD, (ii) HF with reduced ejection fraction (HFrEF) and nondialysis CKD, (iii) HFpEF and dialysis-dependent CKD, (iv) HFrEF and dialysis-dependent CKD, and (v) HF in kidney transplant patients. The questions that formed the basis of discussions are available on the KDIGO website http://kdigo.org/conferences/heart-failure-in-ckd/, and the deliberations from the conference are summarized here.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
244 |
17
|
Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, Tang WHW, Dunlap ME, LeWinter MM, Mann DL, Felker GM, O'Connor CM, Goldsmith SR, Ofili EO, Saltzberg MT, Margulies KB, Cappola TP, Konstam MA, Semigran MJ, McNulty SE, Lee KL, Shah MR, Hernandez AF. Effects of Xanthine Oxidase Inhibition in Hyperuricemic Heart Failure Patients: The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation 2015; 131:1763-71. [PMID: 25986447 PMCID: PMC4438785 DOI: 10.1161/circulationaha.114.014536] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/05/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Oxidative stress may contribute to heart failure (HF) progression. Inhibiting xanthine oxidase in hyperuricemic HF patients may improve outcomes. METHODS AND RESULTS We randomly assigned 253 patients with symptomatic HF, left ventricular ejection fraction ≤40%, and serum uric acid levels ≥9.5 mg/dL to receive allopurinol (target dose, 600 mg daily) or placebo in a double-blind, multicenter trial. The primary composite end point at 24 weeks was based on survival, worsening HF, and patient global assessment. Secondary end points included change in quality of life, submaximal exercise capacity, and left ventricular ejection fraction. Uric acid levels were significantly reduced with allopurinol in comparison with placebo (treatment difference, -4.2 [-4.9, -3.5] mg/dL and -3.5 [-4.2, -2.7] mg/dL at 12 and 24 weeks, respectively, both P<0.0001). At 24 weeks, there was no significant difference in clinical status between the allopurinol- and placebo-treated patients (worsened 45% versus 46%, unchanged 42% versus 34%, improved 13% versus 19%, respectively; P=0.68). At 12 and 24 weeks, there was no significant difference in change in Kansas City Cardiomyopathy Questionnaire scores or 6-minute walk distances between the 2 groups. At 24 weeks, left ventricular ejection fraction did not change in either group or between groups. Rash occurred more frequently with allopurinol (10% versus 2%, P=0.01), but there was no difference in serious adverse event rates between the groups (20% versus 15%, P=0.36). CONCLUSIONS In high-risk HF patients with reduced ejection fraction and elevated uric acid levels, xanthine oxidase inhibition with allopurinol failed to improve clinical status, exercise capacity, quality of life, or left ventricular ejection fraction at 24 weeks. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00987415.
Collapse
|
Comparative Study |
10 |
231 |
18
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2024; 83:109-279. [PMID: 38043043 PMCID: PMC11104284 DOI: 10.1016/j.jacc.2023.08.017] [Citation(s) in RCA: 223] [Impact Index Per Article: 223.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
|
Practice Guideline |
1 |
223 |
19
|
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW, Beckman JA, O'Gara PT, Al-Khatib SM, Armbruster AL, Birtcher KK, Cigarroa JE, de las Fuentes L, Deswal A, Dixon DL, Fleisher LA, Gentile F, Goldberger ZD, Gorenek B, Haynes N, Hernandez AF, Hlatky MA, Joglar JA, Jones WS, Marine JE, Mark DB, Mukherjee D, Palaniappan LP, Piano MR, Rab T, Spatz ES, Tamis-Holland JE, Wijeysundera DN, Woo YJ. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. J Card Fail 2022; 28:e1-e167. [PMID: 35378257 DOI: 10.1016/j.cardfail.2022.02.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM The "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure" replaces the "2013 ACCF/AHA Guideline for the Management of Heart Failure" and the "2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure." The 2022 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with heart failure. METHODS A comprehensive literature search was conducted from May 2020 to December 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (PubMed), EMBASE, the Cochrane Collaboration, the Agency for Healthcare Research and Quality, and other relevant databases. Additional relevant clinical trials and research studies, published through September 2021, were also considered. This guideline was harmonized with other American Heart Association/American College of Cardiology guidelines published through December 2021. STRUCTURE Heart failure remains a leading cause of morbidity and mortality globally. The 2022 heart failure guideline provides recommendations based on contemporary evidence for the treatment of these patients. The recommendations present an evidence-based approach to managing patients with heart failure, with the intent to improve quality of care and align with patients' interests. Many recommendations from the earlier heart failure guidelines have been updated with new evidence, and new recommendations have been created when supported by published data. Value statements are provided for certain treatments with high-quality published economic analyses.
Collapse
|
Practice Guideline |
3 |
214 |
20
|
Aguilar D, Bozkurt B, Ramasubbu K, Deswal A. Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. J Am Coll Cardiol 2009; 54:422-8. [PMID: 19628117 DOI: 10.1016/j.jacc.2009.04.049] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/03/2009] [Accepted: 04/29/2009] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study was designed to examine the relationship between glycosylated hemoglobin (HbA1C) and adverse outcomes in diabetic patients with established heart failure (HF). BACKGROUND Despite the common coexistence of diabetes and HF, previous studies examining the association between HbA1C and outcomes in this population have been limited and have reported discrepant results. METHODS We assessed the association between increasing quintiles (Q1 to Q5) of HbA1C and risk of death or risk of HF hospitalization by conducting a retrospective study in a national cohort of 5,815 veterans with HF and diabetes treated in ambulatory clinics at Veterans Affairs medical centers. RESULTS At 2 years of follow-up, death occurred in 25% of patients in Q1 (HbA1C < or =6.4%), 23% in Q2 (6.4% < HbA1c < or =7.1%), 17.7% in Q3 (7.1% < HbA1c < or =7.8%), 22.5% in Q4 (7.8% < HbA1c < or =9.0%), and 23.2% in Q5 (HbA1c >9.0%). After adjustment for potential confounders, the middle quintile (Q3) had reduced mortality when compared with the lowest quintile (risk-adjusted hazard ratio: 0.73, 95% confidence interval: 0.61 to 0.88, p = 0.001). Hospitalization rates for HF at 2 years increased with increasing quintiles of HbA1C (Q1: 13.3%, Q2: 13.1%, Q3: 15.5%, Q4: 16.4%, and Q5: 18.2%), but this association was not statistically significant when adjusted for potential confounders. CONCLUSIONS The association between mortality and HbA1C in diabetic patients with HF appears U-shaped, with the lowest risk of death in those patients with modest glucose control (7.1% < HbA1C < or =7.8%). Future prospective studies are necessary to define optimal treatment goals in these patients.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
199 |
21
|
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022; 145:e876-e894. [PMID: 35363500 DOI: 10.1161/cir.0000000000001062] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM The "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure" replaces the "2013 ACCF/AHA Guideline for the Management of Heart Failure" and the "2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure." The 2022 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with heart failure. METHODS A comprehensive literature search was conducted from May 2020 to December 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (PubMed), EMBASE, the Cochrane Collaboration, the Agency for Healthcare Research and Quality, and other relevant databases. Additional relevant clinical trials and research studies, published through September 2021, were also considered. This guideline was harmonized with other American Heart Association/American College of Cardiology guidelines published through December 2021. Structure: Heart failure remains a leading cause of morbidity and mortality globally. The 2022 heart failure guideline provides recommendations based on contemporary evidence for the treatment of these patients. The recommendations present an evidence-based approach to managing patients with heart failure, with the intent to improve quality of care and align with patients' interests. Many recommendations from the earlier heart failure guidelines have been updated with new evidence, and new recommendations have been created when supported by published data. Value statements are provided for certain treatments with high-quality published economic analyses.
Collapse
|
Review |
3 |
193 |
22
|
Albert NM, Barnason S, Deswal A, Hernandez A, Kociol R, Lee E, Paul S, Ryan CJ, White-Williams C. Transitions of care in heart failure: a scientific statement from the American Heart Association. Circ Heart Fail 2015; 8:384-409. [PMID: 25604605 DOI: 10.1161/hhf.0000000000000006] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In patients with heart failure (HF), use of 30-day rehospitalization as a healthcare metric and increased pressure to provide value-based care compel healthcare providers to improve efficiency and to use an integrated care approach. Transition programs are being used to achieve goals. Transition of care in the context of HF management refers to individual interventions and programs with multiple activities that are designed to improve shifts or transitions from one setting to the next, most often from hospital to home. As transitional care programs become the new normal for patients with chronic HF, it is important to understand the current state of the science of transitional care, as discussed in the available research literature. Of transitional care reports, there was much heterogeneity in research designs, methods, study aims, and program targets, or they were not well described. Often, programs used bundled interventions, making it difficult to discuss the efficiency and effectiveness of specific interventions. Thus, further HF transition care research is needed to ensure best practices related to economically and clinically effective and feasible transition interventions that can be broadly applicable. This statement provides an overview of the complexity of HF management and includes patient, hospital, and healthcare provider barriers to understanding end points that best reflect clinical benefits and to achieving optimal clinical outcomes. The statement describes transitional care interventions and outcomes and discusses implications and recommendations for research and clinical practice to enhance patient-centered outcomes.
Collapse
|
Journal Article |
10 |
190 |
23
|
Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, Jessup M, Kosiborod M, Pritchett AM, Ramasubbu K, Rosendorff C, Yancy C. Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2016; 134:e535-e578. [DOI: 10.1161/cir.0000000000000450] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
9 |
182 |
24
|
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2020; 76:3022-3055. [PMID: 33229115 DOI: 10.1016/j.jacc.2020.08.044] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM This executive summary of the hypertrophic cardiomyopathy clinical practice guideline provides recommendations and algorithms for clinicians to diagnose and manage hypertrophic cardiomyopathy in adult and pediatric patients as well as supporting documentation to encourage their use. METHODS A comprehensive literature search was conducted from January 1, 2010, to April 30, 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. STRUCTURE Many recommendations from the earlier hypertrophic cardiomyopathy guidelines have been updated with new evidence or a better understanding of earlier evidence. This summary operationalizes the recommendations from the full guideline and presents a combination of diagnostic work-up, genetic and family screening, risk stratification approaches, lifestyle modifications, surgical and catheter interventions, and medications that constitute components of guideline directed medical therapy. For both guideline-directed medical therapy and other recommended drug treatment regimens, the reader is advised to follow dosing, contraindications and drug-drug interactions based on product insert materials.
Collapse
|
Practice Guideline |
5 |
173 |
25
|
Kittleson MM, Panjrath GS, Amancherla K, Davis LL, Deswal A, Dixon DL, Januzzi JL, Yancy CW. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2023; 81:1835-1878. [PMID: 37137593 DOI: 10.1016/j.jacc.2023.03.393] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
Practice Guideline |
2 |
169 |