1
|
Abstract
The polymerization dynamics of microtubules are central to their biological functions. Polymerization dynamics allow microtubules to adopt spatial arrangements that can change rapidly in response to cellular needs and, in some cases, to perform mechanical work. Microtubules utilize the energy of GTP hydrolysis to fuel a unique polymerization mechanism termed dynamic instability. In this review, we first describe progress toward understanding the mechanism of dynamic instability of pure tubulin and then discuss the function and regulation of microtubule dynamic instability in living cells.
Collapse
|
Review |
27 |
1835 |
2
|
Abstract
Using in vitro assays with purified proteins, we show that XKCM1 and XKIF2, two distinct members of the internal catalytic domain (Kin I) kinesin subfamily, catalytically destabilize microtubules using a novel mechanism. Both XKCM1 and XKIF2 influence microtubule stability by targeting directly to microtubule ends where they induce a destabilizing conformational change. ATP hydrolysis recycles XKCM1/XKIF2 for multiple rounds of action by dissociating a XKCM1/ XKIF2-tubulin dimer complex released upon microtubule depolymerization. These results establish Kin I kinesins as microtubule-destabilizing enzymes, distinguish them mechanistically from kinesin superfamily members that use ATP hydrolysis to translocate along microtubules, and have important implications for the regulation of microtubule dynamics and for the intracellular functions and evolution of the kinesin superfamily.
Collapse
|
|
26 |
546 |
3
|
Walczak CE, Mitchison TJ, Desai A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 1996; 84:37-47. [PMID: 8548824 DOI: 10.1016/s0092-8674(00)80991-5] [Citation(s) in RCA: 458] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We isolated a cDNA clone encoding a kinesin-related protein, which we named XKCM1. Antibodies to XKCM1 stain mitotic centromeres and spindle poles. Immunodepletion and antibody addition experiments in an in vitro spindle assembly assay show that XKCM1 is required for both establishment and maintenance of mitotic spindles. The structures that form in the absence of XKCM1 contain abnormally long microtubules. This long microtubule defect can be rescued by the addition of purified XKCM1 protein. Analysis of microtubule dynamics in a clarified mitotic extract reveals that loss of XKCM1 function causes a 4-fold suppression in the catastrophe frequency. XKCM1 thus exhibits a novel activity for a kinesin-related protein by promoting microtubule depolymerization during mitotic spindle assembly.
Collapse
|
|
29 |
458 |
4
|
Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, Jones SE, Wadler S, Desai A, Vogel C, Speyer J, Mittelman A, Reddy S, Pendergrass K, Velez-Garcia E, Ewer MS, Bianchine JR, Gams RA. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 1997; 15:1318-32. [PMID: 9193323 DOI: 10.1200/jco.1997.15.4.1318] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To determine the cardioprotective effect of dexrazoxane (DZR) used in a doxorubicin-based combination therapy in advanced breast cancer. PATIENTS AND METHODS Between November 1988 and January 1991, 534 patients with advanced breast cancer were randomized to two multicenter, double-blind studies (088001 and 088006). Patients received fluorouracil, doxorubicin, and cyclophosphamide (FAC) with either DZR (DZR-to-doxorubicin ratio, 10:1) or placebo (PLA) every 3 weeks and were monitored with serial multiplegated acquisition (MUGA) scans. RESULTS The hazards ratio (HR) of PLA to DZR for a cardiac event, which was predefined ejection fraction changes or congestive heart failure (CHF), was 2.63 (95% confidence interval [CI], 1.61 to 4.27; P < .001) for 088001 and 2.00 (95% CI, 1.01 to 3.96; P = .038) for 088006. The objective response rates for 088001 were 46.8% for DZR and 60.5% for PLA, a difference of 14% (95% CI, -25% to -2%; P = .019), and for 088006 were 53.7% for DZR and 49.3% for PLA, a difference of 4% (95% CI, -13% to 22%; P = .63). Time to progression and survival were not significantly different between treatment arms in either study. Toxicities on the DZR arms included lower granulocyte and platelet counts at nadir (P = .009 and P = .004, respectively) and more pain on injection (P = .001), with no difference in the rates of fever, infection, or hemorrhage. CONCLUSION DZR had a significant cardioprotective effect as measured by noninvasive testing and clinical CHF. One of the two studies (088001) showed a lower response rate with DZR, but time to progression and survival were not significantly different. DZR is the first agent shown to reduce cardiotoxicity from doxorubicin.
Collapse
|
Clinical Trial |
28 |
428 |
5
|
Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 2004; 146:105-19. [PMID: 14643464 DOI: 10.1016/j.bbr.2003.09.020] [Citation(s) in RCA: 405] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is becoming increasingly apparent that multiple functions of the frontal cortex such as inhibitory control and executive attention are likely sustained by its functionally distinct and interacting sub-regions but the precise localization of dissociable executive processes has proved difficult and controversial. In the present series of studies, we investigated the behavioural effects of bilateral excitotoxic lesions of different regions of the rat neocortex in the 5-choice serial reaction time task. Whereas lesions of the dorsal anterior cingulate cortex (ACC) impaired performance of the task as revealed by a reduction in discriminative accuracy, lesions made to distinct ventral regions of the frontal cortex showed selective deficits in inhibitory measures of control. Specifically, the infralimbic lesion produced increases in premature responding that was accompanied by fast response latencies. By comparison, the orbitofrontal lesion showed perseverative tendencies particularly when the inter-trial interval was made long and unpredictable, a challenge that would normally promote premature responding instead. These different behavioural effects following dorsal and ventral lesions of the rodent frontal cortex signifies the integrity of the frontal cortex in multiple executive mechanisms that work independently and complementarily by which performance is optimized. Furthermore, these data provide new insights into the functional organization of the rodent frontal cortex with a particular emphasis on localization of function.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
405 |
6
|
Abstract
In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.
Collapse
|
Review |
24 |
375 |
7
|
Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 2001; 153:1209-26. [PMID: 11402065 PMCID: PMC2192036 DOI: 10.1083/jcb.153.6.1209] [Citation(s) in RCA: 346] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In all eukaryotes, segregation of mitotic chromosomes requires their interaction with spindle microtubules. To dissect this interaction, we use live and fixed assays in the one-cell stage Caenorhabditis elegans embryo. We compare the consequences of depleting homologues of the centromeric histone CENP-A, the kinetochore structural component CENP-C, and the chromosomal passenger protein INCENP. Depletion of either CeCENP-A or CeCENP-C results in an identical "kinetochore null" phenotype, characterized by complete failure of mitotic chromosome segregation as well as failure to recruit other kinetochore components and to assemble a mechanically stable spindle. The similarity of their depletion phenotypes, combined with a requirement for CeCENP-A to localize CeCENP-C but not vice versa, suggest that a key step in kinetochore assembly is the recruitment of CENP-C by CENP-A-containing chromatin. Parallel analysis of CeINCENP-depleted embryos revealed mitotic chromosome segregation defects different from those observed in the absence of CeCENP-A/C. Defects are observed before and during anaphase, but the chromatin separates into two equivalently sized masses. Mechanically stable spindles assemble that show defects later in anaphase and telophase. Furthermore, kinetochore assembly and the recruitment of CeINCENP to chromosomes are independent. These results suggest distinct roles for the kinetochore and the chromosomal passengers in mitotic chromosome segregation.
Collapse
|
research-article |
24 |
346 |
8
|
Waterman-Storer CM, Desai A, Bulinski JC, Salmon ED. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 1998; 8:1227-30. [PMID: 9811609 DOI: 10.1016/s0960-9822(07)00515-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence microscopic visualization of fluorophore-conjugated proteins that have been microinjected or expressed in living cells and have incorporated into cellular structures has yielded much information about protein localization and dynamics [1]. This approach has, however, been limited by high background fluorescence and the difficulty of detecting movement of fluorescent structures because of uniform labeling. These problems have been partially alleviated by the use of more cumbersome methods such as three-dimensional confocal microscopy, laser photobleaching and photoactivation of fluorescence [2]. We report here a method called fluorescent speckle microscopy (FSM) that uses a very low concentration of fluorescent subunits, conventional wide-field fluorescence light microscopy and digital imaging with a low-noise, cooled charged coupled device (CCD) camera. A unique feature of this method is that it reveals the assembly dynamics, movement and turnover of protein assemblies throughout the image field of view at diffraction-limited resolution. We found that FSM also significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells. Our initial applications include the measurement of microtubule movements in mitotic spindles and actin retrograde flow in migrating cells.
Collapse
|
|
27 |
246 |
9
|
Grivas P, Khaki AR, Wise-Draper TM, French B, Hennessy C, Hsu CY, Shyr Y, Li X, Choueiri TK, Painter CA, Peters S, Rini BI, Thompson MA, Mishra S, Rivera DR, Acoba JD, Abidi MZ, Bakouny Z, Bashir B, Bekaii-Saab T, Berg S, Bernicker EH, Bilen MA, Bindal P, Bishnoi R, Bouganim N, Bowles DW, Cabal A, Caimi PF, Chism DD, Crowell J, Curran C, Desai A, Dixon B, Doroshow DB, Durbin EB, Elkrief A, Farmakiotis D, Fazio A, Fecher LA, Flora DB, Friese CR, Fu J, Gadgeel SM, Galsky MD, Gill DM, Glover MJ, Goyal S, Grover P, Gulati S, Gupta S, Halabi S, Halfdanarson TR, Halmos B, Hausrath DJ, Hawley JE, Hsu E, Huynh-Le M, Hwang C, Jani C, Jayaraj A, Johnson DB, Kasi A, Khan H, Koshkin VS, Kuderer NM, Kwon DH, Lammers PE, Li A, Loaiza-Bonilla A, Low CA, Lustberg MB, Lyman GH, McKay RR, McNair C, Menon H, Mesa RA, Mico V, Mundt D, Nagaraj G, Nakasone ES, Nakayama J, Nizam A, Nock NL, Park C, Patel JM, Patel KG, Peddi P, Pennell NA, Piper-Vallillo AJ, Puc M, Ravindranathan D, Reeves ME, Reuben DY, Rosenstein L, Rosovsky RP, Rubinstein SM, Salazar M, Schmidt AL, Schwartz GK, Shah MR, Shah SA, Shah C, Shaya JA, Singh SRK, Smits M, Stockerl-Goldstein KE, Stover DG, Streckfuss M, Subbiah S, Tachiki L, Tadesse E, Thakkar A, Tucker MD, Verma AK, Vinh DC, Weiss M, Wu JT, Wulff-Burchfield E, Xie Z, Yu PP, Zhang T, Zhou AY, Zhu H, Zubiri L, Shah DP, Warner JL, Lopes G. Association of clinical factors and recent anticancer therapy with COVID-19 severity among patients with cancer: a report from the COVID-19 and Cancer Consortium. Ann Oncol 2021; 32:787-800. [PMID: 33746047 PMCID: PMC7972830 DOI: 10.1016/j.annonc.2021.02.024] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Patients with cancer may be at high risk of adverse outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We analyzed a cohort of patients with cancer and coronavirus 2019 (COVID-19) reported to the COVID-19 and Cancer Consortium (CCC19) to identify prognostic clinical factors, including laboratory measurements and anticancer therapies. PATIENTS AND METHODS Patients with active or historical cancer and a laboratory-confirmed SARS-CoV-2 diagnosis recorded between 17 March and 18 November 2020 were included. The primary outcome was COVID-19 severity measured on an ordinal scale (uncomplicated, hospitalized, admitted to intensive care unit, mechanically ventilated, died within 30 days). Multivariable regression models included demographics, cancer status, anticancer therapy and timing, COVID-19-directed therapies, and laboratory measurements (among hospitalized patients). RESULTS A total of 4966 patients were included (median age 66 years, 51% female, 50% non-Hispanic white); 2872 (58%) were hospitalized and 695 (14%) died; 61% had cancer that was present, diagnosed, or treated within the year prior to COVID-19 diagnosis. Older age, male sex, obesity, cardiovascular and pulmonary comorbidities, renal disease, diabetes mellitus, non-Hispanic black race, Hispanic ethnicity, worse Eastern Cooperative Oncology Group performance status, recent cytotoxic chemotherapy, and hematologic malignancy were associated with higher COVID-19 severity. Among hospitalized patients, low or high absolute lymphocyte count; high absolute neutrophil count; low platelet count; abnormal creatinine; troponin; lactate dehydrogenase; and C-reactive protein were associated with higher COVID-19 severity. Patients diagnosed early in the COVID-19 pandemic (January-April 2020) had worse outcomes than those diagnosed later. Specific anticancer therapies (e.g. R-CHOP, platinum combined with etoposide, and DNA methyltransferase inhibitors) were associated with high 30-day all-cause mortality. CONCLUSIONS Clinical factors (e.g. older age, hematological malignancy, recent chemotherapy) and laboratory measurements were associated with poor outcomes among patients with cancer and COVID-19. Although further studies are needed, caution may be required in utilizing particular anticancer therapies. CLINICAL TRIAL IDENTIFIER NCT04354701.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
224 |
10
|
Desai A, Murray A, Mitchison TJ, Walczak CE. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol 1999; 61:385-412. [PMID: 9891325 DOI: 10.1016/s0091-679x(08)61991-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
Review |
26 |
220 |
11
|
Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorák J. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 1996; 143:983-99. [PMID: 8725244 PMCID: PMC1207354 DOI: 10.1093/genetics/143.2.983] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci.
Collapse
|
research-article |
29 |
194 |
12
|
Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA. Reconstitution of physiological microtubule dynamics using purified components. Science 2001; 294:1340-3. [PMID: 11701928 DOI: 10.1126/science.1064629] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microtubules are dynamically unstable polymers that interconvert stochastically between polymerization and depolymerization. Compared with microtubules assembled from purified tubulin, microtubules in a physiological environment polymerize faster and transit more frequently between polymerization and depolymerization. These dynamic properties are essential for the functions of the microtubule cytoskeleton during diverse cellular processes. Here, we have reconstituted the essential features of physiological microtubule dynamics by mixing three purified components: tubulin; a microtubule-stabilizing protein, XMAP215; and a microtubule-destabilizing kinesin, XKCM1. This represents an essential first step in the reconstitution of complex microtubule dynamics-dependent processes, such as chromosome segregation, from purified components.
Collapse
|
|
24 |
188 |
13
|
Stacchiotti S, Gronchi A, Fossati P, Akiyama T, Alapetite C, Baumann M, Blay JY, Bolle S, Boriani S, Bruzzi P, Capanna R, Caraceni A, Casadei R, Colia V, Debus J, Delaney T, Desai A, Dileo P, Dijkstra S, Doglietto F, Flanagan A, Froelich S, Gardner PA, Gelderblom H, Gokaslan ZL, Haas R, Heery C, Hindi N, Hohenberger P, Hornicek F, Imai R, Jeys L, Jones RL, Kasper B, Kawai A, Krengli M, Leithner A, Logowska I, Martin Broto J, Mazzatenta D, Morosi C, Nicolai P, Norum OJ, Patel S, Penel N, Picci P, Pilotti S, Radaelli S, Ricchini F, Rutkowski P, Scheipl S, Sen C, Tamborini E, Thornton KA, Timmermann B, Torri V, Tunn PU, Uhl M, Yamada Y, Weber DC, Vanel D, Varga PP, Vleggeert-Lankamp CLA, Casali PG, Sommer J. Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol 2018; 28:1230-1242. [PMID: 28184416 PMCID: PMC5452071 DOI: 10.1093/annonc/mdx054] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chordomas are rare, malignant bone tumors of the skull-base and axial skeleton. Until recently, there was no consensus among experts regarding appropriate clinical management of chordoma, resulting in inconsistent care and suboptimal outcomes for many patients. To address this shortcoming, the European Society of Medical Oncology (ESMO) and the Chordoma Foundation, the global chordoma patient advocacy group, convened a multi-disciplinary group of chordoma specialists to define by consensus evidence-based best practices for the optimal approach to chordoma. In January 2015, the first recommendations of this group were published, covering the management of primary and metastatic chordomas. Additional evidence and further discussion were needed to develop recommendations about the management of local-regional failures. Thus, ESMO and CF convened a second consensus group meeting in November 2015 to address the treatment of locally relapsed chordoma. This meeting involved over 60 specialists from Europe, the United States and Japan with expertise in treatment of patients with chordoma. The consensus achieved during that meeting is the subject of the present publication and complements the recommendations of the first position paper.
Collapse
|
Review |
7 |
155 |
14
|
Licklider L, Wang XQ, Desai A, Tai YC, Lee TD. A micromachined chip-based electrospray source for mass spectrometry. Anal Chem 2000; 72:367-75. [PMID: 10658332 DOI: 10.1021/ac990967p] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A micromachining process is described for fabricating a mass spectrometry electrospray source on a silicon chip. The process utilizes polymer (parylene) layers to form a system of chambers, filters, channels, and hollow needle structures (electrospray emitters) that extend more than a millimeter beyond the edge of the silicon substrate. The use of photoresist as the sacrificial layer facilitates the creation of long channels. Access to the channel structures on the chip is through a port etched through the silicon substrate that also serves as a sample reservoir. A reusable chip holder consisting of two plastic plates and an elastomer gasket provides the means to mount the chip in front of the mass spectrometer inlet and make electrical and gas connections. The electrospray emitters have tapered tips with 5 microns x 10 microns rectangular openings. The shape of the tip can be varied depending on the shape of the mask used to protect the parylene structures during the final plasma etch. The parylene emitters are physically robust and require only a high electric field to achieve stable electrospray operation over a period of a few hours. Direct comparisons with conventional glass or fused silica emitters indicated very similar performance with respect to signal strength and stability, spectral quality, and endurance. The automated MS/MS analysis of a mixture of tryptic peptides was no more difficult and yielded nearly identical results as the analysis of the same sample using a conventional nanospray device. This work demonstrates that an efficient electrospray interface to mass spectrometry can be integrated with other on-chip structures and mass-produced using a batch process.
Collapse
|
|
25 |
152 |
15
|
Cheeseman IM, Brew C, Wolyniak M, Desai A, Anderson S, Muster N, Yates JR, Huffaker TC, Drubin DG, Barnes G. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J Cell Biol 2001; 155:1137-45. [PMID: 11756468 PMCID: PMC2199314 DOI: 10.1083/jcb.200109063] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dam1p, Duo1p, and Dad1p can associate with each other physically and are required for both spindle integrity and kinetochore function in budding yeast. Here, we present our purification from yeast extracts of an approximately 245 kD complex containing Dam1p, Duo1p, and Dad1p and Spc19p, Spc34p, and the previously uncharacterized proteins Dad2p and Ask1p. This Dam1p complex appears to be regulated through the phosphorylation of multiple subunits with at least one phosphorylation event changing during the cell cycle. We also find that purified Dam1p complex binds directly to microtubules in vitro with an affinity of approximately 0.5 microM. To demonstrate that subunits of the Dam1p complex are functionally important for mitosis in vivo, we localized Spc19-green fluorescent protein (GFP), Spc34-GFP, Dad2-GFP, and Ask1-GFP to the mitotic spindle and to kinetochores and generated temperature-sensitive mutants of DAD2 and ASK1. These and other analyses implicate the four newly identified subunits and the Dam1p complex as a whole in outer kinetochore function where they are well positioned to facilitate the association of chromosomes with spindle microtubules.
Collapse
|
research-article |
24 |
151 |
16
|
Montesinos MC, Yap JS, Desai A, Posadas I, McCrary CT, Cronstein BN. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. ARTHRITIS AND RHEUMATISM 2000; 43:656-63. [PMID: 10728760 DOI: 10.1002/1529-0131(200003)43:3<656::aid-anr23>3.0.co;2-h] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Weekly low-dose methotrexate (MTX) remains the mainstay of second-line therapy for rheumatoid arthritis (RA). We have previously reported that adenosine, acting at specific receptors on inflammatory cells, mediates the antiinflammatory effects of MTX in both in vitro and in vivo models of acute inflammation, but the mechanism by which MTX suppresses the chronic inflammation of arthritis remains controversial. The present study was undertaken to further investigate the means by which adenosine mediates the antiinflammatory effects of MTX. METHODS The effects of 2 nonselective adenosine receptor antagonists, theophylline and caffeine, were examined, using the rat adjuvant arthritis model of RA. These agents were given alone and in conjunction with MTX, and arthritis severity was assessed clinically, radiologically, and histologically. Since rodent adenosine A3 receptors are not blocked by theophylline, selective A1, A2A, and A2B receptor antagonists were tested as well. RESULTS Control animals developed severe arthritis, which was markedly attenuated by weekly treatment with MTX (0.75 mg/kg/week). Neither theophylline alone nor caffeine alone (each at 10 mg/kg/day) significantly affected the severity of the arthritis, but both agents markedly reversed the effect of MTX as measured by a severity index, hindpaw swelling, and hindpaw ankylosis. Radiographic and histologic analyses confirmed these observations. Neither A1, A2A, nor A2B receptor antagonists affected the capacity of MTX to ameliorate inflammation in adjuvant arthritis. CONCLUSION These results provide strong evidence that adenosine mediates the antiinflammatory effects of MTX in this model of RA. Moreover, the findings suggest that abstinence from caffeine, a ubiquitous food additive and medication, may enhance the therapeutic effects of MTX in RA.
Collapse
|
|
25 |
138 |
17
|
Desai A, Maddox PS, Mitchison TJ, Salmon ED. Anaphase A chromosome movement and poleward spindle microtubule flux occur At similar rates in Xenopus extract spindles. J Cell Biol 1998; 141:703-13. [PMID: 9566970 PMCID: PMC2132746 DOI: 10.1083/jcb.141.3.703] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1997] [Revised: 03/10/1998] [Indexed: 02/07/2023] Open
Abstract
We have used local fluorescence photoactivation to mark the lattice of spindle microtubules during anaphase A in Xenopus extract spindles. We find that both poleward spindle microtubule flux and anaphase A chromosome movement occur at similar rates ( approximately 2 microm/min). This result suggests that poleward microtubule flux, coupled to microtubule depolymerization near the spindle poles, is the predominant mechanism for anaphase A in Xenopus egg extracts. In contrast, in vertebrate somatic cells a "Pacman" kinetochore mechanism, coupled to microtubule depolymerization near the kinetochore, predominates during anaphase A. Consistent with the conclusion from fluorescence photoactivation analysis, both anaphase A chromosome movement and poleward spindle microtubule flux respond similarly to pharmacological perturbations in Xenopus extracts. Furthermore, the pharmacological profile of anaphase A in Xenopus extracts differs from the previously established profile for anaphase A in vertebrate somatic cells. The difference between these profiles is consistent with poleward microtubule flux playing the predominant role in anaphase chromosome movement in Xenopus extracts, but not in vertebrate somatic cells. We discuss the possible biological implications of the existence of two distinct anaphase A mechanisms and their differential contributions to poleward chromosome movement in different cell types.
Collapse
|
research-article |
27 |
132 |
18
|
Mitchison TJ, Maddox P, Gaetz J, Groen A, Shirasu M, Desai A, Salmon ED, Kapoor TM. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol Biol Cell 2005; 16:3064-76. [PMID: 15788560 PMCID: PMC1142448 DOI: 10.1091/mbc.e05-02-0174] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 03/14/2005] [Indexed: 11/11/2022] Open
Abstract
Metaphase spindles assemble to a steady state in length by mechanisms that involve microtubule dynamics and motor proteins, but they are incompletely understood. We found that Xenopus extract spindles recapitulate the length of egg meiosis II spindles, by using mechanisms intrinsic to the spindle. To probe these mechanisms, we perturbed microtubule polymerization dynamics and opposed motor proteins and measured effects on spindle morphology and dynamics. Microtubules were stabilized by hexylene glycol and inhibition of the catastrophe factor mitotic centromere-associated kinesin (MCAK) (a kinesin 13, previously called XKCM) and destabilized by depolymerizing drugs. The opposed motors Eg5 and dynein were inhibited separately and together. Our results are consistent with important roles for polymerization dynamics in regulating spindle length, and for opposed motors in regulating the relative stability of bipolar versus monopolar organization. The response to microtubule destabilization suggests that an unidentified tensile element acts in parallel with these conventional factors, generating spindle shortening force.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
128 |
19
|
Bonvalot S, Desai A, Coppola S, Le Péchoux C, Terrier P, Dômont J, Le Cesne A. The treatment of desmoid tumors: a stepwise clinical approach. Ann Oncol 2012; 23 Suppl 10:x158-66. [DOI: 10.1093/annonc/mds298] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
13 |
120 |
20
|
Wang S, Martinez-Lage M, Sakai Y, Chawla S, Kim SG, Alonso-Basanta M, Lustig RA, Brem S, Mohan S, Wolf RL, Desai A, Poptani H. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI. AJNR Am J Neuroradiol 2015; 37:28-36. [PMID: 26450533 DOI: 10.3174/ajnr.a4474] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. MATERIALS AND METHODS Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. RESULTS Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. CONCLUSIONS DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
119 |
21
|
Chan ESL, Fernandez P, Merchant AA, Montesinos MC, Trzaska S, Desai A, Tung CF, Khoa DN, Pillinger MH, Reiss AB, Tomic-Canic M, Chen JF, Schwarzschild MA, Cronstein BN. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. ACTA ACUST UNITED AC 2006; 54:2632-42. [PMID: 16871530 DOI: 10.1002/art.21974] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Adenosine regulates inflammation and tissue repair, and adenosine A2A receptors promote wound healing by stimulating collagen matrix production. We therefore examined whether adenosine A2A receptors contribute to the pathogenesis of dermal fibrosis. METHODS Collagen production by primary human dermal fibroblasts was analyzed by real-time polymerase chain reaction, 14C-proline incorporation, and Sircol assay. Intracellular signaling for dermal collagen production was investigated using inhibitors of MEK-1 and by demonstration of ERK phosphorylation. In vivo effects were studied in a bleomycin-induced dermal fibrosis model using adenosine A2A receptor-deficient wild-type littermate mice, C57BL/6 mice, and mice treated with adenosine A2A receptor antagonist. Morphometric features and levels of hydroxyproline were determined as measures of dermal fibrosis. RESULTS Adenosine A2A receptor occupancy promoted collagen production by primary human dermal fibroblasts, which was blocked by adenosine A2A, but not A1 or A2B, receptor antagonism. Adenosine A2A receptor ligation stimulated ERK phosphorylation, and A2A receptor-mediated collagen production by dermal fibroblasts was blocked by MEK-1 inhibitors. Adenosine A2A receptor-deficient and A2A receptor antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis. CONCLUSION These results demonstrate that adenosine A2A receptors play an active role in the pathogenesis of dermal fibrosis and suggest a novel therapeutic target in the treatment and prevention of dermal fibrosis in diseases such as scleroderma.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Collagen/genetics
- Collagen/metabolism
- Dermis/drug effects
- Dermis/metabolism
- Dermis/pathology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis/metabolism
- Fibrosis/pathology
- Fibrosis/prevention & control
- Gene Expression
- Humans
- Hydroxyproline/metabolism
- MAP Kinase Kinase 1/antagonists & inhibitors
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/metabolism
- Receptor, Adenosine A2A/deficiency
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Scleroderma, Diffuse/chemically induced
- Scleroderma, Diffuse/metabolism
- Scleroderma, Diffuse/pathology
- Scleroderma, Diffuse/prevention & control
- Triazines/therapeutic use
- Triazoles/therapeutic use
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
106 |
22
|
Chandra PS, Ravi V, Desai A, Subbakrishna DK. Anxiety and depression among HIV-infected heterosexuals--a report from India. J Psychosom Res 1998; 45:401-9. [PMID: 9835233 DOI: 10.1016/s0022-3999(98)00028-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the study was to study factors related to anxiety, depression, and suicidal ideation among HIV-seropositive heterosexuals soon after being tested for their HIV status for the first time. Anxiety, depression, and suicidal ideation were assessed among 51 HIV-seropositive heterosexual men and women with various stages of HIV infection. All assessments were done between 4 and 6 weeks after revelation of positive serostatus. Psychosocial variables such as quality of family relationships and substance use and sociodemographic details such as gender, income, education, and residence were studied for their association with psychiatric morbidity. Illness details studied for their association with psychiatric morbidity included stage of HIV infection, spouse's HIV status, presence of physical illness, and pain. Depression was present in 40% and anxiety in 36% of the sample. Serious suicidal intent was seen in 14%. Multiple regression analysis indicated that presence of pain, concurrent alcohol abuse, poor family relations, and presence of AIDS in the spouse were significant factors associated with depression, anxiety, and suicidal ideation.
Collapse
|
|
27 |
95 |
23
|
Swann PG, Casanova RA, Desai A, Frauenhoff MM, Urbancic M, Slomczynska U, Hopfinger AJ, Le Breton GC, Venton DL. Nonspecific protease-catalyzed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 2000; 40:617-25. [PMID: 9140201 DOI: 10.1002/(sici)1097-0282(1996)40:6<617::aid-bip3>3.0.co;2-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We sought to develop a peptide library in solution and dynamically screen this library for peptides that would bind to macromolecules of interest. Peptide diversity was achieved in an initial stock solution of peptides by using proteases under conditions in which both hydrolysis and synthesis occurred. As an example, a simple reaction containing YGG, FL and thermolysin resulted in the synthesis of YGGFL as well as many other undefined products. When low molecular weight products of a reaction containing VA, AL, and thermolysin were subsequently exposed to dipeptidase, 7 out of 9 potential dipeptides were observed. Incubation of protease with an hydrolysate of albumin and a radiolabeled peptide resulted in the radiolabel participating in reactions other than simple hydrolysis and, after 24 h, the specific activity of radiolabel was shown by high performance liquid chromatography to disperse to a level that would be necessary in the event of maximum theoretical diversity. When a binding macromolecule was exposed to this system, ligand production was amplified relative to reactions run in the absence of binding macromolecule. This protease-based peptide scrambling and binding system was utilized for the discovery of novel peptides that bind to fibrinogen.
Collapse
|
|
25 |
91 |
24
|
Desai A, Vyas T, Amiji M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J Pharm Sci 2008; 97:2745-56. [PMID: 17854074 DOI: 10.1002/jps.21182] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this study was to examine augmentation of therapeutic activity in human glioblastoma cells with combination of paclitaxel (PTX) and the apoptotic signaling molecule, C(6)-ceramide (CER), when administered in novel oil-in-water nanoemulsions. The nanoemulsions were formulated with pine-nut oil, which has high concentrations of essential polyunsaturated fatty acid (PUFA). Drug-containing nanoemulsions were characterized for particle size, surface charge, and the particle morphology was examined with transmission electron microscopy (TEM). Epi-fluorescent microscopy was used to analyze nanoemulsion-encapsulated rhodamine-labeled PTX and NBD-labeled CER uptake and distribution in U-118 human glioblastoma cells. Cell viability was assessed with the MTS (formazan) assay, while apoptotic activity of PTX and CER was evaluated with caspase-3/7 activation and flow cytometry. Nanoemulsion formulations with the oil droplet size of approximately 200 nm in diameter were prepared with PTX, CER, and combination of the two agents. When administered to U-118 cells, significant enhancement in cytotoxicity was observed with combination of PTX and CER as compared to administration of individual agents. The increase in cytotoxicity correlated with enhancement in apoptotic activity in cells treated with combination of PTX and CER. The results of these studies show that oil-in-water nanoemulsions can be designed with combination therapy for enhancement of cytotoxic effect in brain tumor cells. In addition, PTX and CER can be used together to augment therapeutic activity, especially in aggressive tumor models such as glioblastoma.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
87 |
25
|
Moss SR, Turner SL, Trout RC, White PJ, Hudson PJ, Desai A, Armesto M, Forrester NL, Gould EA. Molecular epidemiology of Rabbit haemorrhagic disease virus. J Gen Virol 2002; 83:2461-2467. [PMID: 12237428 DOI: 10.1099/0022-1317-83-10-2461] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Millions of domestic and wild European rabbits (Oryctolagus cuniculus) have died in Europe, Asia, Australia and New Zealand during the past 17 years following infection by Rabbit haemorrhagic disease virus (RHDV). This highly contagious and deadly disease was first identified in China in 1984. Epidemics of RHDV then radiated across Europe until the virus apparently appeared in Britain in 1992. However, this concept of radiation of a new and virulent virus from China is not entirely consistent with serological and molecular evidence. This study shows, using RT-PCR and nucleotide sequencing of RNA obtained from the serum of healthy rabbits stored at 4 degrees C for nearly 50 years, that, contrary to previous opinions, RHDV circulated as an apparently avirulent virus throughout Britain more than 50 years ago and more than 30 years before the disease itself was identified. Based on molecular phylogenetic analysis of British and European RHDV sequences, it is concluded that RHDV has almost certainly circulated harmlessly in Britain and Europe for centuries rather than decades. Moreover, analysis of partial capsid sequences did not reveal significant differences between RHDV isolates that came from either healthy rabbits or animals that had died with typical haemorrhagic disease. The high stability of RHDV RNA is also demonstrated by showing that it can be amplified and sequenced from rabbit bone marrow samples collected at least 7 weeks after the animal has died.
Collapse
|
|
23 |
85 |