1
|
Sachla AJ, Luo Y, Helmann JD. Manganese impairs the QoxABCD terminal oxidase leading to respiration-associated toxicity. Mol Microbiol 2021; 116:729-742. [PMID: 34097790 DOI: 10.1111/mmi.14767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Cell physiology relies on metalloenzymes and can be easily disrupted by imbalances in metal ion pools. Bacillus subtilis requires manganese for growth and has highly regulated mechanisms for import and efflux that help maintain homeostasis. Cells defective for manganese (Mn) efflux are highly sensitive to intoxication, but the processes impaired by Mn excess are often unknown. Here, we employed a forward genetics approach to identify pathways affected by manganese intoxication. Our results highlight a central role for the membrane-localized electron transport chain in metal intoxication during aerobic growth. In the presence of elevated manganese, there is an increased generation of reactive radical species associated with dysfunction of the major terminal oxidase, the cytochrome aa3 heme-copper menaquinol oxidase (QoxABCD). Intoxication is suppressed by diversion of menaquinol to alternative oxidases or by a mutation affecting heme A synthesis that is known to convert QoxABCD from an aa3 to a bo3 -type oxidase. Manganese sensitivity is also reduced by derepression of the MhqR regulon, which protects cells against reactive quinones. These results suggest that dysfunction of the cytochrome aa3 -type quinol oxidase contributes to metal-induced intoxication.
Collapse
|
Journal Article |
4 |
16 |
2
|
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front Cell Infect Microbiol 2014; 4:159. [PMID: 25414836 PMCID: PMC4220732 DOI: 10.3389/fcimb.2014.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
13 |
3
|
Sachla AJ, Helmann JD. Resource sharing between central metabolism and cell envelope synthesis. Curr Opin Microbiol 2021; 60:34-43. [PMID: 33581378 PMCID: PMC7988295 DOI: 10.1016/j.mib.2021.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Synthesis of the bacterial cell envelope requires a regulated partitioning of resources from central metabolism. Here, we consider the key metabolic junctions that provide the precursors needed to assemble the cell envelope. Peptidoglycan synthesis requires redirection of a glycolytic intermediate, fructose-6-phosphate, into aminosugar biosynthesis by the highly regulated branchpoint enzyme GlmS. MurA directs the downstream product, UDP-GlcNAc, specifically into peptidoglycan synthesis. Other shared resources required for cell envelope synthesis include the isoprenoid carrier lipid undecaprenyl phosphate and amino acids required for peptidoglycan cross-bridges. Assembly of the envelope requires a sharing of limited resources between competing cellular pathways and may additionally benefit from scavenging of metabolites released from neighboring cells or the formation of symbiotic relationships with a host.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
12 |
4
|
Zhao H, Sachla AJ, Helmann JD. Mutations of the Bacillus subtilis YidC1 (SpoIIIJ) insertase alleviate stress associated with σM-dependent membrane protein overproduction. PLoS Genet 2019; 15:e1008263. [PMID: 31626625 PMCID: PMC6827917 DOI: 10.1371/journal.pgen.1008263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
In Bacillus subtilis, the extracytoplasmic function σ factor σM regulates cell wall synthesis and is critical for intrinsic resistance to cell wall targeting antibiotics. The anti-σ factors YhdL and YhdK form a complex that restricts the basal activity of σM, and the absence of YhdL leads to runaway expression of the σM regulon and cell death. Here, we report that this lethality can be suppressed by gain-of-function mutations in yidC1 (spoIIIJ), which encodes the major YidC membrane protein insertase in B. subtilis. B. subtilis PY79 YidC1 (SpoIIIJ) contains a single amino acid substitution in a functionally important hydrophilic groove (Q140K), and this allele suppresses the lethality of high σM. Analysis of a library of YidC1 variants reveals that increased charge (+2 or +3) in the hydrophilic groove can compensate for high expression of the σM regulon. Derepression of the σM regulon induces secretion stress, oxidative stress and DNA damage responses, all of which can be alleviated by the YidC1Q140K substitution. We further show that the fitness defect caused by high σM activity is exacerbated in the absence of the SecDF protein translocase or σM-dependent induction of the Spx oxidative stress regulon. Conversely, cell growth is improved by mutation of specific σM-dependent promoters controlling operons encoding integral membrane proteins. Collectively, these results reveal how the σM regulon has evolved to up-regulate membrane-localized complexes involved in cell wall synthesis, and to simultaneously counter the resulting stresses imposed by regulon induction. Bacteria frequently produce antibiotics that inhibit the growth of competitors, and many naturally occurring antibiotics target cell wall synthesis. In Bacillus subtilis, the alternative σ factor σM is induced by cell wall antibiotics, and upregulates genes for peptidoglycan and cell envelope synthesis. However, dysregulation of the σM regulon, resulting from loss of the YhdL anti-σM protein, is lethal. We here identify charge variants of the YidC1 (SpoIIIJ) membrane protein insertase that suppress the lethal effects of high σM activity. Further analyses reveal that induction of the σM regulon leads to high level expression of membrane proteins that trigger envelope stress, and this stress is countered by specific genes in the σM regulon.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
11 |
5
|
Sachla AJ, Alfonso AJ, Helmann JD. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis. Microbiol Spectr 2021; 9:e0075421. [PMID: 34523974 PMCID: PMC8557940 DOI: 10.1128/spectrum.00754-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system from Streptococcus pyogenes has been widely deployed as a tool for bacterial strain construction. Conventional CRISPR-Cas9 editing strategies require design and molecular cloning of an appropriate guide RNA (gRNA) to target genome cleavage and a repair template for introduction of the desired site-specific genome modification. Here, we present a streamlined method that leverages the existing collection of nearly 4,000 Bacillus subtilis strains (the BKE collection) with individual genes replaced by an integrated erythromycin (erm) resistance cassette. A single plasmid (pAJS23) with a gRNA targeted to erm allows cleavage of the genome at any nonessential gene and at sites nearby to many essential genes. This plasmid can be engineered to include a repair template, or the repair template can be cotransformed with the plasmid as either a PCR product or genomic DNA. We demonstrate the utility of this system for generating gene replacements, site-specific mutations, modification of intergenic regions, and introduction of gene-reporter fusions. In sum, this strategy bypasses the need for gRNA design and allows the facile transfer of mutations and genetic constructions with no requirement for intermediate cloning steps. IMPORTANCE Bacillus subtilis is a well-characterized Gram-positive model organism and a popular platform for biotechnology. Although many different CRISPR-based genome editing strategies have been developed for B. subtilis, they generally involve the design and cloning of a specific guide RNA (gRNA) and repair template for each application. By targeting the erm resistance cassette with an anti-erm gRNA, genome editing can be directed to any of nearly 4,000 gene disruptants within the existing BKE collection of strains. Repair templates can be engineered as PCR products, or specific alleles and constructions can be transformed as chromosomal DNA, thereby bypassing the need for plasmid construction. The described method is rapid and facilitates a wide range of genome manipulations.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
11 |
6
|
Sachla AJ, Ouattara M, Romero E, Agniswamy J, Weber IT, Gadda G, Eichenbaum Z. In vitro heme biotransformation by the HupZ enzyme from Group A streptococcus. Biometals 2016; 29:593-609. [PMID: 27154580 DOI: 10.1007/s10534-016-9937-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/01/2016] [Indexed: 01/14/2023]
Abstract
In Group A streptococcus (GAS), the metallorepressor MtsR regulates iron homeostasis. Here we describe a new MtsR-repressed gene, which we named hupZ (heme utilization protein). A recombinant HupZ protein was purified bound to heme from Escherichia coli grown in the presence of 5-aminolevulinic acid and iron. HupZ specifically binds heme with stoichiometry of 1:1. The addition of NADPH to heme-bound HupZ (in the presence of cytochrome P450 reductase, NADPH-regeneration system and catalase) triggered progressive decrease of the HupZ Soret band and the appearance of an absorption peak at 660 nm that was resistance to hydrolytic conditions. No spectral changes were observed when ferredoxin and ferredoxin reductase were used as redox partners. Differential spectroscopy with myoglobin or with the ferrous chelator, ferrozine, confirmed that carbon monoxide and free iron are produced during the reaction. ApoHupZ was crystallized as a homodimer with a split β-barrel conformation in each monomer comprising six β strands and three α helices. This structure resembles the split β-barrel domain shared by the members of a recently described family of heme degrading enzymes. However, HupZ is smaller and lacks key residues found in the proteins of the latter group. Phylogenetic analysis places HupZ on a clade separated from those for previously described heme oxygenases. In summary, we have identified a new GAS enzyme-containing split β-barrel and capable of heme biotransformation in vitro; to the best of our knowledge, this is the first enzyme among Streptococcus species with such activity.
Collapse
|
Journal Article |
9 |
9 |
7
|
He B, Sachla AJ, Helmann JD. TerC proteins function during protein secretion to metalate exoenzymes. Nat Commun 2023; 14:6186. [PMID: 37794032 PMCID: PMC10550928 DOI: 10.1038/s41467-023-41896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
8 |
8
|
Traore ES, Li J, Chiura T, Geng J, Sachla AJ, Yoshimoto F, Eichenbaum Z, Davis I, Mak PJ, Liu A. Heme Binding to HupZ with a C-Terminal Tag from Group A Streptococcus. Molecules 2021; 26:549. [PMID: 33494451 PMCID: PMC7865249 DOI: 10.3390/molecules26030549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
HupZ is an expected heme degrading enzyme in the heme acquisition and utilization pathway in Group A Streptococcus. The isolated HupZ protein containing a C-terminal V5-His6 tag exhibits a weak heme degradation activity. Here, we revisited and characterized the HupZ-V5-His6 protein via biochemical, mutagenesis, protein quaternary structure, UV-vis, EPR, and resonance Raman spectroscopies. The results show that the ferric heme-protein complex did not display an expected ferric EPR signal and that heme binding to HupZ triggered the formation of higher oligomeric states. We found that heme binding to HupZ was an O2-dependent process. The single histidine residue in the HupZ sequence, His111, did not bind to the ferric heme, nor was it involved with the weak heme-degradation activity. Our results do not favor the heme oxygenase assignment because of the slow binding of heme and the newly discovered association of the weak heme degradation activity with the His6-tag. Altogether, the data suggest that the protein binds heme by its His6-tag, resulting in a heme-induced higher-order oligomeric structure and heme stacking. This work emphasizes the importance of considering exogenous tags when interpreting experimental observations during the study of heme utilization proteins.
Collapse
|
research-article |
4 |
7 |
9
|
Sachla AJ, Eichenbaum Z. The GAS PefCD exporter is a MDR system that confers resistance to heme and structurally diverse compounds. BMC Microbiol 2016; 16:68. [PMID: 27095127 PMCID: PMC4837585 DOI: 10.1186/s12866-016-0687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Abstract
Background Group A streptococcus (GAS) is the etiological agent of a variety of local and invasive infections as well as post-infection complications in humans. This β-hemolytic bacterium encounters environmental heme in vivo in a concentration that depends on the infection type and stage. While heme is a noxious molecule, the regulation of cellular heme levels and toxicity is underappreciated in GAS. We previously reported that heme induces three GAS genes that are similar to the pefRCD (porphyrin regulated efflux) genes from group B streptococcus. Here, we investigate the contributions of the GAS pef genes to heme management and physiology. Results In silico analysis revealed that the PefCD proteins entail a Class-1 ABC-type transporter with homology to selected MDR systems from Gram-positive bacteria. RT-PCR experiments confirmed that the pefRCD genes are transcribed to polycistronic mRNA and that a pefC insertion inactivation mutant lost the expression of both pefC and pefD genes. This mutant was hypersensitive to heme, exhibiting significant growth inhibition already in the presence of 1 μM heme. In addition, the pefC mutant was more sensitive to several drugs and nucleic acid dyes and demonstrated higher cellular accumulation of heme in comparison with the wild type and the complemented strains. Finally, the absence of the PefCD transporter potentiated the damaging effects of heme on GAS building blocks including lipids and DNA. Conclusion We show here that in GAS, the pefCD genes encode a multi-drug efflux system that allows the bacterium to circumvent the challenges imposed by labile heme. This is the first heme resistance machinery described in GAS.
Collapse
|
Journal Article |
9 |
6 |
10
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. RESEARCH SQUARE 2023:rs.3.rs-2860473. [PMID: 37292672 PMCID: PMC10246235 DOI: 10.21203/rs.3.rs-2860473/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
|
Preprint |
2 |
|
11
|
He B, Sachla AJ, Ruesewald SB, Kearns DB, Helmann JD. The TerC family metal chaperone MeeY enables surfactin export in Bacillus subtilis. J Bacteriol 2025:e0008825. [PMID: 40237484 DOI: 10.1128/jb.00088-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
TerC family proteins are widely conserved integral membrane proteins with functions related to metal transport. In Bacillus subtilis, the TerC proteins MeeF and MeeY play overlapping roles in the metalation of manganese-requiring membrane and extracellular enzymes. TerC proteins interact with the secretion translocon SecYEG and metalate proteins either during or after protein translocation. Here, we demonstrate that swarming motility is dependent on MeeY. This swarming defect can be complemented extracellularly and is correlated with a loss of surfactin. Surfactin export is mediated by SwrC, an RND family efflux pump previously shown to interact with MeeY in co-immunoprecipitation studies. The amendment of the growth medium with manganese has long been known to enhance surfactin production. We suggest a model in which surfactin export is enhanced by the MeeY-dependent metalation of the surfactin lipopeptide during export.IMPORTANCEBacillus subtilis produces surfactin, a powerful detergent-like compound that functions in intercellular communication, surface motility, and as a broad-spectrum antimicrobial agent. Production of surfactin, a cyclic lipopeptide, depends on a non-ribosomal peptide synthase followed by export by SwrC, a member of the resistance-nodulation-cell division (RND) family of export proteins. Here, we demonstrate that surfactin production additionally requires MeeY, a TerC family membrane protein that exports manganese ions to support the function of secreted and membrane metalloenzymes. We propose that MeeY interacts with SwrC to facilitate metal binding to the surfactin lipopeptide during export from the cell. These results may explain the long-appreciated role that divalent metal ions play in surfactin production during industrial fermentation.
Collapse
|
|
1 |
|
12
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536223. [PMID: 37090602 PMCID: PMC10120614 DOI: 10.1101/2023.04.10.536223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn 2+ -dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn 2+ -dependent membrane and extracellular enzymes.
Collapse
|
Preprint |
2 |
|
13
|
Shi H, Fu Y, Kodyte V, Andreas A, Sachla AJ, Miller K, Shrestha R, Helmann JD, Glasfeld A, Ahuja S. Structural basis for transcription activation through cooperative recruitment of MntR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601288. [PMID: 38979284 PMCID: PMC11230367 DOI: 10.1101/2024.06.28.601288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The manganese transport regulator (MntR) from B. subtilis is a dual regulatory protein that responds to heightened Mn 2+ availability in the cell by both repressing the expression of uptake transporters and activating the expression of efflux proteins. Recent work indicates that, in its role as an activator, MntR binds several sites upstream of the genes encoding Mn 2+ exporters, leading to a cooperative response to manganese. Here, we use cryo-EM to explore the molecular basis of gene activation by MntR and report a structure of four MntR dimers bound to four 18-base pair sites across an 84-base pair regulatory region of the mneP promoter. Our structures, along with solution studies including mass photometry and in vivo transcription assays, reveal that MntR dimers employ polar and non-polar contacts to bind cooperatively to an array of low-affinity DNA-binding sites. These results reveal the molecular basis for cooperativity in the activation of manganese efflux.
Collapse
|
Preprint |
1 |
|
14
|
Shi H, Fu Y, Kodyte V, Andreas A, Sachla AJ, Miller K, Shrestha R, Helmann JD, Glasfeld A, Ahuja S. Structural basis for transcription activation through cooperative recruitment of MntR. Nat Commun 2025; 16:2204. [PMID: 40044701 PMCID: PMC11882963 DOI: 10.1038/s41467-025-57412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Bacillus subtilis MntR is a dual regulatory protein that responds to heightened Mn2+ availability in the cell by both repressing the expression of uptake transporters and activating the expression of efflux proteins. Recent work indicates that, in its role as an activator, MntR binds several sites upstream of the genes encoding Mn2+ exporters, leading to a cooperative response to manganese. Here, we use cryo-EM to explore the molecular basis of gene activation by MntR and report a structure of four MntR dimers bound to four 18-base pair sites across an 84-base pair regulatory region of the mneP promoter. Our structures, along with solution studies including mass photometry and in vivo transcription assays, reveal that MntR dimers employ polar and non-polar contacts to bind cooperatively to an array of low-affinity DNA-binding sites. These results reveal the molecular basis for cooperativity in the activation of manganese efflux.
Collapse
|
research-article |
1 |
|
15
|
Sachla AJ, Soni V, Piñeros M, Luo Y, Im JJ, Rhee KY, Helmann JD. The Bacillus subtilis yqgC-sodA operon protects magnesium-dependent enzymes by supporting manganese efflux. J Bacteriol 2024; 206:e0005224. [PMID: 38819154 PMCID: PMC11332163 DOI: 10.1128/jb.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function, and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations, they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the YS deletion mutants results from distinct enzymatic vulnerabilities.IMPORTANCEBacteria require multiple trace metal ions for survival. Metal homeostasis relies on the tightly regulated expression of metal uptake, storage, and efflux proteins. Metal intoxication occurs when metal homeostasis is perturbed and often results from enzyme mis-metalation. In Bacillus subtilis, Mn-dependent superoxide dismutase (MnSOD) is the most abundant Mn-containing protein and is important for oxidative stress resistance. Here, we report novel roles for MnSOD and a co-regulated membrane protein, YqgC, in Mn homeostasis. Loss of both MnSOD and YqgC (but not the individual proteins) prevents the efficient expression of Mn efflux proteins and leads to a large-scale perturbation of the metabolome due to inhibition of Mg-dependent enzymes, including key chorismate-utilizing MST (menaquinone, siderophore, and tryptophan) family enzymes.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
16
|
Sachla AJ, Soni V, Piñeros M, Luo Y, Im JJ, Rhee KY, Helmann JD. The Bacillus subtilis yqgC-sodA operon protects magnesium-dependent enzymes by supporting manganese efflux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580342. [PMID: 38405924 PMCID: PMC10888875 DOI: 10.1101/2024.02.14.580342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the yqgC-sodA deletion mutants results from distinct enzymatic vulnerabilities.
Collapse
|
Preprint |
1 |
|
17
|
Shi H, Fu Y, Kodyte V, Andreas A, Sachla AJ, Miller K, Shrestha R, Helmann JD, Glasfeld A, Ahuja S. Structural basis for transcription activation through cooperative recruitment of MntR. RESEARCH SQUARE 2024:rs.3.rs-4657015. [PMID: 39070638 PMCID: PMC11275975 DOI: 10.21203/rs.3.rs-4657015/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The manganese transport regulator (MntR) from B. subtilis is a dual regulatory protein that responds to heightened Mn2+ availability in the cell by both repressing the expression of uptake transporters and activating the expression of efflux proteins. Recent work indicates that, in its role as an activator, MntR binds several sites upstream of the genes encoding Mn2+ exporters, leading to a cooperative response to manganese. Here, we use cryo-EM to explore the molecular basis of gene activation by MntR and report a structure of four MntR dimers bound to four 18-base pair sites across an 84-base pair regulatory region of the mneP promoter. Our structures, along with solution studies including mass photometry and in vivo transcription assays, reveal that MntR dimers employ polar and non-polar contacts to bind cooperatively to an array of low-affinity DNA-binding sites. These results reveal the molecular basis for cooperativity in the activation of manganese efflux.
Collapse
|
Preprint |
1 |
|