1
|
Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A. Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol 2015; 99:5373-5382. [PMID: 26003453 PMCID: PMC4464373 DOI: 10.1007/s00253-015-6650-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/30/2022]
Abstract
This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.
Collapse
|
Review |
10 |
129 |
2
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Effect of selenium on growth and antioxidative system of yeast cells. Mol Biol Rep 2019; 46:1797-1808. [PMID: 30734169 DOI: 10.1007/s11033-019-04630-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Selenium exhibits health-promoting properties in humans and animals. Therefore, the development of selenium-enriched dietary supplements has been growing worldwide. However, it may also exhibit toxicity at higher concentrations, causing increased oxidative stress. Different species of yeasts may exhibit different tolerances toward selenium. Therefore, in this study, we aimed to determine the effect of selenium on growth and on the antioxidative system in Candida utilis ATCC 9950 and Saccharomyces cerevisiae ATCC MYA-2200 yeast cells. The results of this study have demonstrated that high doses of selenium causes oxidative stress in yeasts, thereby increasing the process of lipid peroxidation. In addition, we obtained an increased level of GSSG from aqueous solutions of yeast biomass grown with selenium supplementation (40-60 mg/L). Increased levels of selenium in aqueous solutions resulted in an increase in the activity of antioxidant enzymes, including glutathione peroxidase and glutathione reductase. These results should encourage future research on the possibility of a thorough understanding of antioxidant system functioning in yeast cells.
Collapse
|
|
6 |
65 |
3
|
Bzducha-Wróbel A, Błażejak S, Kawarska A, Stasiak-Różańska L, Gientka I, Majewska E. Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules 2014; 19:20941-61. [PMID: 25517337 PMCID: PMC6271764 DOI: 10.3390/molecules191220941] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving), thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0) and Tris-HCl buffer (pH 8.0). The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter). This was confirmed by the highest ratio of solubilised material (approx. 64%–67%). The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3)/(1,6)-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains.
Collapse
|
Journal Article |
11 |
55 |
4
|
Kieliszek M, Kot AM, Bzducha-Wróbel A, BŁażejak S, Gientka I, Kurcz A. Biotechnological use of Candida yeasts in the food industry: A review. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
8 |
55 |
5
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells. Biol Trace Elem Res 2019; 187:316-327. [PMID: 29675568 PMCID: PMC6315055 DOI: 10.1007/s12011-018-1342-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Abstract
This article discusses the effect of selenium in aqueous solutions on aspects of lipid and amino acid metabolism in the cell biomass of Saccharomyces cerevisiae MYA-2200 and Candida utilis ATCC 9950 yeasts. The yeast biomass was obtained by using waste products (potato wastewater and glycerol). Selenium, at a dose of 20 mg/L of aqueous solution, affected the differentiation of cellular morphology. Yeast enriched with selenium was characterized by a large functional diversity in terms of protein and amino acid content. The protein content in the biomass of S. cerevisiae enriched with selenium (42.6%) decreased slightly as compared to that in the control sample without additional selenium supplementation (48.4%). Moreover, yeasts of both strains enriched with selenium contained a large amount of glutamic acid, aspartic acid, lysine, and leucine. Analysis of fatty acid profiles in S. cerevisiae yeast supplemented with selenium showed an increase in the unsaturated fatty acid content (e.g., C18:1). The presence of margaric acid (C17:0) and hexadecanoic acid (C17:1) was found in the C. utilis biomass enriched with selenium, in contrast to that of S. cerevisiae. These results indicate that selenium may induce lipid peroxidation, which consequently affects the loss of integrity of the cytoplasmic membrane. Yeast enriched with selenium with optimal amino acid and lipid composition can be used to prepare a novel formula of dietary supplements, which can be applied directly to various diets for both humans and animals.
Collapse
|
research-article |
6 |
53 |
6
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
|
Review |
4 |
43 |
7
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kurcz A. Effects of Selenium on Morphological Changes in Candida utilis ATCC 9950 Yeast Cells. Biol Trace Elem Res 2016; 169:387-393. [PMID: 26166197 PMCID: PMC4717171 DOI: 10.1007/s12011-015-0415-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023]
Abstract
This paper presents the results of microscopic examinations of the yeast cells cultured in yeast extract-peptone-dextrose (YPD) media supplemented with sodium selenite(IV). The analysis of the morphological changes in yeast cells aimed to determine whether the selected selenium doses and culturing time may affect this element accumulation in yeast cell structures in a form of inorganic or organic compounds, as a result of detoxification processes. The range of characteristic morphological changes in yeasts cultivated in experimental media with sodium selenite(IV) was observed, including cell shrinkage and cytoplasm thickening of the changes within vacuole structure. The processes of vacuole disintegration were observed in aging yeast cells in culturing medium, which may indicate the presence of so-called ghost cells lacking intracellular organelles The changes occurring in the morphology of yeasts cultured in media supplemented with sodium selenite were typical for stationary phase of yeast growth. From detailed microscopic observations, larger surface area of the cell (6.03 μm(2)) and yeast vacuole (2.17 μm(2)) were noticed after 24-h culturing in the medium with selenium of 20 mg Se(4+)/L. The coefficient of shape of the yeast cells cultured in media enriched with sodium selenite as well as in the control YPD medium ranged from 1.02 to 1.22. Elongation of cultivation time (up to 48 and 72 h) in the media supplemented with sodium selenite caused a reduction in the surface area of the yeast cell and vacuole due to detoxification processes.
Collapse
|
research-article |
9 |
37 |
8
|
Bzducha-Wróbel A, Błażejak S, Kieliszek M, Pobiega K, Falana K, Janowicz M. Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. J Biotechnol 2018; 281:1-10. [PMID: 29885339 DOI: 10.1016/j.jbiotec.2018.06.305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Changes in cell wall structure of four strains of Sacccharomyces cerevisiae species (brewer's, baker's and probiotic yeast) after culturing on deproteinated potato juice water (DPJW) with diverse addition of glycerol and different pH were investigated. It allowed to select conditions intensifying biosynthesis of β(1,3)/(1,6)-glucan and mannoproteins of cell walls of tested strains. Yeast cell wall structural polysaccharides show biological activity and technological usability in food industry but also decide about therapeutic properties of yeast biomass. The highest increase in the thickness of walls (by about 100%) and β-glucan layer (by about 120%) was stated after cultivation of S. cerevisiae R9 brewer's yeast in DPJW supplemented with 5 and 10% (w/v) of glycerol and pH 7.0 while S. cerevisiae var. boulardi PAN yeast synthesized by ab. 70% thicker β-glucan layer when the pH of growth medium was equal to 5.0. The cells of brewer's yeast (S. cerevisiae R9), probiotic (S. cerevisiae CNCM 1-745) and baker's (S. cerevisiae 102) intensified the ratio of mannoproteins in the structure of cell walls cultivated in mediums supplemented with above 15% of glycerol what point out the protective action of glycoprotein's under osmotic stress conditions. The study confirms at the first time the possibility of using agro-industrial waste in biosynthesis of functional polysaccharides of S. cerevisiae cell wall. It could be an new advantage in production of yeast biomass with therapeutic properties or β-glucan preparation as a novel food ingredient.
Collapse
|
Journal Article |
7 |
25 |
9
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:659750. [PMID: 26185592 PMCID: PMC4491405 DOI: 10.1155/2015/659750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 11/17/2022]
Abstract
Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa.
Collapse
|
research-article |
10 |
22 |
10
|
Bzducha-Wróbel A, Pobiega K, Błażejak S, Kieliszek M. The scale-up cultivation of Candida utilis in waste potato juice water with glycerol affects biomass and β(1,3)/(1,6)-glucan characteristic and yield. Appl Microbiol Biotechnol 2018; 102:9131-9145. [PMID: 30215128 PMCID: PMC6208972 DOI: 10.1007/s00253-018-9357-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/08/2022]
Abstract
New ideas on production of yeast origin β-glucan preparations for industrial application are attracting interest considering market development of that high-value functional polysaccharide. Sellecting an efficient yeast producer and designing culture conditions are a prerequisite for obtaining high yield of β-glucan. The aim of this study was to describe at the first time the influence of the mode of cultivation (shake-flasks and batch fermentation) and time of culture on characteristic and yield of biomass and β(1,3)/(1,6)-glucan preparations of Candida utilis ATCC 9950 after cultivation in medium based on waste potato juice water supplemented with 10% of glycerol. After shake-flask culture, the biomass was characterized by higher protein content (app. 26.5%) compared to 19% after batch fermentation while the cultivation on a biofermentor scale promoted polysaccharides biosynthesis. The highest output of purified β(1,3)/(1,6)-glucan preparation (5.3 gd.w./L), containing app. 85% of that polysaccharide, was found after 48 h cultivation in biofermentor. Batch fermentation promoted biosynthesis of alkali-insoluble β(1,3)/(1,6)-glucan fraction, decreasing the content of β(1,6)-glucan. The yield of β(1,3)/(1,6)-glucan synthesis was 0.063 (g/g glycerol), while the productivity of that polysaccharide reached 0.094 (g/L/h). Longer batch fermentation (72 h) resulted in reduction of production efficiency of β-glucan preparation under studied conditions. The results of the study provide a new efficient biotechnological solution to produce high-value β-glucan preparations of C. utilis origin based on valorization of agro-waste potato juice water with glycerol.
Collapse
|
Journal Article |
7 |
20 |
11
|
Kot AM, Gientka I, Bzducha-Wróbel A, Błażejak S, Kurcz A. Comparison of simple and rapid cell wall disruption methods for improving lipid extraction from yeast cells. J Microbiol Methods 2020; 176:105999. [PMID: 32659296 DOI: 10.1016/j.mimet.2020.105999] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022]
Abstract
The present study examined the effect of six disruption methods of the cell wall (acid hydrolysis, ultrasonication, osmotic shock, pasteurization, homogenization with zirconia balls, and freezing/defrosting) on the efficiency of lipid extraction from yeast cells and the composition of fatty acids. Acid hydrolysis and sonication led to a significant increase in lipid extraction from Cyberlindnera jadinii ATCC 9950 and Rhodotorula glutinis LOCKR13 yeast cells. The amount of lipids extracted in these conditions increased for C. jadinii from 12.46 (biomass not subjected to any pretreatment) to 20.37 and 19.53 g/100 gd.w. after the application of acid hydrolysis and sonication, respectively, and for R. glutinis strain from 13.95 to 21.20 and 17.22 g/100 gd.w., respectively, for the same methods. Initial sonication of biomass led to a significant reduction in the percentage of unsaturated fatty acids. The largest differences in fatty acid composition were found for the sample homogenized with zirconium balls. This process resulted in the degradation of both oleic acid and linolenic acid. The obtained results revealed that the method that significantly increases lipid extraction and does not change the composition of fatty acids is acid hydrolysis with hydrochloric acid. In addition, it is easy, cheap, does not require specialized equipment, and therefore can be implemented in any laboratory.
Collapse
|
Journal Article |
5 |
20 |
12
|
Gientka I, Bzducha-Wróbel A, Stasiak-Różańska L, Bednarska AA, Błażejak S. The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
|
9 |
19 |
13
|
Gientka I, Gadaszewska M, Błażejak S, Kieliszek M, Bzducha-Wróbel A, Stasiak-Różańska L, Kot AM. Evaluation of lipid biosynthesis ability by Rhodotorula and Sporobolomyces strains in medium with glycerol. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2742-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
9 |
19 |
14
|
Bzducha-Wróbel A, Bryła M, Gientka I, Błażejak S, Janowicz M. Candida utilis ATCC 9950 Cell Walls and β(1,3)/(1,6)-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap. Toxins (Basel) 2019; 11:E192. [PMID: 30935045 PMCID: PMC6521628 DOI: 10.3390/toxins11040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins are harmful contaminants of food and feed worldwide. Feed additives with the abilities to trap mycotoxins are considered substances which regulate toxin transfer from feed to tissue, reducing its absorption in animal digestive tract. Market analysis emphasizes growing interest of feed producers in mycotoxins binders obtained from yeast biomass. The aim of the study was to prescreen cell walls (CW) and β(1,3)/(1,6)-glucan (β-G) preparations isolated from Candida utilis ATCC 9950 cultivated on waste potato juice water with glycerol as adsorbents for aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2) and fumonisin B1 (FB1). The adsorption was studied in single concentration tests at pH 3.0 and 6.0 in the presence of 1% of the adsorbent and 500 ng/mL of individual toxin. Evaluated CW and β-G preparations had the potential to bind ZEN, OTA and AFB1 rather than DON, NIV, T-2 toxin and FB1. The highest percentage of adsorption (about 83%), adsorption capacity (approx. 41 µg/ g preparation) and distribution coefficient (458.7mL/g) was found for zearalenone when CW preparation was used under acidic conditions. Higher protein content in CW and smaller particles sizes of the formulation could influence more efficient binding of ZEN, OTA, DON and T-2 toxin at appropriate pH compared to purified β-G. Obtained results show the possibility to transform the waste potato juice water into valuable Candida utilis ATCC 9950 preparation with mycotoxins adsorption properties. Further research is important to improve the binding capacity of studied preparations by increasing the active surface of adsorption.
Collapse
|
research-article |
6 |
17 |
15
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
|
3 |
16 |
16
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Bzducha-Wróbel A, Synowiec A. Research on the ability of propionic acid and vitamin B12 biosynthesis by Propionibacterium freudenreichii strain T82. Antonie van Leeuwenhoek 2017; 111:921-932. [PMID: 29178013 PMCID: PMC5945763 DOI: 10.1007/s10482-017-0991-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to determine the potential for biosynthesis of propionic acid and vitamin B12 by Propionibacterium freudenreichii T82 in a medium containing various sources of carbon (glucose, fructose, and saccharose). These sugars are present in apple pomaces, which are the waste from the production of apple juice. Using statistical analysis design of experiments (DoE), the results allowed us to determine which sugars (carbon sources) exert the most beneficial influence on the biosynthesis of propionic acid and cobalamin. The highest production of propionic acid by the tested bacterial strain was obtained in a medium in which glucose accounted for at least 50% of the available carbon sources. Depending on the culture medium, the concentration of this metabolite ranged from 23 to 40 g/L. P. freudenreichii T82 produced the smallest amount of acid in medium in which the dominant nutrient source was saccharose. The results obtained indicated an inverse relationship between the amount of acid produced by the bacteria and vitamin B12 biosynthesis. Because of the high efficiency of propionic acid biosynthesis by P. freudenreichii T82, the prospect of using this strain to obtain propionate with the simultaneous disposal of waste materials (such as apple pomaces) which contain glucose and/or fructose is very promising.
Collapse
|
Journal Article |
8 |
10 |
17
|
Stasiak-Różańska L, Błażejak S, Gientka I, Bzducha-Wróbel A, Lipińska E. Utilization of a waste glycerol fraction using and reusing immobilized Gluconobacter oxydans ATCC 621 cell extract. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
8 |
8 |
18
|
Binati RL, Salvetti E, Bzducha-Wróbel A, Bašinskienė L, Čižeikienė D, Bolzonella D, Felis GE. Non-conventional yeasts for food and additives production in a circular economy perspective. FEMS Yeast Res 2021; 21:6380488. [PMID: 34601574 DOI: 10.1093/femsyr/foab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Yeast species have been spontaneously participating in food production for millennia, but the scope of applications was greatly expanded since their key role in beer and wine fermentations was clearly acknowledged. The workhorse for industry and scientific research has always been Saccharomyces cerevisiae. It occupies the largest share of the dynamic yeast market, that could further increase thanks to the better exploitation of other yeast species. Food-related 'non-conventional' yeasts (NCY) represent a treasure trove for bioprospecting, with their huge untapped potential related to a great diversity of metabolic capabilities linked to niche adaptations. They are at the crossroad of bioprocesses and biorefineries, characterized by low biosafety risk and produce food and additives, being also able to contribute to production of building blocks and energy recovered from the generated waste and by-products. Considering that the usual pattern for bioprocess development focuses on single strains or species, in this review we suggest that bioprospecting at the genus level could be very promising. Candida, Starmerella, Kluyveromyces and Lachancea were briefly reviewed as case studies, showing that a taxonomy- and genome-based rationale could open multiple possibilities to unlock the biotechnological potential of NCY bioresources.
Collapse
|
|
4 |
8 |
19
|
Dorota D, Rupert M, Wołosiak R, Bzducha-Wróbel A, Ścibisz I, Matuszewska-Janica A. Volatiles as markers of bioactive components found in Croatian extra virgin olive oils. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
4 |
4 |
20
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Correction to: Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells. Biol Trace Elem Res 2019; 187:328. [PMID: 29858965 PMCID: PMC6828426 DOI: 10.1007/s12011-018-1390-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The authors forgot to include the following information in Materials and Methods.
Collapse
|
Published Erratum |
6 |
4 |
21
|
Koczoń P, Niemiec T, Bartyzel BJ, Gruczyńska E, Bzducha-Wróbel A, Koczoń P. Chemical changes that occur in Jerusalem artichoke silage. Food Chem 2019; 295:172-179. [PMID: 31174747 DOI: 10.1016/j.foodchem.2019.05.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 01/06/2023]
Abstract
The effects of 10 and 20 days of fermentation followed by freeze-drying on the vitamin C and fatty acids contents, chemical conversions and overall chemical composition of Jerusalem artichoke were studied. Fermentation between the 10th and 20th days increased content of all saturated fatty acids and two of the four unsaturated fatty acids. The only fatty acid content that decreased was that of C18:1 cis 9 acid, which was suggested to be converted to other fatty acids. The experimental data, which were supported by energetical feasibility, suggested the reaction pathways of the mutual conversions of fatty acids and confirmed the decreased vitamin C content during fermentation. Discriminant modelling of the spectral data successfully distinguished the fresh, 10 days and 20 days fermented samples. The correlation of the spectral and reference data allowed to construct reference models for predicting the content of vitamin C and C18:1 cis 9 fatty acid.
Collapse
|
Journal Article |
6 |
3 |
22
|
Kycia K, Bzducha-Wróbel A, Kraśniewska K, Chlebowska-Śmigiel A, Gniewosz M. Effect of Magnesium Acetate on the Antimold Activity of Lactobacillus. J Food Prot 2017; 80:96-103. [PMID: 28221876 DOI: 10.4315/0362-028x.jfp-16-125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The antimold activity of lactic acid bacteria (LAB) is used in food biopreservation. The aim of this study was to evaluate the effect of magnesium acetate added to de Man Rogosa Sharpe (MRS) medium on the antimold activity of three LAB strains ( Lactobacillus plantarum , Lactobacillus brevis , and Lactobacillus fermentum ) against molds contaminating food ( Aspergillus oryzae , Aspergillus niger , Penicillium chrysogenum , Fusarium avenaceum , and Rhizopus arrhizus ) and their ability to produce organic acids (acetic acid, lactic acid, and phenyllactic acid). The antimold activity of LAB strains was evaluated using the overlay method, and the concentration of the organic acids was determined with the gas chromatography technique. Changes in viable cell counts and the pH of LAB culture also were monitored over a 48-h period. The results show that the growth inhibition of all the molds (except R. arrhizus ) was higher in LAB strain cultures on MRS with magnesium acetate agar than on MRS agar, and inhibition increased over the 48 h. Magnesium acetate added to MRS broth stimulated the production of acetic acid by all LAB strains in the first 8 h and slightly stimulated the production of lactic acid by L. plantarum during the first 24 h. No adverse effect of magnesium acetate on growth of LAB strains was noted. The results confirm that magnesium acetate enhances the antimold activity of LAB strains.
Collapse
|
|
8 |
2 |
23
|
Gientka I, Duda M, Bzducha-Wróbel A, Błażejak S. Deproteinated potato wastewater as a low-cost nitrogen substrate for very high yeast biomass quantities: starting point for scaled-up applications. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03231-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
6 |
2 |
24
|
Pakosz P, Bzducha-Wróbel A, Drużyńska B, Majewska E, Wołosiak R. Composition of Coffee Beans Influenced by Bioprocessing with Selected Bacteria. Foods 2025; 14:1143. [PMID: 40238280 PMCID: PMC11988858 DOI: 10.3390/foods14071143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Coffee quality can be modified with microorganism addition during post-harvest processing. While most studies focus on yeasts and lactic acid bacteria, other species identified in the digestive tract of palm civets might also contribute to the quality of luwak coffee. Bacteria akin to those identified in palm civets' gastrointestinal tract or feces were evaluated for their potential to modify coffee bean composition. Among those, Bacillus subtilis ATCC 6633, Gluconobacter sp. KKP 3751 and Lactiplantibacillus plantarum ATCC 4080 exhibited strong growth in green coffee extract. The use of these bacteria significantly changed the amounts of basic coffee components (taste and aroma precursors), and slightly altered bioactive compound levels in green and roasted beans. The influence of fermentation duration was evaluated using L. plantarum. A stationary growth phase and positive changes regarding phenolic content were achieved after 24 h of fermentation. Overall, the use of bacteria can influence bean composition, offering the potential to create unique coffee products.
Collapse
|
research-article |
1 |
|
25
|
Mołoń M, Małek G, Bzducha-Wróbel A, Kula-Maximenko M, Mołoń A, Galiniak S, Skrzypiec K, Zebrowski J. Disturbances in cell wall biogenesis as a key factor in the replicative aging of budding yeast. Biogerontology 2025; 26:54. [PMID: 39907841 DOI: 10.1007/s10522-025-10196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Aging is a multifactorial process that significantly impairs organismal function. Yeast is one of the model organisms used in aging research. Our understanding of the impact of the cell wall on aging remains elusive. Yeast cell wall is a complex and dynamic structure that plays a crucial role in the growth, survival, and aging of Saccharomyces cerevisiae. In this study, we demonstrated for the first time that the deletion of genes involved in cell wall biogenesis leads to significant impact on aging. In this study, we analysed five deletion mutants: crh2Δ, cwp1Δ, flo11Δ, gas1Δ and hsp12Δ. We showed a correlation between Raman spectroscopy signatures assigned to proteins, nucleic acids and RNA and replicative aging. Using Raman spectroscopy, we also revealed that a lack GAS1 gene results in significant changes in the biochemical composition of the cells that may increase sensitivity to environmental stressors. Our data unequivocally indicate that employing yeast as a model in aging research is appropriate, as long as the factors under analysis are not implicated in cell wall biogenesis.
Collapse
|
|
1 |
|