1
|
Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Di Cesare Mannelli L, Ghelardini C, Ferretti AM, Ponti A, Sangregorio C, Ceci P. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS NANO 2014; 8:4705-19. [PMID: 24689973 DOI: 10.1021/nn500454n] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform.
Collapse
|
|
11 |
124 |
2
|
Mondini S, Ferretti AM, Puglisi A, Ponti A. Pebbles and PebbleJuggler: software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. NANOSCALE 2012; 4:5356-72. [PMID: 22814937 DOI: 10.1039/c2nr31276j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pebbles is a user-friendly software program which implements an accurate, unbiased, and fast method to measure the morphology of a population of nanoparticles (NPs) from TEM micrographs. The morphological parameters of the projected NP shape are obtained by fitting intensity models to the TEM micrograph. Pebbles can be used either in automatic mode, where both fitting and validation are reliably carried out with minimal human intervention, and in manual mode, where the user has full control on the fitting and validation steps. Accuracy in diameter measurement has been shown to be ≲1%. When operated in automatic mode, Pebbles can be very fast. The effective speed of 1 NP s⁻¹ has been achieved in favorable cases (packed monolayer of NPs). Since Pebbles is based on a local modeling procedure, it successfully treats cases such as low contrast NPs, NPs with significant diffraction scattering, and inhomogeneous background which often make conventional thresholding procedures fail. Pebbles is accompanied by PebbleJuggler, a software program for the statistical analysis of the sets of best-fit NP models created by Pebbles. Effort has been devoted to make Pebbles and PebbleJuggler the most user-friendly and the least user-tedious we could. Pebbles and PebbleJuggler are available at http://pebbles.istm.cnr.it.
Collapse
|
|
13 |
54 |
3
|
Brambilla D, Sola L, Ferretti AM, Chiodi E, Zarovni N, Fortunato D, Criscuoli M, Dolo V, Giusti I, Murdica V, Kluszczyńska K, Czernek L, Düchler M, Vago R, Chiari M. EV Separation: Release of Intact Extracellular Vesicles Immunocaptured on Magnetic Particles. Anal Chem 2021; 93:5476-5483. [PMID: 33769802 DOI: 10.1021/acs.analchem.0c05194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular vesicles (EVs) have attracted considerable interest due to their role in cell-cell communication, disease diagnosis, and drug delivery. Despite their potential in the medical field, there is no consensus on the best method for separating micro- and nanovesicles from cell culture supernatant and complex biological fluids. Obtaining a good recovery yield and preserving physical characteristics is critical for the diagnostic and therapeutic use of EVs. The separation of a single class of EVs, such as exosomes, is complex because blood and cell culture media contain many nanoparticles in the same size range. Methods that exploit immunoaffinity capture provide high-purity samples and overcome the issues of currently used separation methods. However, the release of captured nanovesicles usually requires harsh conditions that hinder their use in certain types of downstream analysis. A novel capture and release approach for small extracellular vesicles (sEVs) is presented based on DNA-directed immobilization of antiCD63 antibody. The flexible DNA linker increases the capture efficiency and allows for releasing EVs by exploiting the endonuclease activity of DNAse I. This separation protocol works under mild conditions, enabling the release of vesicles suitable for analysis by imaging techniques. In this study, sEVs recovered from plasma were characterized by established techniques for EV analysis, including nanoparticle tracking and transmission electron microscopy.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
27 |
4
|
Maiullari F, Chirivì M, Costantini M, Ferretti AM, Recchia S, Maiullari S, Milan M, Presutti D, Pace V, Raspa M, Scavizzi F, Massetti M, Petrella L, Fanelli M, Rizzi M, Fortunato O, Moretti F, Caradonna E, Bearzi C, Rizzi R. In vivoorganized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles. Biofabrication 2021; 13. [PMID: 33434889 DOI: 10.1088/1758-5090/abdacf] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have become a key tool in the biotechnological landscape due to their well-documented ability to mediate intercellular communication. This feature has been explored and is under constant investigation by researchers, who have demonstrated the important role of EVs in several research fields ranging from oncology to immunology and diagnostics to regenerative medicine. Unfortunately, there are still some limitations to overcome before clinical application, including the inability to confine the EVs to strategically defined sites of interest to avoid side effects. In this study, for the first time, EV application is supported by 3D bioprinting technology to develop a new strategy for applying the angiogenic cargo of human umbilical vein endothelial cell-derived EVs in regenerative medicine. EVs, derived from human endothelial cells and grown under different stressed conditions, were collected and used as bioadditives for the formulation of advanced bioinks. Afterin vivosubcutaneous implantation, we demonstrated that the bioprinted 3D structures, loaded with EVs, supported the formation of a new functional vasculaturein situ, consisting of blood-perfused microvessels recapitulating the printed pattern. The results obtained in this study favour the development of new therapeutic approaches for critical clinical conditions, such as the need for prompt revascularization of ischaemic tissues, which represent the fundamental substrate for advanced regenerative medicine applications.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
17 |
5
|
Silvestri A, Mondini S, Marelli M, Pifferi V, Falciola L, Ponti A, Ferretti AM, Polito L. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7117-26. [PMID: 27328722 DOI: 10.1021/acs.langmuir.6b01266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided.
Collapse
|
|
9 |
11 |
6
|
Della Camera G, Madej M, Ferretti AM, La Spina R, Li Y, Corteggio A, Heinzl T, Swartzwelter BJ, Sipos G, Gioria S, Ponti A, Boraschi D, Italiani P. Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Front Immunol 2021; 12:692165. [PMID: 34421901 PMCID: PMC8377278 DOI: 10.3389/fimmu.2021.692165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Engineered nanoparticles used for medical purposes must meet stringent safety criteria, which include immunosafety, i.e., the inability to activate possibly detrimental immune/inflammatory effects. Even medical nanomaterials devoid of direct immunotoxic or inflammatory effects may have an impact on human health if able to modify innate memory, which is the ability to “prime” future immune responses towards a different, possibly more detrimental reactivity. Although innate memory is usually protective, anomalous innate memory responses may be at the basis of immune pathologies. In this study, we have examined the ability of two nanomaterials commonly used for diagnostic imaging purposes, gold and iron oxide nanoparticles, to induce or modulate innate memory, using an in vitro model based on human primary monocytes. Monocytes were exposed in culture to nanoparticles alone or together with the bacterial agent LPS (priming phase/primary response), then rested for six days (extinction phase), and eventually challenged with LPS (memory/secondary response). The memory response to the LPS challenge was measured as changes in the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra), as compared to unprimed monocytes. The results show that both types of nanoparticles can have an effect in the induction of memory, with changes observed in the cytokine production. By comparing nanomaterials of different shapes (spherical vs. rod-shaped gold particles) and different size (17 vs. 22 nm diameter spherical iron oxide particles), it was evident that innate memory could be differentially induced and modulated depending on size, shape and chemical composition. However, the main finding was that the innate memory effect of the particles was strongly donor-dependent, with monocytes from each donor showing a distinct memory profile upon priming with the same particles, thereby making impossible to draw general conclusions on the particle effects. Thus, in order to predict the effect of imaging nanoparticles on the innate memory of patients, a personalised profiling would be required, able to take in consideration the peculiarities of the individual innate immune reactivity.
Collapse
|
|
4 |
10 |
7
|
Tacu I, Kokalari I, Abollino O, Albrecht C, Malandrino M, Ferretti AM, Schins RPF, Fenoglio I. Mechanistic Insights into the Role of Iron, Copper, and Carbonaceous Component on the Oxidative Potential of Ultrafine Particulate Matter. Chem Res Toxicol 2021; 34:767-779. [PMID: 33651939 PMCID: PMC8034814 DOI: 10.1021/acs.chemrestox.0c00399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Transition
metals play a key role in the pathogenic potential of
urban particulate matter (PM). However, air quality regulations include
exposure limits only for metals having a known toxic potential like
Pb, As, Cd, and Ni, neglecting other transition metals like Fe and
Cu. Fe and Cu are mainly found in the water-soluble fraction of PM.
However, a fraction of the ions may persist strongly bound to the
particles, thus potentially acting as surface reactive sites. The
contribution of surface ions to the oxidative potential (OP) of PM
is likely different from that of free ions since the redox activity
of metals is modulated by their local chemical environment. The aim
of this study was to investigate how Fe and Cu bound to carbonaceous
particles affect the OP and associated toxicity of PM toward epithelial
cells and macrophages. Carbonaceous nanoparticles (CNPs) having well-defined
size were loaded with controlled amounts of Cu and Fe. The effect
of Cu and Fe on the OP of CNPs was evaluated by electronic paramagnetic
resonance (EPR) spectroscopy associated with the spin-trapping technique
and correlated with the ability to induce cytotoxicity (LDH, WST-1),
oxidative stress (Nrf2 translocation), and DNA damage (comet assay)
on lung macrophages (NR8383) and/or epithelial cells (RLE-6TN). The
release of pro-inflammatory cytokines (TNF-α, MCP-1, and CXCL2)
by macrophages and epithelial cells was also investigated. The results
indicate a major contribution of surface Cu to the surface reactivity
of CNPs, while Fe has a minor role. At the same time, Cu increases
the cytotoxicity of CNPs and their ability to induce oxidative stress
and DNA damage. In contrast, surface Fe increases the release of pro-inflammatory
cytokines by macrophages. Overall, these results confirm the role
of Cu and Fe in PM toxicity and suggest that the total metals content
in PM might be a better indicator of pathogenicity than water-soluble
metals.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
9 |
8
|
Bernareggi M, Chiarello GL, West G, Ratova M, Ferretti AM, Kelly P, Selli E. Cu and Pt clusters deposition on TiO2 powders by DC magnetron sputtering for photocatalytic hydrogen production. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
6 |
9 |
9
|
Galli M, Rossotti B, Arosio P, Ferretti AM, Panigati M, Ranucci E, Ferruti P, Salvati A, Maggioni D. A new catechol-functionalized polyamidoamine as an effective SPION stabilizer. Colloids Surf B Biointerfaces 2019; 174:260-269. [DOI: 10.1016/j.colsurfb.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 11/03/2018] [Indexed: 11/25/2022]
|
|
6 |
9 |
10
|
Hamza H, Ferretti AM, Innocenti C, Fidecka K, Licandro E, Sangregorio C, Maggioni D. An Approach for Magnetic Halloysite Nanocomposite with Selective Loading of Superparamagnetic Magnetite Nanoparticles in the Lumen. Inorg Chem 2020; 59:12086-12096. [PMID: 32805986 PMCID: PMC8009513 DOI: 10.1021/acs.inorgchem.0c01039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
We present for the
first time a method for the preparation of magnetic
halloysite nanotubes (HNT) by loading of preformed superparamagnetic
magnetite nanoparticles (SPION) of diameter size ∼6 nm with
a hydrodynamic diameter of ∼10 nm into HNT. We found that the
most effective route to reach this goal relies on the modification
of the inner lumen of HNT by tetradecylphosphonic acid (TDP) to give
HNT–TDP, followed by the loading with preformed oleic acid
(OA)-stabilized SPION. Transmission electron microscopy evidenced
the presence of highly crystalline magnetic nanoparticles only in
the lumen, partially ordered in chainlike structures. Conversely,
attempts to obtain the same result by exploiting either the positive
charge of the HNT inner lumen employing SPIONs covered with negatively
charged capping agents or the in situ synthesis of
SPION by thermal decomposition were not effective. HNT–TDP
were characterized by infrared spectroscopy (ATR-FTIR), thermogravimetric
analysis (TGA), and ζ-potential, and all of the techniques confirmed
the presence of TDP onto the HNT. Moreover, the inner localization
of TDP was ascertained by the use of Nile Red, a molecule whose luminescence
is very sensitive to the polarity of the environment. The free SPION@OA
(as a colloidal suspension and as a powder) and SPION-in-HNT powder
were magnetically characterized by measuring the ZFC-FC magnetization
curves as well as the hysteresis cycles at 300 and 2.5 K, confirming
that the super-paramagnetic behavior and the main magnetic properties
of the free SPION were preserved once embedded in SPION-in-HNT. SPION nanoparticles are selectively loaded
into halloysite
lumen, keeping their superparamagnetic character.
Collapse
|
Journal Article |
5 |
8 |
11
|
Omelyanchik A, Villa S, Vasilakaki M, Singh G, Ferretti AM, Ponti A, Canepa F, Margaris G, Trohidou KN, Peddis D. Interplay between inter- and intraparticle interactions in bi-magnetic core/shell nanoparticles. NANOSCALE ADVANCES 2021; 3:6912-6924. [PMID: 36132365 PMCID: PMC9418531 DOI: 10.1039/d1na00312g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
The synthesis strategy and magnetic characterisation of two systems consisting of nanoparticles with core/shell morphology are presented: an assembly of hard/soft nanoparticles with cores consisting of magnetically hard cobalt ferrite covered by a magnetically soft nickel ferrite shell, and the inverse system of almost the same size and shape. We have successfully designed these nanoparticle systems by gradually varying the magnetic anisotropy resulting in this way in the modulation of the magnetic dipolar interactions between particles. Both nanoparticle systems exhibit high saturation magnetisation and display superparamagnetic behaviour at room temperature. We have shown strong exchange coupling at the core/shell interface of these nanoparticles systems which was also confirmed by mesoscopic modelling. Our results demonstrate the possibility of modulating magnetic anisotropy not only by chemical composition but also by adopting the proper nano-architecture.
Collapse
|
research-article |
4 |
8 |
12
|
Spadaro MC, D'Addato S, Luches P, Valeri S, Grillo V, Rotunno E, Roldan MA, Pennycook SJ, Ferretti AM, Capetti E, Ponti A. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition. NANOTECHNOLOGY 2015; 26:405704. [PMID: 26376605 DOI: 10.1088/0957-4484/26/40/405704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Films of magnetic Ni@NiO core-shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness t(s) could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field H(bias) is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core-shell NPs with desired magnetic properties.
Collapse
|
|
10 |
7 |
13
|
Gemmi M, Voltolini M, Ferretti AM, Ponti A. Quantitative texture analysis from powder-like electron diffraction data. J Appl Crystallogr 2011. [DOI: 10.1107/s0021889811012106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The textures of an Al thin film and of α-MnS nanocrystals deposited on a carbon film grid have been analysed using powder electron diffraction. For each sample a series of powder electron diffraction patterns tilted with respect to two orthogonal axes were collected, to adapt to this type of data the texture analysis procedures commonly used in synchrotron X-ray transmission geometry. Both pattern sets have been analysed with the Rietveld procedure embedded in the softwareMAUD. The fit is satisfactory with agreement factors of 7.03% for the Al film and 3.42% for α-MnS and reveals in both cases a (111) preferred orientation with a pronounced cylindrical symmetry. The (111) and (100) pole figures, plotted in terms of multiples of random distribution (m.r.d.), show a fairly strong lattice preferred orientation in the Al thin film and a stronger one in the deposited α-MnS nanocrystals, with maxima, for the (111) pole figures, of 8.8 and 19.7 m.r.d., respectively.
Collapse
|
|
14 |
6 |
14
|
Ferretti AM, Zappia S, Scavia G, Giovanella U, Villafiorita-Monteleone F, Destri S. Surfactant-free miniemulsion approach for low band gap rod-coil block copolymer water-processable nanoparticle fabrication: Film preparation and morphological characterization. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
6 |
6 |
15
|
Signorelli D, Ghidotti P, Proto C, Brambilla M, De Toma A, Ferrara R, Galli G, Ganzinelli M, Lo Russo G, Prelaj A, Occhipinti M, Viscardi G, Capizzuto V, Pontis F, Petraroia I, Ferretti AM, Colombo MP, Torri V, Sozzi G, Garassino MC, Jachetti E, Fortunato O. Circulating CD81-expressing extracellular vesicles as biomarkers of response for immune-checkpoint inhibitors in advanced NSCLC. Front Immunol 2022; 13:987639. [PMID: 36203609 PMCID: PMC9530186 DOI: 10.3389/fimmu.2022.987639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
PD-L1 in tumor cells is the only used biomarker for anti PD1/PD-L1 immune-checkpoints inhibitors (ICI) in Non Small Cell Lung Cancer (NSCLC) patients. However, this parameter is inaccurate to predict response, especially in patients with low tumor PD-L1. Here, we evaluated circulating EVs as possible biomarkers for ICI in advanced NSCLC patients with low tumoral PD-L1. EVs were isolated from plasma of 64 PD-L1 low, ICI-treated NSCLC patients, classified either as responders (R; complete or partial response by RECIST 1.1) or non-responders (NR). EVs were characterized following MISEV guidelines and by flow cytometry. T cells from healthy donors were triggered in vitro using patients' EVs. Unsupervised statistical approach was applied to correlate EVs' and patients' features to clinical response. R-EVs showed higher levels of tetraspanins (CD9, CD81, CD63) than NR-EVs, significantly associated to better overall response rate (ORR). In multivariable analysis CD81-EVs correlated with ORR. Unsupervised analysis revealed a cluster of variables on EVs, including tetraspanins, significantly associated with ORR and improved survival. R-EVs expressed more costimulatory molecules than NR-EVs although both increased T cell proliferation and partially, activation. Tetraspanins levels on EVs could represent promising biomarkers for ICI response in NSCLC.
Collapse
|
research-article |
3 |
5 |
16
|
Villani S, Adami R, Reverchon E, Ferretti AM, Ponti A, Lepretti M, Caputo I, Izzo L. pH-sensitive polymersomes: controlling swelling via copolymer structure and chemical composition. J Drug Target 2017; 25:899-909. [PMID: 28812391 DOI: 10.1080/1061186x.2017.1363216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
pH-sensitive vesicles used as drug delivery systems (DDSs) are generally composed of protonable copolymers. The disaggregation of these nanoparticles (NPs) during drug release implies the dispersion of positively charged cytotoxic polyelectrolytes in the human body. To alleviate such issue, we synthesised A(BC)n amphiphilic block copolymers with linear (n = 1) and branched (n = 2) architectures to obtain pH-sensitive vesicles capable of releasing drugs in acidic conditions via controlled swelling instead of disaggregation. We obtained this feature by fine-tuning the relative amount of pH-sensitive and hydrophobic monomers. We studied pH-driven swelling by measuring NPs size in neutral and acidic conditions, the latter typical of tumours or inflamed tissues (pH∼6) and lysosomes (pH∼4.5). Dynamic light scattering (DLS) and zeta potential data provided useful indications about the influence of architecture and chemical composition on NPs swelling, stability and polycation release. Results demonstrated that vesicles made of linear copolymers with ∼22-28% in mol of protonable monomers in the 'BC' block swelled more than other species following a pH change from pH 7.4 to pH 4.5. We finally evaluated the cytotoxicity of vesicles composed of linear species, and paclitaxel (PTX) release from the latter in both cancer and normal cells.
Collapse
|
Journal Article |
8 |
5 |
17
|
Ponti A, Raza MH, Pantò F, Ferretti AM, Triolo C, Patanè S, Pinna N, Santangelo S. Structure, Defects, and Magnetism of Electrospun Hematite Nanofibers Silica-Coated by Atomic Layer Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1305-1319. [PMID: 31958957 DOI: 10.1021/acs.langmuir.9b03587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the last years, hematite has been utilized in a plethora of applications. High aspect-ratio nanohematite and hematite/silica core-shell nanostructures are arousing growing interest for applications exploiting their magnetic properties. Atomic layer deposition (ALD) is utilized here to produce SiO2-coated α-Fe2O3 nanofibers (NFs) through two synthetic routes, viz. electrospinning/calcination/ALD or electrospinning/ALD/calcination. The number of ALD cycles (10-100) modulates the coating thickness, while the chosen route controls the final nanostructure. Porous and partially hollow NFs are produced. Their hierarchical structure and the nature and density of the lattice defects and strain are characterized by combining electron microscopy, diffraction, and spectroscopy techniques. The uncoated hematite NFs mostly have surface-related strain, which is attributed to oxygen vacancies/Fe2+ sites. ALD coating causes microstrain release and decrease of surface states. NFs calcined after ALD have extensive bulk strain, which is ascribed to the presence of dislocations throughout the volume of the NF grains. Bulk strain determines the remanent magnetization, whereas both surface and bulk strain influence the coercive field and the thermal behavior across the Morin temperature, including the magnetic memory effect. To the best of the authors' knowledge, the correlation between lattice defects/strain and magnetic properties of SiO2-coated α-Fe2O3 NFs has never been reported before.
Collapse
|
|
5 |
4 |
18
|
Ganzer L, Zappia S, Russo M, Ferretti AM, Vohra V, Diterlizzi M, Antognazza MR, Destri S, Virgili T. Ultrafast spectroscopy on water-processable PCBM: rod-coil block copolymer nanoparticles. Phys Chem Chem Phys 2020; 22:26583-26591. [PMID: 33201972 DOI: 10.1039/d0cp05478j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using ultrafast spectroscopy, we investigate the photophysics of water-processable nanoparticles composed of a block copolymer electron donor and a fullerene derivative electron acceptor. The block copolymers are based on a poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] rod, which is covalently linked with 2 or 100 hydrophilic coil units. In both samples the photogenerated excitons in the blend nanoparticles migrate in tens of ps to a donor/acceptor interface to be separated into free charges. However, transient absorption spectroscopy indicates that increasing the coil length from 2 to 100 units results in the formation of long living charge transfer states which reduce the charge generation efficiency. Our results shed light on the impact of rod-coil copolymer coil length on the blend nanoparticle morphology and provide essential information for the design of amphiphilic rod-coil block copolymers to increase the photovoltaic performances of water-processable organic solar cell active layers.
Collapse
|
Journal Article |
5 |
3 |
19
|
Ferretti AM, Diterlizzi M, Porzio W, Giovanella U, Ganzer L, Virgili T, Vohra V, Arias E, Moggio I, Scavia G, Destri S, Zappia S. Rod-Coil Block Copolymer: Fullerene Blend Water-Processable Nanoparticles: How Molecular Structure Addresses Morphology and Efficiency in NP-OPVs. NANOMATERIALS 2021; 12:nano12010084. [PMID: 35010034 PMCID: PMC8746663 DOI: 10.3390/nano12010084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
The use of water-processable nanoparticles (WPNPs) is an emerging strategy for the processing of organic semiconducting materials into aqueous medium, dramatically reducing the use of chlorinated solvents and enabling the control of the nanomorphology in OPV active layers. We studied amphiphilic rod-coil block copolymers (BCPs) with a different chemical structure and length of the hydrophilic coil blocks. Using the BCPs blended with a fullerene acceptor material, we fabricated NP-OPV devices with a sustainable approach. The goal of this work is to clarify how the morphology of the nanodomains of the two active materials is addressed by the hydrophilic coil molecular structures, and in turn how the design of the materials affects the device performances. Exploiting a peculiar application of TEM, EFTEM microscopy on WPNPs, with the contribution of AFM and spectroscopic techniques, we correlate the coil structure with the device performances, demonstrating the pivotal influence of the chemical design over material properties. BCP5, bearing a coil block of five repeating units of 4-vinilpyridine (4VP), leads to working devices with efficiency comparable to the solution-processed ones for the multiple PCBM-rich cores morphology displayed by the blend WPNPs. Otherwise, BCP2 and BCP15, with 2 and 15 repeating units of 4VP, respectively, show a single large PCBM-rich core; the insertion of styrene units into the coil block of BCP100 is detrimental for the device efficiency, even if it produces an intermixed structure.
Collapse
|
|
4 |
2 |
20
|
Petraroia I, Ghidotti P, Bertolini G, Pontis F, Roz L, Balsamo M, Suatoni P, Pastorino U, Ferretti AM, Sozzi G, Fortunato O. Extracellular vesicles from subjects with COPD modulate cancer initiating cells phenotype through HIF-1α shuttling. Cell Death Dis 2023; 14:681. [PMID: 37838700 PMCID: PMC10576796 DOI: 10.1038/s41419-023-06212-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer development. COPD induces activation of hypoxia-induced signaling, causing remodeling of surrounding microenvironmental cells also modulating the release and cargo of their extracellular vesicles (EVs). We aimed to evaluate the potential role of circulating EVs from COPD subjects in lung cancer onset. Plasma-EVs were isolated by ultracentrifugation from heavy smoker volunteers with (COPD-EVs) or without (heavy smoker-EVs, HS-EV) COPD and characterized following MISEV guidelines. Immortalized human bronchial epithelial cells (CDK4, hTERT-HBEC3-KT), genetically modified with different oncogenic alterations commonly found in lung cancer (sh-p53, KRASV12), were used to test plasma-EVs pro-tumorigenic activity in vitro. COPD-EVs mainly derived from immune and endothelial cells. COPD-EVs selectively increased the subset of CD133+CXCR4+ metastasis initiating cells (MICs) in HBEC-sh-p53-KRASV12high cells and stimulated 3D growth, migration/invasion, and acquisition of mesenchymal traits. These effects were not observed in HBEC cells bearing single oncogenic mutation (sh-p53 or KRASV12). Mechanistically, hypoxia-inducible factor 1-alpha (HIF-1α) transferred from COPD-EVs triggers CXCR4 pathway activation that in turn mediates MICs expansion and acquisition of pro-tumorigenic effects. Indeed, HIF-1α inhibition or CXCR4 silencing prevented the acquisition of malignant traits induced by COPD-EVs alone. Hypoxia recapitulates the effects observed with COPD-EVs in HBEC-sh-p53-KRASV12high cells. Notably, higher levels of HIF-1α were observed in EVs from COPD subjects who subsequently developed cancer compared to those who remained cancer-free. Our findings support a role of COPD-EVs to promote the expansion of MICs in premalignant epithelial cells through HIF-1α-CXCR4 axis activation thereby potentially sustaining lung cancer progression.
Collapse
|
research-article |
2 |
2 |
21
|
Bucci R, Maggioni D, Locarno S, Ferretti AM, Gelmi ML, Pellegrino S. Exploiting Ultrashort α,β-Peptides in the Colloidal Stabilization of Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11365-11373. [PMID: 34533956 DOI: 10.1021/acs.langmuir.1c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,β-peptides containing the repeating unit of a diaryl β2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.
Collapse
|
|
4 |
2 |
22
|
Fantechi E, Innocenti C, Ferretti AM, Falvo E, Ceci P, Pineider F, Sangregorio C. Increasing the Magnetic Anisotropy of a Natural System: Co-Doped Magnetite Mineralized in Ferritin Shells. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2019; 19:4964-4973. [PMID: 30913808 DOI: 10.1166/jnn.2019.16801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iron oxide nanoparticles mineralized within the internal cavity of Ferritin protein cage are extremely appealing for the realization of multifunctional therapeutic and diagnostic agents for cancer treatment by drug delivery, magnetic fluid hyperthermia (MFH) and magnetic resonance imaging. Being the maximum mean size imposed by the internal diameter of the protein shell (ca. 8 nm) too small for the use of these systems in MFH, a valuable strategy for the improvement of the hyperthermic efficiency is increasing the magnetic anisotropy by doping the iron oxide with divalent Co ions. This strategy has been demonstrated to be highly efficient in the case of iron oxide nanoparticles mineralized in Human Ferritin (HFt). However, a deterioration of nanoparticles crystallinity and consequently a reduction of the hyperthermic efficiency were observed with increasing Co-doping. In this contribution, we compare two series of Co-doped iron oxide nanoparticles (Co-doping level up to 15%) mineralized into HFt and into Ferritin from the archaea Pirococcus Furiosus (PfFt), the protein structure of which differs for the nucleation sites, with the aim of increasing the crystalline quality of the inorganic cores for larger Co doping. Highly monodisperse nanoparticles of 6-7 nm were obtained in both series. The structural and magnetic characterization indicate that the PfFt series is less subjected to crystallinity deterioration with increasing Co content with respect to the HFt one. Such difference is reflected in the hyperthermic efficiency, which reaches the maximum value for different intermediate Co-doping (10% and 5% for PfFt and HFt, respectively), and goes to zero for further Co-doping increments.
Collapse
|
|
6 |
1 |
23
|
Pacheco R, Burgos JR, Cerquone LE, Gonzalez PA, Ferretti AM, Lange E, Mariscal AM, Ruiz V. [Hepatocarcinoma associated to fatty liver degeneration. Report of a clinical case]. G.E.N 1995; 49:234-7. [PMID: 8598263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report a case of hepatocellular carcinoma associated with fatty degeneration of the liver, which presented as and surgical acute abdomen, and was operated on at "Victorino Santaella" Hospital, being the first case observed at own Institution, and the only one reported in the national and international literature from 1971 to 1995.
Collapse
|
Case Reports |
30 |
|
24
|
Galbiati M, Maiullari F, Ceraolo MG, Bousselmi S, Fratini N, Gega K, Recchia S, Ferretti AM, Scala G, Costantini M, Sciarra T, Rizzi R, Bearzi C. Bioactive Hydrogel Supplemented with Stromal Cell-Derived Extracellular Vesicles Enhance Wound Healing. Pharmaceutics 2025; 17:162. [PMID: 40006529 PMCID: PMC11859224 DOI: 10.3390/pharmaceutics17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Skin regeneration is a rapidly advancing field with significant implications for regenerative medicine, particularly in treating wounds and burns. This study explores the potential of hydrogels functionalized with fibroblast-derived extracellular vesicles (EVs) to enhance skin regeneration in vivo. Being immunoprivileged, EVs minimize immune rejection, offering an attractive alternative to whole-cell therapies by replicating fibroblasts' key roles in tissue repair. Methods: To promote EVs' versatility and effective application across different conditions, a lyophilization method with lyoprotectants was optimized. Then, EVs were used to functionalize a hydrogel to perform experiments on murine cutaneous wound models. Results: Gelatin methacrylate (GelMA) was selected as the polymeric hydrogel due to its biocompatibility, tunable mechanical properties, and ability to support wound healing. Mechanical tests confirmed GelMA's strength and elasticity for this application. Fibroblast-derived EVs were characterized using Western blot, Transmission Electron Microscopy, and NanoSight analysis, proving their integrity, size distribution, and stability. miRNome profiling identified enriched biological pathways related to cell migration, differentiation, and angiogenesis, emphasizing the critical role of EV cargo in promoting wound repair. In a murine model, hydrogels loaded with fibroblast-derived EVs significantly accelerated wound healing compared to controls (mean wound area 0.62 mm2 and 4.4 mm2, respectively), with faster closure, enhanced epithelialization, increased vascularization, and reduced fibrosis. Notably, the lyoprotectants successfully preserved the EVs' structure and bioactivity during freeze-drying, reducing EVs loss by 35% compared to the control group and underscoring the feasibility of this approach for long-term storage and clinical application. Conclusions: This study introduces a novel scalable and adaptable strategy for regenerative medicine by combining fibroblast-derived EVs with GelMA, optimizing EVs' stability and functionality for enhanced wound healing in clinical settings, even in challenging contexts such as combat zones or large-scale natural disasters.
Collapse
|
research-article |
1 |
|
25
|
Marchetti A, Gori A, Ferretti AM, Esteban DA, Bals S, Pigliacelli C, Metrangolo P. Templated Out-of-Equilibrium Self-Assembly of Branched Au Nanoshells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206712. [PMID: 36650930 DOI: 10.1002/smll.202206712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but achieving finite 3D structures with a controlled morphology through this assembly mode is still rare. Here, a spherical peptide-gold superstructure (PAuSS) is used as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D-branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantles upon SDS concentration gradient equilibration over time in the sample solution, leading to NPs disassembly and regression to PAuSS. Notably, BAuNS assembly and disassembly promotes temporary interparticle plasmonic coupling, leading to reversible and tunable changes of their plasmonic properties, a highly desirable behavior in the development of optoelectronic nanodevices.
Collapse
|
|
2 |
|