1
|
Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 2007; 12:457-65. [PMID: 17336910 DOI: 10.1016/j.devcel.2007.02.010] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 01/05/2007] [Accepted: 02/12/2007] [Indexed: 01/15/2023]
Abstract
All pancreatic endocrine cells, producing glucagon, insulin, somatostatin, or PP, differentiate from Pdx1+ progenitors that transiently express Neurogenin3. To understand whether the competence of pancreatic progenitors changes over time, we generated transgenic mice expressing a tamoxifen-inducible Ngn3 fusion protein under the control of the pdx1 promoter and backcrossed the transgene into the ngn3(-/-) background, devoid of endogenous endocrine cells. Early activation of Ngn3-ER(TM) almost exclusively induced glucagon+ cells, while depleting the pool of pancreas progenitors. As from E11.5, Pdx1+ progenitors became competent to differentiate into insulin+ and PP+ cells. Somatostatin+ cells were generated from E14.5, while the competence to make glucagon+ cells was dramatically decreased. Hence, pancreas progenitors, similar to retinal or cortical progenitors, go through competence states that each allow the generation of a subset of cell types. We further show that the progenitors acquire competence to generate late-born cells in a mechanism that is intrinsic to the epithelium.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
242 |
2
|
Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, Lutolf M, Grapin-Botton A. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 2013; 140:4452-62. [PMID: 24130330 DOI: 10.1242/dev.096628] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the context of a cellular therapy for diabetes, methods for pancreatic progenitor expansion and subsequent differentiation into insulin-producing beta cells would be extremely valuable. Here we establish three-dimensional culture conditions in Matrigel that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the medium composition we generate either hollow spheres, which are mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. The in vitro maintenance and expansion of pancreatic progenitors require active Notch and FGF signaling, thus recapitulating in vivo niche signaling interactions. Our experiments reveal new aspects of pancreas development, such as a community effect by which small groups of cells better maintain progenitor properties and expand more efficiently than isolated cells, as well as the requirement for three-dimensionality. Finally, growth conditions in chemically defined biomaterials pave the way for testing the biophysical and biochemical properties of the niche that sustains pancreatic progenitors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
214 |
3
|
Grapin-Botton A, Majithia AR, Melton DA. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 2001; 15:444-54. [PMID: 11230152 PMCID: PMC312631 DOI: 10.1101/gad.846001] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which the epithelium of the digestive tract and its associated glands are specified are largely unknown. One clue is that several transcription factors are expressed in specific regions of the endoderm prior to and during organogenesis. Pdx-1, for example, is expressed in the duodenum and pancreas and Pdx-1 inactivation results in an arrest of pancreatic development after buds formation. Similarly, ngn3 is transiently expressed in the developing pancreas and a knockout results in the absence of endocrine cells. This paper focuses on the question of whether these and other transcription factors, known to be necessary for pancreatic development, are also sufficient to drive a program of pancreatic organogenesis. Using in ovo electroporation of chick embryos, we show that ectopic expression of Pdx-1 or ngn3 causes cells to bud out of the epithelium like pancreatic progenitors. The Pdx-1-expressing cells extinguish markers for other nonpancreatic regions of the endoderm and initiate, but do not complete, pancreatic cytodifferentiation. Ectopic expression of ngn3 is sufficient to turn endodermal cells of any region into endocrine cells that form islets expressing glucagon and somatostatin in the mesenchyme. The results suggest that simple gene combinations could be used in stem cells to achieve specific endodermal tissue differentiation.
Collapse
|
research-article |
24 |
210 |
4
|
Abstract
Although the ectoderm and mesoderm have been the focus of intensive work in the recent era of studies on the molecular control of vertebrate development, the endoderm has received less attention. Because signaling must occur between germ layers in order to achieve a properly organized body, our understanding of the coordinated development of all organs requires a more thorough consideration of the endoderm and its derivatives. This review focuses on present knowledge and perspectives concerning endoderm patterning and organogenesis. Some of the classical embryology of the endoderm is discussed and the progress and deficiencies in cellular and molecular studies are noted.
Collapse
|
Review |
25 |
206 |
5
|
Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, Sander M. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 2012; 139:2488-99. [PMID: 22675211 DOI: 10.1242/dev.078634] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the pancreas, Notch signaling is thought to prevent cell differentiation, thereby maintaining progenitors in an undifferentiated state. Here, we show that Notch renders progenitors competent to differentiate into ductal and endocrine cells by inducing activators of cell differentiation. Notch signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene Ngn3. However, at high Notch activity endocrine differentiation is blocked, as Notch also induces expression of the Ngn3 repressor Hes1. At the transition from high to intermediate Notch activity, only Sox9, but not Hes1, is maintained, thus de-repressing Ngn3 and initiating endocrine differentiation. In the absence of Sox9 activity, endocrine and ductal cells fail to differentiate, resulting in polycystic ducts devoid of primary cilia. Although Sox9 is required for Ngn3 induction, endocrine differentiation necessitates subsequent Sox9 downregulation and evasion from Notch activity via cell-autonomous repression of Sox9 by Ngn3. If high Notch levels are maintained, endocrine progenitors retain Sox9 and undergo ductal fate conversion. Taken together, our findings establish a novel role for Notch in initiating both ductal and endocrine development and reveal that Notch does not function in an on-off mode, but that a gradient of Notch activity produces distinct cellular states during pancreas development.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
176 |
6
|
Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 1998; 125:3445-59. [PMID: 9693148 DOI: 10.1242/dev.125.17.3445] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to pigment cells, and neural and endocrine derivatives, the neural crest is characterized by its ability to yield mesenchymal cells. In amniotes, this property is restricted to the cephalic region from the mid-diencephalon to the end of rhombomere 8 (level of somites 4/5). The cephalic neural crest is divided into two domains: an anterior region corresponding to the diencephalon, mesencephalon and metencephalon (r1, r2) in which expression of Hox genes is never observed, and a posterior domain in which neural crest cells exhibit (with a few exceptions) the same Hox code as the rhombomeres from which they originate. By altering the normal distribution of neural crest cells in the branchial arches through appropriate embryonic manipulations, we have investigated the relationships between Hox gene expression and the level of plasticity that neural crest cells display when they are led to migrate to an ectopic environment. We made the following observations. (i) Hox gene expression is not altered in neural crest cells by their transposition to ectopic sites. (ii) Expression of Hox genes by the BA ectoderm does not depend upon an induction by the neural crest. This second finding further supports the concept of segmentation of the cephalic ectoderm into ectomeres (Couly and Le Douarin, 1990). According to this concept, metameres can be defined in large bands of ectoderm including not only the CNS and the neural crest but also the corresponding superficial ectoderm fated to cover craniofacial primordia. (iii) The construction of a lower jaw requires the environment provided by the ectomesodermal components of BA1 or BA2 associated with the Hox gene non-expressing neural crest cells. Hox gene-expressing neural crest cells are unable to yield the lower jaw apparatus including the entoglossum and basihyal even in the BA1 environment. In contrast, the posterior part of the hyoid bone can be constructed by any region of the neural crest cells whether or not they are under the regulatory control of Hox genes. Such is also the case for the neural and connective tissues (including those comprising the cardiovascular system) of neural crest origin, upon which no segmental restriction is imposed. The latter finding confirms the plasticity observed 24 years ago (Le Douarin and Teillet, 1974) for the precursors of the PNS.
Collapse
|
|
27 |
169 |
7
|
Kumar M, Jordan N, Melton D, Grapin-Botton A. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol 2003; 259:109-22. [PMID: 12812792 DOI: 10.1016/s0012-1606(03)00183-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During embryonic development, organs arise along the gut tube as a series of buds in a stereotyped anterior-posterior (A-P) pattern. Using chick-quail chimeras and in vitro tissue recombination, we studied the interactions governing the induction and maintenance of endodermal organ identify focusing on the pancreas. Though several permissive signals in pancreatic development have been previously identified, here we provide evidence that lateral plate mesoderm sends instructive signals to the endoderm, signals that induce expression of the pancreatic genes Pdx1, p48, Nkx6.1, glucagon, and insulin. Moreover, this instructive signal directs cells to form ectopic insulin-positive islet-like clusters in endoderm that would otherwise form more rostral organs. Once generated, endocrine cells no longer require interaction with mesoderm, but nonendocrine cells continue to require permissive signals from the mesoderm. Stimulation of activin, BMP, or retinoic acid signaling is sufficient to induce Pdx1 expression in endoderm anterior to the pancreas. Lateral plate mesoderm appears to pattern the endoderm in a posterior-dominant fashion as first noted in the patterning of the neural tube at the same embryonic stage. These findings argue for a central role of the mesoderm in coordinating the A-P pattern of all three primary germ layers.
Collapse
|
|
22 |
163 |
8
|
Dessimoz J, Bonnard C, Huelsken J, Grapin-Botton A. Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 2006; 15:1677-83. [PMID: 16169491 DOI: 10.1016/j.cub.2005.08.037] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 07/22/2005] [Accepted: 08/02/2005] [Indexed: 01/23/2023]
Abstract
Mutations and deregulation of adenomatous polyposis coli (APC) and beta-catenin are implicated in specific cancers of the pancreas, but the role of Wnt pathway in normal pancreas development and homeostasis is unknown. This article reports a comprehensive investigation of the activity and the role of the Wnt pathway in pancreas organogenesis. We have used two reporter lines to monitor canonical Wnt pathway activity during development and after birth and demonstrate activity in endocrine cells and in the mesenchyme. We have specifically deleted the beta-catenin gene in the epithelium of the pancreas and duodenum by using Pdx1-Cre mice. In agreement with Wnt pathway activity in pancreatic endocrine cells, we find a reduction in endocrine islet numbers. Our study reveals that beta-catenin deletion also affects cells in which Wnt pathway activity is not detected. Indeed, beta-catenin mutant cells have a competitive disadvantage during development that also affects the exocrine compartment. Moreover, the conditional knockout (KO) mice develop acute edematous pancreatitis perinatally due to the disruption of the epithelial structure of acini. These effects are likely to be due to the function of beta-catenin at the membrane. Mice later recover from pancreatitis and regenerate normal pancreas and duodenal villi from the wild-type (wt) cells that escape beta-catenin deletion.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
134 |
9
|
Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 2005; 123:42-55. [PMID: 16326079 DOI: 10.1016/j.mod.2005.10.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/25/2023]
Abstract
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
116 |
10
|
Grapin-Botton A, Bonnin MA, McNaughton LA, Krumlauf R, Le Douarin NM. Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 1995; 121:2707-21. [PMID: 7555700 DOI: 10.1242/dev.121.9.2707] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we have analysed the expression of Hoxb-4, Hoxb-1, Hoxa-3, Hoxb-3, Hoxa-4 and Hoxd-4 in the neural tube of chick and quail embryos after rhombomere (r) heterotopic transplantations within the rhombencephalic area. Grafting experiments were carried out at the 5-somite stage, i.e. before rhombomere boundaries are visible. They were preceeded by the establishment of the precise fate map of the rhombencephalon in order to determine the presumptive territory corresponding to each rhombomere. When a rhombomere is transplanted from a caudal to a more rostral position it expresses the same set of Hox genes as in situ. By contrast in many cases, if rhombomeres are transplanted from rostral to caudal their Hox gene expression pattern is modified. They express genes normally activated at the new location of the explant, as evidenced by unilateral grafting. This induction occurs whether transplantation is carried out before or after rhombomere boundary formation. Moreover, the fate of the cells of caudally transplanted rhombomeres is modified: the rhombencephalic nuclei in the graft develop according to the new location as shown for an r5/6 to r8 transplantation. Transplantation of 5 consecutive rhombomeres (i.e. r2 to r6), to the r8 level leads to the induction of Hoxb-4 in the two posteriormost rhombomeres but not in r2,3,4. Transplantations to more caudal regions (posterior to somite 3) result in some cases in the induction of Hoxb-4 in the whole transplant. Neither the mesoderm lateral to the graft nor the notochord is responsible for the induction. Thus, the inductive signal emanates from the neural tube itself, suggesting that planar signalling and predominance of posterior properties are involved in the patterning of the neural primordium.
Collapse
|
|
30 |
113 |
11
|
Couly G, Grapin-Botton A, Coltey P, Le Douarin NM. The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Development 1996; 122:3393-407. [PMID: 8951056 DOI: 10.1242/dev.122.11.3393] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mesencephalic and rhombencephalic levels of origin of the hypobranchial skeleton (lower jaw and hyoid bone) within the neural fold have been determined at the 5-somite stage with a resolution corresponding to each single rhombomere, by means of the quail-chick chimera technique. Expression of certain Hox genes (Hoxa-2, Hoxa-3 and Hoxb-4) was recorded in the branchial arches of chick and quail embryos at embryonic days 3 (E3) and E4. This was a prerequisite for studying the regeneration capacities of the neural crest, after the dorsal neural tube was resected at the mesencephalic and rhombencephalic level. We found first that excisions at the 5-somite stage extending from the midmesencephalon down to r8 are followed by the regeneration of neural crest cells able to compensate for the deficiencies so produced. This confirmed the results of previous authors who made similar excisions at comparable (or older) developmental stages. When a bilateral excision was followed by the unilateral homotopic graft of the dorsal neural tube from a quail embryo, thus mimicking the situation created by a unilateral excision, we found that the migration of the grafted unilateral neural crest (quail-labelled) is bilateral and compensates massively for the missing crest derivatives. The capacity of the intermediate and ventral neural tube to yield neural crest cells was tested by removing the chick rhombencephalic neural tube and replacing it either uni- or bilaterally with a ventral tube coming from a stage-matched quail. No neural crest cells exited from the ventral neural tube but no deficiency in neural crest derivatives was recorded. Crest cells were found to regenerate from the ends of the operated region. This was demonstrated by grafting fragments of quail neural fold at the extremities of the excised territory. Quail neural crest cells were seen migrating longitudinally from both the rostral and caudal ends of the operated region and filling the branchial arches located inbetween. Comparison of the behaviour of neural crest cells in this experimental situation with that showed by their normal fate map revealed that crest cells increase their proliferation rate and change their migratory behaviour without modifying their Hox code.
Collapse
|
|
29 |
111 |
12
|
Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn 2011; 240:589-604. [PMID: 21287656 DOI: 10.1002/dvdy.22544] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2010] [Indexed: 12/23/2022] Open
Abstract
During development, pancreatic endocrine cells are specified within the pancreatic epithelium. They subsequently delaminate out of the epithelium and cluster in the mesenchyme to form the islets of Langerhans. Neurogenin3 (Ngn3) is a transcription factor required for the differentiation of all endocrine cells and we investigated its role in their delamination. We observed in the mouse pancreas that most Ngn3-positive cells have lost contact with the lumen of the epithelium, showing that the delamination from the progenitor layer is initiated in endocrine progenitors. Subsequently, in both mouse and chick newly born endocrine cells at the periphery of the epithelium strongly decrease E-cadherin, break-down the basal lamina and cluster into islets of Langerhans. Repression of E-cadherin is sufficient to promote delamination from the epithelium. We further demonstrate that Ngn3 indirectly controls Snail2 protein expression post-transcriptionally to repress E-cadherin. In the chick embryo, Ngn3 independently controls epithelium delamination and differentiation programs.
Collapse
|
Journal Article |
14 |
111 |
13
|
Tsonkova VG, Sand FW, Wolf XA, Grunnet LG, Kirstine Ringgaard A, Ingvorsen C, Winkel L, Kalisz M, Dalgaard K, Bruun C, Fels JJ, Helgstrand C, Hastrup S, Öberg FK, Vernet E, Sandrini MPB, Shaw AC, Jessen C, Grønborg M, Hald J, Willenbrock H, Madsen D, Wernersson R, Hansson L, Jensen JN, Plesner A, Alanentalo T, Petersen MBK, Grapin-Botton A, Honoré C, Ahnfelt-Rønne J, Hecksher-Sørensen J, Ravassard P, Madsen OD, Rescan C, Frogne T. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol Metab 2018; 8:144-157. [PMID: 29307512 PMCID: PMC5985049 DOI: 10.1016/j.molmet.2017.12.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. METHODS EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. RESULTS Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. CONCLUSIONS Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates.
Collapse
|
Validation Study |
7 |
97 |
14
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
93 |
15
|
Eichmann A, Grapin-Botton A, Kelly L, Graf T, Le Douarin NM, Sieweke M. The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mech Dev 1997; 65:111-22. [PMID: 9256349 DOI: 10.1016/s0925-4773(97)00063-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recessive mouse mutation kreisler affects hindbrain segmentation and inner ear development in homozygous mice. The mouse gene affected by the mutation was found to encode a basic domain leucine-zipper (bZIP)-type transcription factor of the Maf-family named kr (Cordes, S.P. and Barsh, G.S. (1994) Cell 79, 1025-1034). The avian bZIP transcription factor mafB, which shows high homology to kr, has been identified as an interaction partner of c-Ets 1 (Sieweke, M.H., Tekotte, M.H., Frampton, J. and Graf, T. (1996) Cell 85, 49-60). Here we demonstrate by Southern blot analysis that mafB is the avian homologue of kr, and present a detailed pattern of its expression during avian and murine embryonic development. Consistent with the kreisler phenotype, mafB is expressed in avians in the tissues which are affected by the mouse mutation: rhombomeres 5 and 6 (r5 and r6) and the neural crest derived from these rhombomeres. However, our analysis reveals a variety of additional expression sites: mafB/kr expression persists in vestibular and acoustic nuclei and is also observed in differentiating neurons of the spinal cord and brain stem. Restricted expression sites are found in the mesonephros, the perichondrium, and in the hemopoietic system. Since these expression sites are conserved between mouse and chicken we reexamined homozygous kreisler mice for unrevealed phenotypes in the hemopoietic system. However, peritoneal macrophages from homozygous kreisler mice were found to be functionally normal and still expressed mafB/kr. Other adult tissues examined from homozygous kreisler mice had also not lost mafB/kr expression. Our results thus indicate that the kreisler mutation involves a tissue specific gene inactivation and suggest additional roles for mafB/kr in later developmental and differentiation processes that are not revealed by the mutation.
Collapse
|
|
28 |
90 |
16
|
Bayha E, Jørgensen MC, Serup P, Grapin-Botton A. Retinoic acid signaling organizes endodermal organ specification along the entire antero-posterior axis. PLoS One 2009; 4:e5845. [PMID: 19516907 PMCID: PMC2690404 DOI: 10.1371/journal.pone.0005845] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 04/24/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Endoderm organ primordia become specified between gastrulation and gut tube folding in Amniotes. Although the requirement for RA signaling for the development of a few individual endoderm organs has been established a systematic assessment of its activity along the entire antero-posterior axis has not been performed in this germ layer. METHODOLOGY/PRINCIPAL FINDINGS RA is synthesized from gastrulation to somitogenesis in the mesoderm that is close to the developing gut tube. In the branchial arch region specific levels of RA signaling control organ boundaries. The most anterior endoderm forming the thyroid gland is specified in the absence of RA signaling. Increasing RA in anterior branchial arches results in thyroid primordium repression and the induction of more posterior markers such as branchial arch Hox genes. Conversely reducing RA signaling shifts Hox genes posteriorly in endoderm. These results imply that RA acts as a caudalizing factor in a graded manner in pharyngeal endoderm. Posterior foregut and midgut organ primordia also require RA, but exposing endoderm to additional RA is not sufficient to expand these primordia anteriorly. We show that in chick, in contrast to non-Amniotes, RA signaling is not only necessary during gastrulation, but also throughout gut tube folding during somitogenesis. Our results show that the induction of CdxA, a midgut marker, and pancreas induction require direct RA signaling in endoderm. Moreover, communication between CdxA(+) cells is necessary to maintain CdxA expression, therefore synchronizing the cells of the midgut primordium. We further show that the RA pathway acts synergistically with FGF4 in endoderm patterning rather than mediating FGF4 activity. CONCLUSIONS/SIGNIFICANCE Our work establishes that retinoic acid (RA) signaling coordinates the position of different endoderm organs along the antero-posterior axis in chick embryos and could serve as a basis for the differentiation of specific endodermal organs from ES cells.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
88 |
17
|
Kartikasari AER, Zhou JX, Kanji MS, Chan DN, Sinha A, Grapin-Botton A, Magnuson MA, Lowry WE, Bhushan A. The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO J 2013; 32:1393-408. [PMID: 23584530 DOI: 10.1038/emboj.2013.78] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/13/2013] [Indexed: 02/07/2023] Open
Abstract
Stem cell differentiation depends on transcriptional activation driven by lineage-specific regulators as well as changes in chromatin organization. However, the coordination of these events is poorly understood. Here, we show that T-box proteins team up with chromatin modifying enzymes to drive the expression of the key lineage regulator, Eomes during endodermal differentiation of embryonic stem (ES) cells. The Eomes locus is maintained in a transcriptionally poised configuration in ES cells. During early differentiation steps, the ES cell factor Tbx3 associates with the histone demethylase Jmjd3 at the enhancer element of the Eomes locus to allow enhancer-promoter interactions. This spatial reorganization of the chromatin primes the cells to respond to Activin signalling, which promotes the binding of Jmjd3 and Eomes to its own bivalent promoter region to further stimulate Eomes expression in a positive feedback loop. In addition, Eomes activates a transcriptional network of core regulators of endodermal differentiation. Our results demonstrate that Jmjd3 sequentially associates with two T-box factors, Tbx3 and Eomes to drive stem cell differentiation towards the definitive endoderm lineage.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
77 |
18
|
Cortijo C, Gouzi M, Tissir F, Grapin-Botton A. Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep 2012. [PMID: 23177622 DOI: 10.1016/j.celrep.2012.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Planar cell polarity (PCP) refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal that tridimensional organization and collective communication of cells are needed in the pancreatic epithelium in order to generate appropriate numbers of endocrine cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
72 |
19
|
Grapin-Botton A, Bonnin MA, Le Douarin NM. Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group. Development 1997; 124:849-59. [PMID: 9043066 DOI: 10.1242/dev.124.4.849] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been previously shown that Hox gene expression in the rhombencephalon is controlled by environmental cues. Thus posterior transposition of anterior rhombomeres to the r7/8 level results in the activation of Hox genes of the four first paralog groups and in homeotic transformations of the neuroepithelial fate according to its position along the anteroposterior axis. We demonstrate here that although the anteroposterior levels of r2 to r6 express Hox genes they do not have inducing activity on more anterior territories. If transposed at the posterior rhombencephalon and trunk level, however, the same anterior regions are able to express Hox gene such as Hoxa-2, a-3 or b-4. We also provide evidence that these signals are transferred by two paths: one vertical, arising from the paraxial mesoderm, and one planar, travelling in the neural epithelium. The competence to express Hox genes extends up to the forebrain and midbrain but expression of Hox genes does not preclude Otx2 expression in these territories and results only in slight changes in their phenotypes. Similarly, rhombomeres transplanted to posterior truncal levels turned out to be able to express posterior genes of the first eight paralog groups to the exclusion of others located downstream in the Hox genes genomic clusters. This suggests that the neural tube is divided into large territories characterized by different Hox gene regulatory features.
Collapse
|
|
28 |
68 |
20
|
Grapin-Botton A. Ductal cells of the pancreas. Int J Biochem Cell Biol 2005; 37:504-10. [PMID: 15618005 DOI: 10.1016/j.biocel.2004.07.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/16/2004] [Accepted: 07/16/2004] [Indexed: 12/28/2022]
Abstract
Ductal cells of the pancreas form the epithelial lining of the branched tubes that deliver enzymes produced by pancreatic acinar cells into the duodenum. In addition, these cells secrete bicarbonate that neutralizes stomach acidity. During development, epithelium of endodermal origin evaginates from the future duodenum area and invades the mesenchyme to form a complex branched network. All endocrine, acinar and ductal cells arise from common precursors in this epithelial structure. Adult ductal cells share some similarities with embryonic primitive ducts and may retain the ability to generate endocrine cells in the adult. Based on challenged pancreas regeneration experiments, the adult ductal cells have been proposed to be pancreatic stem cells but their role in normal endocrine cell turnover has recently been challenged. Manipulating their ability to give rise to endocrine cells may open new avenues in the treatment of diabetes and therefore they have recently been under scrutiny. In addition, in the main form of pancreatic cancer, pancreas adenocarcinoma, tumor cells share similarities with ductal cells. The secrets of an appropriate therapy for this deadly cancer may thus reside in the biology of ductal cells.
Collapse
|
Review |
20 |
64 |
21
|
Kraus MRC, Clauin S, Pfister Y, Di Maïo M, Ulinski T, Constam D, Bellanné-Chantelot C, Grapin-Botton A. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum Mutat 2011; 33:86-90. [PMID: 21922595 DOI: 10.1002/humu.21610] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/29/2011] [Indexed: 01/22/2023]
Abstract
Bicaudal C homologue 1 (Bicc1) knockout in mice causes polycystic kidney disease and pancreas development defects, including a reduction in insulin-producing β-cells and ensuing diabetes. We therefore screened 137 patients with renal abnormalities or association of early-onset diabetes and renal disease for genetic alterations in BICC1. We identified two heterozygous mutations, one nonsense in the first K Homology (KH) domain and one missense in the sterile alpha motif (SAM) domain. In mice, Bicc1 blocks canonical Wnt signaling, mostly via its SAM domain. We show that the human BICC1, similar to its mouse counterpart, blocks canonical Wnt signaling. The nonsense mutation identified results in a complete loss of Wnt inhibitory activity. The point mutation in the SAM domain has a similar effect to a complete SAM domain deletion, resulting in a 22% loss of activity.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
59 |
22
|
Ramond C, Beydag-Tasöz BS, Azad A, van de Bunt M, Petersen MBK, Beer NL, Glaser N, Berthault C, Gloyn AL, Hansson M, McCarthy MI, Honoré C, Grapin-Botton A, Scharfmann R. Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development 2018; 145:dev.165480. [PMID: 30042179 PMCID: PMC6124547 DOI: 10.1242/dev.165480] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
Abstract
To decipher the populations of cells present in the human fetal pancreas and their lineage relationships, we developed strategies to isolate pancreatic progenitors, endocrine progenitors and endocrine cells. Transcriptome analysis of the individual populations revealed a large degree of conservation among vertebrates in the drivers of gene expression changes that occur at different steps of differentiation, although notably, sometimes, different members of the same gene family are expressed. The transcriptome analysis establishes a resource to identify novel genes and pathways involved in human pancreas development. Single-cell profiling further captured intermediate stages of differentiation and enabled us to decipher the sequence of transcriptional events occurring during human endocrine differentiation. Furthermore, we evaluate how well individual pancreatic cells derived in vitro from human pluripotent stem cells mirror the natural process occurring in human fetuses. This comparison uncovers a few differences at the progenitor steps, a convergence at the steps of endocrine induction, and the current inability to fully resolve endocrine cell subtypes in vitro.
Collapse
|
research-article |
7 |
59 |
23
|
Grapin-Botton A, Bonnin MA, Sieweke M, Le Douarin NM. Defined concentrations of a posteriorizing signal are critical for MafB/Kreisler segmental expression in the hindbrain. Development 1998; 125:1173-81. [PMID: 9477316 DOI: 10.1242/dev.125.7.1173] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been shown by using the quail/chick chimera system that Hox gene expression in the hindbrain is influenced by positional signals arising from the environment. In order to decipher the pathway that leads to Hox gene induction, we have investigated whether a Hox gene regulator, the leucine zipper transcription factor MafB/Kr, is itself transcriptionally regulated by the environmental signals. This gene is normally expressed in rhombomeres (r) 5 and 6 and their associated neural crest. MafB/Kr expression is maintained in r5/6 when grafted into the environment of r3/4. On the contrary, the environment of rhombomeres 7/8 represses MafB/Kr expression. Thus, as previously shown for the expression of Hox genes, MafB/Kr expression is regulated by a posterior-dominant signal, which in this case induces the loss of expression of this gene. We also show that the posterior signal can be transferred to the r5/6 neuroepithelium by posterior somites (somites 7 to 10) grafted laterally to r5/6. At the r4 level, the same somites induce MafB/Kr in r4, leading it to behave like r5/6. The posterior environment regulates MafB/Kr expression in the neural crest as it does in the corresponding hindbrain level, showing that some positional regulatory mechanisms are shared by neural tube and neural crest cells. Retinoic acid beads mimic the effect produced by the somites in repressing MafB/Kr in r5/6 and progressively inducing it more rostrally as its concentration increases. We therefore propose that the MafB/Kr expression domain is defined by a molecule unevenly distributed in the paraxial mesoderm. This molecule would allow the expression of the MafB/Kr gene in a narrow window of concentration by activating its expression at a definite threshold and repressing it at higher levels, accounting for its limited domain of expression in only two rhombomeres. It thus appears that the regulation of MafB/Kr expression in the rhombomeres could be controlled by the same posteriorizing factor(s) as Hox genes.
Collapse
|
|
27 |
56 |
24
|
Grapin-Botton A. Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin's PhD thesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2005; 49:335-47. [PMID: 15906249 DOI: 10.1387/ijdb.041946ag] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review is dedicated to the work on chick digestive tract organogenesis that Nicole Le Douarin performed as a PhD student under the direction of Etienne Wolf. I discuss how she laid the grounds for future work by establishing fate maps at somitic stages, by describing morphogenetic movements between germ layers and by pointing to signaling events between endoderm and mesoderm. Her inspiring work was extended by others, in particular at the molecular level, leading to a better understanding of antero-posterior patterning in the digestive tract. Antero-posterior patterning of endoderm is initiated at gastrulation when future anterior and posterior endoderm ingress at different times and accordingly express different genes. Plasticity is however maintained at somite stages and even later, when organ primordia can be delineated. There is a cross-talk between endoderm and mesoderm and the two layers exchange instructive signals that induce specific antero-posterior identities as well as permissive signals required for organogenesis from previously patterned fields. Recent experiments suggest that several signaling molecules involved in neural tube antero-posterior patterning are also instrumental in the digestive tract including retinoic acid and FGF4.
Collapse
|
Review |
20 |
53 |
25
|
Petersen MBK, Azad A, Ingvorsen C, Hess K, Hansson M, Grapin-Botton A, Honoré C. Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation. Stem Cell Reports 2017; 9:1246-1261. [PMID: 28919263 PMCID: PMC5639261 DOI: 10.1016/j.stemcr.2017.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/05/2023] Open
Abstract
The production of insulin-producing β cells from human embryonic stem cells (hESCs) in vitro represents a promising strategy for a cell-based therapy for type 1 diabetes mellitus. To explore the cellular heterogeneity and temporal progression of endocrine progenitors and their progeny, we performed single-cell qPCR on more than 500 cells across several stages of in vitro differentiation of hESCs and compared them with human islets. We reveal distinct subpopulations along the endocrine differentiation path and an early lineage bifurcation toward either polyhormonal cells or β-like cells. We uncover several similarities and differences with mouse development and reveal that cells can take multiple paths to the same differentiation state, a principle that could be relevant to other systems. Notably, activation of the key β-cell transcription factor NKX6.1 can be initiated before or after endocrine commitment. The single-cell temporal resolution we provide can be used to improve the production of functional β cells.
Single-cell qPCR identifies subpopulations on hESC to endocrine differentiation paths All hESC-derived endocrine cells transcribe multiple hormones in vitro A subpopulation of hESC-derived INS+ cells transcriptionally resembles adult β cells NKX6.1 onset before or after endocrine commitment leads to β-cell differentiation
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
51 |