1
|
Simon DJ, Madison JM, Conery AL, Thompson-Peer KL, Soskis M, Ruvkun GB, Kaplan JM, Kim JK. The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 2008; 133:903-15. [PMID: 18510933 DOI: 10.1016/j.cell.2008.04.035] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/06/2008] [Accepted: 04/10/2008] [Indexed: 12/12/2022]
Abstract
We show that miR-1, a conserved muscle-specific microRNA, regulates aspects of both pre- and postsynaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered presynaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in presynaptic function.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
151 |
2
|
Moy TI, Conery AL, Larkins-Ford J, Wu G, Mazitschek R, Casadei G, Lewis K, Carpenter AE, Ausubel FM. High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 2009; 4:527-33. [PMID: 19572548 DOI: 10.1021/cb900084v] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans is a unique whole animal model system for identifying small molecules with in vivo anti-infective properties. C. elegans can be infected with a broad range of human pathogens, including Enterococcus faecalis, an important human nosocomial pathogen. Here, we describe an automated, high-throughput screen of 37,200 compounds and natural product extracts for those that enhance survival of C. elegans infected with E. faecalis. Using a robot to dispense live, infected animals into 384-well plates and automated microscopy and image analysis, we identified 28 compounds and extracts not previously reported to have antimicrobial properties, including six structural classes that cure infected C. elegans animals but do not affect the growth of the pathogen in vitro, thus acting by a mechanism of action distinct from antibiotics currently in clinical use.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
147 |
3
|
Rajamuthiah R, Fuchs BB, Conery AL, Kim W, Jayamani E, Kwon B, Ausubel FM, Mylonakis E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS One 2015; 10:e0124595. [PMID: 25897961 PMCID: PMC4405337 DOI: 10.1371/journal.pone.0124595] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/16/2015] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
118 |
4
|
Wählby C, Kamentsky L, Liu ZH, Riklin-Raviv T, Conery AL, O'Rourke EJ, Sokolnicki KL, Visvikis O, Ljosa V, Irazoqui JE, Golland P, Ruvkun G, Ausubel FM, Carpenter AE. An image analysis toolbox for high-throughput C. elegans assays. Nat Methods 2012; 9:714-6. [PMID: 22522656 PMCID: PMC3433711 DOI: 10.1038/nmeth.1984] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/07/2012] [Indexed: 11/08/2022]
Abstract
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available through the open-source CellProfiler project and enables objective scoring of whole-worm high-throughput image-based assays of C. elegans for the study of diverse biological pathways that are relevant to human disease.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
117 |
5
|
Okoli I, Coleman JJ, Tempakakis E, An WF, Holson E, Wagner F, Conery AL, Larkins-Ford J, Wu G, Stern A, Ausubel FM, Mylonakis E. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS One 2009; 4:e7025. [PMID: 19750012 PMCID: PMC2737148 DOI: 10.1371/journal.pone.0007025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/16/2009] [Indexed: 11/18/2022] Open
Abstract
Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans–C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
78 |
6
|
Kim W, Conery AL, Rajamuthiah R, Fuchs BB, Ausubel FM, Mylonakis E. Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy. PLoS One 2015; 10:e0127640. [PMID: 26039584 PMCID: PMC4454602 DOI: 10.1371/journal.pone.0127640] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
Persisters are a subpopulation of normal bacterial cells that show tolerance to conventional antibiotics. Persister cells are responsible for recalcitrant chronic infections and new antibiotics effective against persisters would be a major development in the treatment of these infections. Using the reporter dye SYTOX Green that only stains cells with permeabilized membranes, we developed a fluorescence-based screening assay in a 384-well format for identifying compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA) persisters. The assay proved robust and suitable for high throughput screening (Z`-factor: >0.7). In screening a library of hits from a previous screen, which identified compounds that had the ability to block killing of the nematode Caenorhabditis by MRSA, we discovered that the low molecular weight compound NH125, a bacterial histidine kinase inhibitor, kills MRSA persisters by causing cell membrane permeabilization, and that 5 μg/mL of the compound can kill all cells to the limit of detection in a 108 CFU/mL culture of MRSA persisters within 3h. Furthermore, NH125 disrupts 50% of established MRSA biofilms at 20 μg/mL and completely eradicates biofilms at 160 μg/mL. Our results suggest that the SYTOX Green screening assay is suitable for large-scale projects to identify small molecules effective against MRSA persisters and should be easily adaptable to a broad range of pathogens that form persisters. Since NH125 has strong bactericidal properties against MRSA persisters and high selectivity to bacteria, we believe NH125 is a good anti-MRSA candidate drug that should be further evaluated.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
49 |
7
|
Pukkila-Worley R, Feinbaum RL, McEwan DL, Conery AL, Ausubel FM. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog 2014; 10:e1004143. [PMID: 24875643 PMCID: PMC4038581 DOI: 10.1371/journal.ppat.1004143] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/11/2014] [Indexed: 12/23/2022] Open
Abstract
Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses. Metazoans respond to environmental threats in part through conserved pathways that coordinate protective transcriptional responses. During infection with an invasive pathogen, for example, innate immune pathways regulate the secretion of antimicrobial immune effectors. Likewise, exposure to toxic molecules leads to the induction of detoxification mechanisms that protect the host from the deleterious effects of these compounds. Here we find that a conserved transcriptional regulator MDT-15/MED15 links xenobiotic detoxification and immune responses in a manner that is important for protection during bacterial infection. We also show that MDT-15/MED15 is necessary for the host to resist the lethal effects of secreted toxins produced by pathogenic bacteria. Rapid coordination of these protective host responses through MDT-15/MED15 may therefore be part of a conserved survival strategy in the wild.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
44 |
8
|
Conery AL, Larkins-Ford J, Ausubel FM, Kirienko NV. High-throughput screening for novel anti-infectives using a C. elegans pathogenesis model. ACTA ACUST UNITED AC 2014; 6:25-37. [PMID: 24652621 DOI: 10.1002/9780470559277.ch130160] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent history, the nematode Caenorhabditis elegans has provided a compelling platform for the discovery of novel antimicrobial drugs. In this protocol, we present an automated, high-throughput C. elegans pathogenesis assay, which can be used to screen for anti-infective compounds that prevent nematodes from dying due to Pseudomonas aeruginosa. New antibiotics identified from such screens would be promising candidates for treatment of human infections, and also can be used as probe compounds to identify novel targets in microbial pathogenesis or host immunity.
Collapse
|
Journal Article |
11 |
39 |
9
|
Iscla I, Wray R, Blount P, Larkins-Ford J, Conery AL, Ausubel FM, Ramu S, Kavanagh A, Huang JX, Blaskovich MA, Cooper MA, Obregon-Henao A, Orme I, Tjandra ES, Stroeher UH, Brown MH, Macardle C, van Holst N, Ling Tong C, Slattery AD, Gibson CT, Raston CL, Boulos RA. A new antibiotic with potent activity targets MscL. J Antibiot (Tokyo) 2015; 68:453-62. [PMID: 25649856 PMCID: PMC4430313 DOI: 10.1038/ja.2015.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022]
Abstract
The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections.
Collapse
|
research-article |
10 |
37 |
10
|
Abstract
The nematode Caenorhabditis elegans shows a high degree of conservation of molecular pathways related to human disease, yet is only 1-mm long and can be considered as a microorganism. Because of the development of a simple but systematic RNA-interference (RNAi) methodology, C. elegans is the only metazoan in which the impact of "knocking-down" nearly every gene in the genome can be analyzed in a whole living animal. Both functional genomic studies and chemical screens can be carried out using C. elegans in vivo screens in a context that preserves intact cell-to-cell communication, neuroendocrine signaling, and every aspect of the animal's metabolism necessary to survive and reproduce in lab conditions. This feature enables studies that are impossible to undertake in cell-culture-based screens. Although genome-wide RNAi screens and limited small-molecule screens have been successfully performed in C. elegans, they are typically extremely labor-intensive. Furthermore, technical limitations have precluded quantitative measurements and time-resolved analyses.In this chapter, we provide detailed protocols to carry out automated high-throughput whole-animal RNAi and chemical screens. We describe methods to perform screens in solid and liquid media, in 96 and 384-well format, respectively. We describe the use of automated handling, sorting, and microscopy of worms. Finally, we give information about worm-adapted image analysis tools to quantify phenotypes. The technology presented here facilitates large-scale C. elegans genetic and chemical screens and it is expected to help shed light on relevant biological areas.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
34 |
11
|
Kim W, Steele AD, Zhu W, Csatary EE, Fricke N, Dekarske MM, Jayamani E, Pan W, Kwon B, Sinitsa IF, Rosen JL, Conery AL, Fuchs BB, Vlahovska PM, Ausubel FM, Gao H, Wuest WM, Mylonakis E. Discovery and Optimization of nTZDpa as an Antibiotic Effective Against Bacterial Persisters. ACS Infect Dis 2018; 4:1540-1545. [PMID: 30132650 DOI: 10.1021/acsinfecdis.8b00161] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Conventional antibiotics are not effective in treating infections caused by drug-resistant or persistent nongrowing bacteria, creating a dire need for the development of new antibiotics. We report that the small molecule nTZDpa, previously characterized as a nonthiazolidinedione peroxisome proliferator-activated receptor gamma partial agonist, kills both growing and persistent Staphylococcus aureus cells by lipid bilayer disruption. S. aureus exhibited no detectable development of resistance to nTZDpa, and the compound acted synergistically with aminoglycosides. We improved both the potency and selectivity of nTZDpa against MRSA membranes compared to mammalian membranes by leveraging synthetic chemistry guided by molecular dynamics simulations. These studies provide key insights into the design of selective and potent membrane-active antibiotics effective against bacterial persisters.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
32 |
12
|
Rajamuthiah R, Jayamani E, Conery AL, Fuchs BB, Kim W, Johnston T, Vilcinskas A, Ausubel FM, Mylonakis E. A Defensin from the Model Beetle Tribolium castaneum Acts Synergistically with Telavancin and Daptomycin against Multidrug Resistant Staphylococcus aureus. PLoS One 2015; 10:e0128576. [PMID: 26062137 PMCID: PMC4465704 DOI: 10.1371/journal.pone.0128576] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023] Open
Abstract
The red flour beetle Tribolium castaneum is a common insect pest and has been established as a model beetle to study insect development and immunity. This study demonstrates that defensin 1 from T. castaneum displays in vitro and in vivo antimicrobial activity against drug resistant Staphylococcus aureus strains. The minimum inhibitory concentration (MIC) of defensin 1 against 11 reference and clinical staphylococcal isolates was between 16–64 μg/ml. The putative mode of action of the defensin peptide is disruption of the bacterial cell membrane. The antibacterial activity of defensin 1 was attenuated by salt concentrations of 1.56 mM and 25 mM for NaCl and CaCl2 respectively. Treatment of defensin 1 with the reducing agent dithiothreitol (DTT) at concentrations 1.56 to 3.13 mM abolished the antimicrobial activity of the peptide. In the presence of subinhibitory concentrations of antibiotics that also target the bacterial cell envelope such as telavancin and daptomycin, the MIC of the peptide was as low as 1 μg/ml. Moreover, when tested against an S. aureus strain that was defective in D-alanylation of the cell wall, the MIC of the peptide was 0.5 μg/ml. Defensin 1 exhibited no toxicity against human erythrocytes even at 400 μg/ml. The in vivo activity of the peptide was validated in a Caenorhabditis elegans-MRSA liquid infection assay. These results suggest that defensin 1 behaves similarly to other cationic AMPs in its mode of action against S. aureus and that the activity of the peptide can be enhanced in combination with other antibiotics with similar modes of action or with compounds that have the ability to decrease D-alanylation of the bacterial cell wall.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
29 |
13
|
McEwan DL, Feinbaum RL, Stroustrup N, Haas W, Conery AL, Anselmo A, Sadreyev R, Ausubel FM. Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway. BMC Biol 2016; 14:105. [PMID: 27927200 PMCID: PMC5143455 DOI: 10.1186/s12915-016-0334-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. RESULTS We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. CONCLUSIONS NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.
Collapse
|
research-article |
9 |
26 |
14
|
Wählby C, Riklin-Raviv T, Ljosa V, Conery AL, Golland P, Ausubel FM, Carpenter AE. RESOLVING CLUSTERED WORMS VIA PROBABILISTIC SHAPE MODELS. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2010; 2010:552-555. [PMID: 21383863 DOI: 10.1109/isbi.2010.5490286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The roundworm Caenorhabditis elegans is an effective model system for biological processes such as immunity, behavior, and metabolism. Robotic sample preparation together with automated microscopy and image analysis has recently enabled high-throughput screening experiments using C. elegans. So far, such experiments have been limited to per-image measurements due to the tendency of the worms to cluster, which prevents extracting features from individual animals.We present a novel approach for the extraction of individual C. elegans from clusters of worms in high-throughput microscopy images. The key ideas are the construction of a low-dimensional shape-descriptor space and the definition of a probability measure on it. Promising segmentation results are shown.
Collapse
|
Journal Article |
15 |
26 |
15
|
Rajamuthiah R, Jayamani E, Majed H, Conery AL, Kim W, Kwon B, Fuchs BB, Kelso MJ, Ausubel FM, Mylonakis E. Antibacterial properties of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile. Bioorg Med Chem Lett 2015; 25:5203-7. [PMID: 26459212 PMCID: PMC4718707 DOI: 10.1016/j.bmcl.2015.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
The emergence of multidrug-resistant bacterial strains has heightened the need for new antimicrobial agents based on novel chemical scaffolds that are able to circumvent current modes of resistance. We recently developed a whole-animal drug-screening methodology in pursuit of this goal and now report the discovery of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC) as a novel antibacterial effective against resistant nosocomial pathogens. The minimum inhibitory concentrations (MIC) of PSPC against Staphylococcus aureus and Enterococcus faecium were 4 μg/mL and 8 μg/mL, respectively, whereas the MICs were higher against the Gram-negative bacteria Klebsiella pneumoniae (64 μg/mL), Acinetobacter baumannii (32 μg/mL), Pseudomonas aeruginosa (>64 μg/mL), and Enterobacter spp. (>64 μg/mL). However, co-treatment of PSPC with the efflux pump inhibitor phenylalanine arginyl β-naphthylamide (PAβN) or with sub-inhibitory concentrations of the lipopeptide antibiotic polymyxin B reduced the MICs of PSPC against the Gram-negative strains by >4-fold. A sulfide analog of PSPC (PSPC-1S) showed no antibacterial activity, whereas the sulfoxide analog (PSPC-6S) showed identical activity as PSPC across all strains, confirming structure-dependent activity for PSPC and suggesting a target-based mechanism of action. PSPC displayed dose dependent toxicity to both Caenorhabditis elegans and HEK-293 mammalian cells, culminating with a survival rate of 16% (100 μg/mL) and 8.5% (64 μg/mL), respectively, at the maximum tested concentration. However, PSPC did not result in hemolysis of erythrocytes, even at a concentration of 64 μg/mL. Together these results support PSPC as a new chemotype suitable for further development of new antibiotics against Gram-positive and Gram-negative bacteria.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
12 |
16
|
Halvorsen YD, Lock JP, Frias JP, Tinahones FJ, Dahl D, Conery AL, Freeman MW. A 96-week, double-blind, randomized controlled trial comparing bexagliflozin to glimepiride as an adjunct to metformin for the treatment of type 2 diabetes in adults. Diabetes Obes Metab 2023; 25:293-301. [PMID: 36178197 DOI: 10.1111/dom.14875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
AIM To compare the effects of bexagliflozin tablets 20 mg, with those of optimally titrated glimepiride when used to treat adults with type 2 diabetes mellitus (T2DM) inadequately controlled by metformin. METHODS Adults with type 2 diabetes (n = 426) taking metformin, and with a glycated haemoglobin (HbA1c) level between 53 and 91 mmol/mol [7.0% and 10.5%], were randomized to receive bexagliflozin tablets 20 mg or titrated glimepiride. The primary endpoint was the intergroup difference in the change from baseline to Week 60 in percent HbA1c. Secondary endpoints included changes from baseline in body mass and systolic blood pressure (SBP), and proportion of subjects experiencing severe or documented symptomatic hypoglycaemia. RESULTS The intergroup difference in percent HbA1c (bexagliflozin minus glimepiride) from baseline to Week 60 was -0.55 mmol/mol (95% confidence interval [CI] -2.30, 1.20)-[-0.05% (-0.21, 0.11)], establishing noninferiority of bexagliflozin to glimepiride by the prespecified margin of 3.83 mmol/mol [0.35%]. Prespecified tests gave, in order, a difference in body mass of -4.31 kg (95% CI -5.10, -3.52; P < 0.0001), a difference in SBP of -6.53 mm Hg (95% CI -10.56, -2.51; P = 0.0008), and an odds ratio of 0.12 (95% CI 0.05, 0.28; P < 0.0001) for severe or documented symptomatic hypoglycaemia. At the follow-up visit the mean difference in estimated glomerular filtration rate (eGFR) between arms was 6.05 mL min-1 per 1.73 m2 (95% CI, 3.24, 8.87; P < 0.0001). CONCLUSIONS Bexagliflozin was noninferior to glimepiride in lowering HbA1c, was superior to glimepiride for decreases in body mass and SBP, and was associated with significantly fewer hypoglycaemic events than glimepiride. A favourable effect on eGFR was observed.
Collapse
|
Randomized Controlled Trial |
2 |
12 |
17
|
Dolla NK, Chen C, Larkins-Ford J, Rajamuthiah R, Jagadeesan S, Conery AL, Ausubel FM, Mylonakis E, Bremner JB, Lewis K, Kelso MJ. On the Mechanism of Berberine-INF55 (5-Nitro-2-phenylindole) Hybrid Antibacterials. Aust J Chem 2014; 67:1471-1480. [PMID: 26806960 DOI: 10.1071/ch14426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Berberine-INF55 hybrids are a promising class of antibacterials that combine berberine and the NorA multidrug resistance pump inhibitor INF55 (5-nitro-2-phenylindole) together in one molecule via a chemically stable linkage. Previous studies demonstrated the potential of these compounds for countering efflux-mediated antibacterial drug resistance but they didn't establish whether the compounds function as originally intended, i.e. with the berberine moiety providing antibacterial activity and the attached INF55 component independently blocking multidrug resistance pumps, thereby enhancing the activity of berberine by reducing its efflux. We hypothesised that if the proposed mechanism is correct, then hybrids carrying more potent INF55 pump inhibitor structures should show enhanced antibacterial effects relative to those bearing weaker inhibitors. Two INF55 analogues showing graded reductions in NorA inhibitory activity compared with INF55 were identified and their corresponding berberine-INF55 hybrids carrying equivalent INF55 inhibitor structures synthesised. Multiple assays comparing the antibacterial effects of the hybrids and their corresponding berberine-INF55 analogue combinations showed that the three hybrids all show very similar activities, leading us to conclude that the antibacterial mechanism(s) of berberine-INF55 hybrids is different from berberine-INF55 combinations.
Collapse
|
Journal Article |
11 |
11 |
18
|
Halvorsen YD, Conery AL, Lock JP, Zhou W, Freeman MW. Bexagliflozin as an adjunct to metformin for the treatment of type 2 diabetes in adults: A 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2023; 25:2954-2962. [PMID: 37409573 DOI: 10.1111/dom.15192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
AIM To evaluate the relative safety and effectiveness of bexagliflozin as an adjunct to metformin for the treatment of type 2 diabetes mellitus. METHODS In total, 317 participants were randomized to receive bexagliflozin or placebo plus metformin. The primary endpoint was the change in glycated haemoglobin (HbA1c) from baseline to week 24, with secondary endpoints for systolic blood pressure (SBP), fasting plasma glucose and weight loss. An open label arm enrolled participants with HbA1c >10.5% and was analysed separately. RESULTS The mean change in HbA1c was -1.09% (95% CI -1.24%, -0.94%) in the bexagliflozin arm and -0.56% (-0.71%, -0.41%) in the placebo arm, a difference of -0.53% (-0.74%, -0.32%; p < .0001). Excluding observations after rescue medication, the intergroup difference was -0.70% (-0.92, -0.48; p < .0001). The open label group change in HbA1c was -2.82% (-3.23%, -2.41%). Placebo-adjusted changes from baseline SBP, fasting plasma glucose and body mass were -7.07 mmHg (-9.83, -4.32; p < .0001), -1.35 mmol/L (-1.83, -0.86; p < .0001) and -2.51 kg (-3.45, -1.57; p < .0001). Adverse events affected 42.4% and 47.2% of subjects in the bexagliflozin and placebo arms, respectively; fewer subjects in the bexagliflozin arm experienced serious adverse events. CONCLUSIONS Bexagliflozin produced clinically meaningful improvement in glycaemic control, estimated glomerular filtration rate and SBP when added to metformin in a population of adults with diabetes.
Collapse
|
Randomized Controlled Trial |
2 |
6 |
19
|
Levene RE, DeVincenzo J, Conery AL, Ahmad A, Or YS, Rhodin MHJ. EDP-938 Has a High Barrier to Resistance in Healthy Adults Experimentally Infected with Respiratory Syncytial Virus. J Infect Dis 2025; 231:e290-e298. [PMID: 39441691 PMCID: PMC11841640 DOI: 10.1093/infdis/jiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND EDP-938 is an oral once-daily RSV nucleoprotein (N) inhibitor with potent antiviral activity. In a human RSV challenge trial, EDP-938 significantly reduced viral load and symptom severity. During antiviral development, it is critical to understand the propensity for resistance to develop. In vitro studies of EDP-938 suggest a higher barrier to resistance as compared to RSV fusion inhibitors. We evaluated the development of viral resistance to EDP-938 in a human challenge trial. METHODS A subset of the 124 participants with RSV infection were chosen for genetic analysis; 159 nasal wash samples from 48 participants were analyzed using next-generation sequencing of the N gene of RSV. Of the 48 participant sampled, 37 were from EDP-938-treated and 11 were placebo-treated participants, representing 45% and 26% of the participants, respectively. The effects of treatment-emergent mutations on viral load, EDP-938 efficacy, and viral fitness were evaluated. RESULTS Two of the 37 EDP-938-treated participants with samples sequenced had treatment-emergent mutations: N:L139I and N:E112G. From in vitro analysis, N:L139I reduced sensitivity to EDP-938 by approximately 10-fold, while N:E112G had no effect. However, N:L139I was associated with a reduction in viral fitness, suggesting clinical resistance is associated with fitness costs. Neither of these variants were associated with reduced viral clearance. CONCLUSIONS In human RSV infections treated with EDP-938, emergence of RSV variants with reduced sensitivity to EDP-938 occurred in only 1 participant and was associated with reduced viral fitness. EDP-938's high barrier to resistance highlights its robust mechanism of action. CLINICAL TRIALS REGISTRATION NCT03691623.
Collapse
|
Randomized Controlled Trial |
1 |
|
20
|
Feld JJ, Lawitz E, Nguyen T, Lalezari J, Hassanein T, Martin P, Han SH, Dieterich D, Giard JM, De La Rosa G, Ahmad A, Luo E, Conery AL, Adda N. EDP-514 in healthy subjects and nucleos(t)ide reverse transcriptase inhibitor-suppressed patients with chronic hepatitis B. Antivir Ther 2022; 27:13596535221127848. [DOI: 10.1177/13596535221127848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Chronic hepatitis B (CHB) remains a major cause of morbidity and mortality. EDP-514 is a potent core inhibitor of hepatitis B virus (HBV) that reduces viral load reduction in HBV-infected chimeric mice. This first-in-human study evaluated the safety, tolerability, and pharmacokinetics (PK) of EDP-514 in healthy subjects and antiviral activity in patients with CHB. Methods In Part 1, 82 subjects received placebo or EDP-514 in fed or fasted state as single ascending doses of 50–800 mg and multiple ascending doses of 200–800 mg for 14 days. In Part 2, 24 HBV DNA-suppressed, nucleos(t)ide (NUC)-treated (i.e., NUC-suppressed) CHB patients received EDP-514 200–800 mg or placebo for 28 days. Results EDP-514 was well tolerated in healthy subjects and CHB patients with most adverse events of mild intensity. In Part 1, EDP-514 exposure increased in an approximately dose proportional manner up to 600 mg after single doses and up to 400 mg after 14-day dosing. In Part 2, EDP-514 exposure increased linearly with dose on Day 1 and Day 28, with some accumulation for Day 28 and median trough concentrations (Ctrough) approximately 20-fold above the protein-adjusted 50% effective concentration (EC50) for the dose range. Mean change in HBV RNA from baseline to Day 28 was −2.03, −1.67, −1.87, and −0.58 log U/mL in the 200 mg, 400 mg, 800 mg, and placebo CHB groups, respectively. Conclusions EDP-514 was well tolerated, had a PK profile supporting once daily dosing, and reduced HBV RNA levels in NUC-suppressed CHB patients.
Collapse
|
|
3 |
|
21
|
Yuen MF, Chuang WL, Peng CY, Jeng WJ, Su WW, Chang TT, Chen CY, Hsu YC, De La Rosa G, Ahmad A, Luo E, Conery AL. Phase 1 trial of the safety, pharmacokinetics, and antiviral activity of EDP-514 in untreated viremic chronic hepatitis B patients. Clin Mol Hepatol 2024; 30:375-387. [PMID: 38528825 PMCID: PMC11261219 DOI: 10.3350/cmh.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND/AIMS Oral EDP-514 is a potent core protein inhibitor of hepatitis B virus (HBV) replication, which produced a >4-log viral load reduction in HBV-infected chimeric mice with human liver cells. This study evaluated the safety, pharmacokinetics, and antiviral activity of three doses of EDP-514 in treatment-naive viremic patients with HBeAgpositive or -negative chronic HBV infection. METHODS Patients with HBsAg detectable at screening and at least 6 months previously were eligible. HBeAg-positive and -negative patients had a serum/plasma HBV DNA level ≥20,000 and ≥2,000 IU/mL, respectively. Twenty-five patients were randomized to EDP-514 200 (n=6), 400 (n=6) or 800 mg (n=7) or placebo (n=6) once daily for 28 days. RESULTS A dose-related increase in EDP-514 exposure (AUClast and Cmax) was observed across doses. At Day 28, mean reductions in HBV DNA were -2.9, -3.3, -3.5 and -0.2 log10 IU/mL with EDP-514 200 mg, 400 mg, 800 mg, and placebo groups, respectively. The corresponding mean change from baseline for HBV RNA levels was -2.9, -2.4, -2.0, and -0.02 log10 U/mL. No virologic failures were observed. No clinically meaningful changes from baseline were observed for HBsAg, HBeAg or HBcrAg. Nine patients reported treatment emergent adverse events of mild or moderate severity with no discontinuations, serious AEs or deaths. CONCLUSION In treatment-naïve viremic patients, oral EDP-514 was generally safe and well-tolerated, displayed PK profile supportive of once-daily dosing, and markedly reduced HBV DNA and HBV RNA.
Collapse
|
Randomized Controlled Trial |
1 |
|