1
|
Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A 1998; 95:3743-7. [PMID: 9520437 PMCID: PMC19907 DOI: 10.1073/pnas.95.7.3743] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mosquito Aedes aegypti is the world's most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species.
Collapse
|
research-article |
27 |
249 |
2
|
Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel AJ, Black WC, Gorrochotegui-Escalante N, Urdaneta-Marquez L, Sylla M, Slotman M, Murray KO, Walker C, Powell JR. Worldwide patterns of genetic differentiation imply multiple 'domestications' of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 2011; 278:2446-54. [PMID: 21227970 DOI: 10.1098/rspb.2010.2469] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single 'domestication' event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
177 |
3
|
Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Jager C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit Vectors 2018; 11:29. [PMID: 29316963 PMCID: PMC5759361 DOI: 10.1186/s13071-017-2559-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Key aspects of 36 mosquito-borne arboviruses indigenous to Africa are summarized, including lesser or poorly-known viruses which, like Zika, may have the potential to escape current sylvatic cycling to achieve greater geographical distribution and medical importance. Major vectors are indicated as well as reservoir hosts, where known. A series of current and future risk factors is addressed. It is apparent that Africa has been the source of most of the major mosquito-borne viruses of medical importance that currently constitute serious global public health threats, but that there are several other viruses with potential for international challenge. The conclusion reached is that increased human population growth in decades ahead coupled with increased international travel and trade is likely to sustain and increase the threat of further geographical spread of current and new arboviral disease.
Collapse
|
Review |
7 |
149 |
4
|
Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol 2010; 36:245-8. [PMID: 20191395 PMCID: PMC2837830 DOI: 10.1007/s10886-010-9762-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 11/26/2022]
Abstract
Odorant-binding proteins (OBPs) were discovered almost three decades ago, but there is still considerable debate regarding their role(s) in insect olfaction, particularly due to our inability to knockdown OBPs and demonstrate their direct phenotypic effects. By using RNA interference (RNAi), we reduced transcription of a major OBP gene, CquiOBP1, in the antennae of the Southern house mosquito, Culex quinquefasciatus. Previously, we had demonstrated that the mosquito oviposition pheromone (MOP) binds to CquiOBP1, which is expressed in MOP-sensitive sensilla. Antennae of RNAi-treated mosquitoes showed significantly lower electrophysiological responses to known mosquito oviposition attractants than the antennae of water-injected, control mosquitoes. While electroantennogram (EAG) responses to MOP, skatole, and indole were reduced in the knockdowns, there was no significant difference in the EAG responses from RNAi-treated and water-injected mosquito antennae to nonanal at all doses tested. These data suggest that CquiOBP1 is involved in the reception of some oviposition attractants, and that high levels of OBPs expression are essential for the sensitivity of the insect's olfactory system.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
149 |
5
|
Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 1997; 276:425-8. [PMID: 9103203 DOI: 10.1126/science.276.5311.425] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The severity of the malaria pandemic in the tropics is aggravated by the ongoing spread of parasite resistance to antimalarial drugs and mosquito resistance to insecticides. A strain of Anopheles gambiae, normally a major vector for human malaria in Africa, can encapsulate and kill the malaria parasites within a melanin-rich capsule in the mosquito midgut. Genetic mapping revealed one major and two minor quantitative trait loci (QTLs) for this encapsulation reaction. Understanding such antiparasite mechanisms in mosquitoes may lead to new strategies for malaria control.
Collapse
|
|
28 |
147 |
6
|
Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 1996; 143:941-52. [PMID: 8725240 PMCID: PMC1207350 DOI: 10.1093/genetics/143.2.941] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We present a genetic map based on microsatellite polymorphisms for the African human malaria vector, Anopheles gambiae. Polymorphisms in laboratory strains were detected for 89% of the tested microsatellite markers. Genotyping was performed for individual mosquitos from 13 backcross families that included 679 progeny. Three linkage groups were identified, corresponding to the three chromosomes. We added 22 new markers to the existing X chromosome map, for a total of 46 microsatellite markers spanning a distance of 48.9 cM. The second chromosome has 57 and the third 28 microsatellite markers spanning a distance of 72.4 and 93.7 cM, respectively. The overall average distance between markers is 1.6 cM (or 1.1, 1.2, and 3.2 cM for the X, second, and third chromosomes, respectively). In addition to the 131 microsatellite markers, the current map also includes a biochemical selectable markers, Dieldrin resistance (Dl), on the second chromosome and five visible markers, pink-eye (p) and white (w) on the X, collarless (c) and lunate (lu) on the second, and red-eye (r) on the third. The cytogenetic locations on the nurse cell polytene chromosomes have been determined for 47 markers, making this map an integrated tool for cytogenetic, genetic, and molecular analysis.
Collapse
|
research-article |
29 |
143 |
7
|
Leal WS, Barbosa RMR, Xu W, Ishida Y, Syed Z, Latte N, Chen AM, Morgan TI, Cornel AJ, Furtado A. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 2008; 3:e3045. [PMID: 18725946 PMCID: PMC2516325 DOI: 10.1371/journal.pone.0003045] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 08/04/2008] [Indexed: 11/24/2022] Open
Abstract
Synthetic mosquito oviposition attractants are sorely needed for surveillance and control programs for Culex species, which are major vectors of pathogens causing various human diseases, including filariasis, encephalitis, and West Nile encephalomyelitis. We employed novel and conventional chemical ecology approaches to identify potential attractants, which were demonstrated in field tests to be effective for monitoring populations of Cx. p. quinquefasciatus in human dwellings. Immunohistochemistry studies showed that an odorant-binding protein from this species, CquiOBP1, is expressed in trichoid sensilla on the antennae, including short, sharp-tipped trichoid sensilla type, which house an olfactory receptor neuron sensitive to a previously identified mosquito oviposition pheromone (MOP), 6-acetoxy-5-hexadecanolide. CquiOBP1 exists in monomeric and dimeric forms. Monomeric CquiOBP1 bound MOP in a pH-dependent manner, with a change in secondary structure apparently related to the loss of binding at low pH. The pheromone antipode showed higher affinity than the natural stereoisomer. By using both CquiOBP1 as a molecular target in binding assays and gas chromatography-electroantennographic detection (GC-EAD), we identified nonanal, trimethylamine (TMA), and skatole as test compounds. Extensive field evaluations in Recife, Brazil, a region with high populations of Cx. p. quinquefasciatus, showed that a combination of TMA (0.9 µg/l) and nonanal (0.15 ng/µl) is equivalent in attraction to the currently used infusion-based lure, and superior in that the offensive smell of infusions was eliminated in the newly developed synthetic mixture.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
121 |
8
|
Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiūnas G, Russell AF, Smith TB. Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol 2010; 20:1049-61. [PMID: 21134011 DOI: 10.1111/j.1365-294x.2010.04904.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
90 |
9
|
Loiseau C, Harrigan RJ, Cornel AJ, Guers SL, Dodge M, Marzec T, Carlson JS, Seppi B, Sehgal RNM. First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS One 2012; 7:e44729. [PMID: 23028595 PMCID: PMC3446979 DOI: 10.1371/journal.pone.0044729] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
68 |
10
|
Gorman MJ, Cornel AJ, Collins FH, Paskewitz SM. A shared genetic mechanism for melanotic encapsulation of CM-Sephadex beads and a malaria parasite, Plasmodium cynomolgi B, in the mosquito, Anopheles gambiae. Exp Parasitol 1996; 84:380-6. [PMID: 8948327 DOI: 10.1006/expr.1996.0126] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A Plasmodium-refractory strain of Anopheles gambiae that melanizes ookinetes and intrathoracically inoculated CM-Sephadex beads was mated to a Plasmodium-susceptible strain that does not melanize the parasite or the beads. The F1 progeny were then backcrossed to the susceptible strain. Backcross progeny were given a blood meal containing infective Plasmodium cynomolgi B, and the parasites were allowed to develop for 6-7 days, at which time the infected mosquitoes were injected with CM-Sephadex beads. The next day the mosquitoes were dissected and the beads were scored for degree of melanization while the parasites were scored for degree of encapsulation. A Spearman rank order correlation test of the degree of correlation between the bead melanization phenotype and the parasite encapsulation phenotype gave a correlation coefficient of 0.74 (P < 0.01). This strong correlation between the two melanization responses suggests that the mechanisms for differential bead and parasite melanization of these two mosquito strains share at least one major gene.
Collapse
|
|
29 |
65 |
11
|
Reimer L, Fondjo E, Patchoké S, Diallo B, Lee Y, Ng A, Ndjemai HM, Atangana J, Traore SF, Lanzaro G, Cornel AJ. Relationship between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:260-6. [PMID: 18402142 DOI: 10.1603/0022-2585(2008)45[260:rbkmar]2.0.co;2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The spread of insecticide resistance genes in Anopheles gambiae Giles sensu stricto threatens to compromise vector-based malaria control programs. Two mutations at the same locus in the voltage-gated sodium channel gene are known to confer knockdown resistance (kdr) to pyrethroids and DDT. Kdr-e involves a leucine-serine substitution, and it was until recently thought to be restricted to East Africa, whereas kdr-w, which involves a leucine-phenylalanine substitution, is associated with resistance in West Africa. In this study, we analyze the frequency and relationship between the kdr genotypes and resistance to type I and type II pyrethroids and DDT by using WHO test kits in both the Forest-M and S molecular forms of An. gambiae in Cameroon. Both kdr-w and kdr-e polymorphisms were found in sympatric An. gambiae, and in many cases in the same mosquito. Kdr-e and kdr-w were detected in both forms, but they were predominant in the S form. Both kdr-e and kdr-w were closely associated with resistance to DDT and weakly associated with resistance to type II pyrethroids. Kdr-w conferred greater resistance to permethrin than kdr-e. We also describe a modified diagnostic designed to detect both resistant alleles simultaneously.
Collapse
|
|
17 |
65 |
12
|
Cornel AJ, McAbee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2003; 40:36-51. [PMID: 12597651 DOI: 10.1603/0022-2585-40.1.36] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Comparisons of five morphological characters, 12 enzyme electrophoresis profiles, and Wolbachia pipientis infection rates were used to characterize populations of members of the Culex pipiens L. complex in California and South Africa. In South Africa, male phallosome DV/D ratio, male maxillary palp index, branching of siphonal seta 1a, the enzyme locus Mdhp-1, and W. pipientis infection rates proved highly diagnostic for separating Culex quinquefasciatus from Cx. pipiens phenotypes. In Johannesburg, where sympatric members of the Cx. pipiens complex were analyzed as one population, a significant Wahlund Effect was observed in the enzyme loci such as Ao, 6-Pgdh, Mdh-2, and Pgm. In California, all populations of the Cx. pipiens complex were in Hardy Weinberg equilibrium at all polymorphic enzyme loci examined. Additionally, in California, all populations had similar W. pipientis infection rates and appeared morphologically identical (except for DV/D ratio, in extreme north and south). These findings indicate that in South Africa, Cx. pipiens and Cx. quinquefasciatus remain as genetically distinct populations and behave as separate species. Conversely, in California, there is considerable genetic introgression between Cx. pipiens and Cx. quinquefasciatus, and they behave as a single species.
Collapse
|
Comparative Study |
22 |
63 |
13
|
Slotman MA, Tripet F, Cornel AJ, Meneses CR, Lee Y, Reimer LJ, Thiemann TC, Fondjo E, Fofana A, Traoré SF, Lanzaro GC. Evidence for subdivision within the M molecular form of Anopheles gambiae. Mol Ecol 2007; 16:639-49. [PMID: 17257119 DOI: 10.1111/j.1365-294x.2006.03172.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (F(ST) = 0.0053 +/- 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (F(ST) = 0.0406 +/- 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
62 |
14
|
Main BJ, Lee Y, Ferguson HM, Kreppel KS, Kihonda A, Govella NJ, Collier TC, Cornel AJ, Eskin E, Kang EY, Nieman CC, Weakley AM, Lanzaro GC. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis. PLoS Genet 2016; 12:e1006303. [PMID: 27631375 PMCID: PMC5025075 DOI: 10.1371/journal.pgen.1006303] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of "SNP heritability" for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
61 |
15
|
Marsden CD, Lee Y, Nieman CC, Sanford MR, Dinis J, Martins C, Rodrigues A, Cornel AJ, Lanzaro GC. Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol 2011; 20:4983-94. [PMID: 22059383 PMCID: PMC3222736 DOI: 10.1111/j.1365-294x.2011.05339.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The suggestion that genetic divergence can arise and/or be maintained in the face of gene flow has been contentious since first proposed. This controversy and a rarity of good examples have limited our understanding of this process. Partially reproductively isolated taxa have been highlighted as offering unique opportunities for identifying the mechanisms underlying divergence with gene flow. The African malaria vector, Anopheles gambiae s.s., is widely regarded as consisting of two sympatric forms, thought by many to represent incipient species, the M and S molecular forms. However, there has been much debate about the extent of reproductive isolation between M and S, with one view positing that divergence may have arisen and is being maintained in the presence of gene flow, and the other proposing a more advanced speciation process with little realized gene flow because of low hybrid fitness. These hypotheses have been difficult to address because hybrids are typically rare (<1%). Here, we assess samples from an area of high hybridization and demonstrate that hybrids are fit and responsible for extensive introgression. Nonetheless, we show that strong divergent selection at a subset of loci combined with highly asymmetric introgression has enabled M and S to remain genetically differentiated despite extensive gene flow. We propose that the extent of reproductive isolation between M and S varies across West Africa resulting in a 'geographic mosaic of reproductive isolation'; a finding which adds further complexity to our understanding of divergence in this taxon and which has considerable implications for transgenic control strategies.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
61 |
16
|
Cornel AJ, Jupp PG, Blackburn NK. Environmental temperature on the vector competence of Culex univittatus (Diptera: Culicidae) for West Nile virus. JOURNAL OF MEDICAL ENTOMOLOGY 1993; 30:449-456. [PMID: 8459423 DOI: 10.1093/jmedent/30.2.449] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of the extrinsic incubation temperature on the vector competence of Culex univittatus Theobald for West Nile (WN) virus were studied. A mean titer of 7.0 log10 CPD50/ml of mosquito suspension was reached in orally infected mosquitoes after 11, 15, and 16 d of incubation at 26 and 30 degrees C and at fluctuating temperatures in an outside cage (mean temperature, 23.5 degrees C), respectively. In contrast, 22 and 58 d were required to reach the same titers at 18 and 14 degrees C, respectively. Transmission rates of 100% were reached after 58 d (14 degrees C), 22 d (18 degrees C), and 15 and 16 d (30 degrees C and outside). Except at 30 degrees C, transmission rates fluctuated; e.g., at 18 degrees C from day 19, the transmission rate was 80-100%, whereas at 14 degrees C on day 36, the transmission rate was 60% and thereafter 20-100%. The maximum transmission rate occurred concurrently with maximum titers of virus secreted into capillary tubes during in vitro transmission attempts. Mosquito longevity increased as incubation temperature decreased and was maximum at 114 d at 14 degrees C. Mosquitoes that were transferred from 14 to 26 degrees C after 49 d subsequently oviposited, engorged on a pigeon, and transmitted virus, which indicated the possibility for overwintering of WN virus in adult Cx. univittatus. Vector competence at outside cycling temperatures was intermediate between that at 26 and 30 degrees C, indicating that incubation at 26 degrees C would give a fair reflection of the vector competence of Cx. univittatus during the summer near Johannesburg. Two human epidemics of WN virus are reevaluated in the light of these results; it is concluded that, in addition to abnormal rainfall, higher than normal temperatures were important factors for their occurrence.
Collapse
|
|
32 |
61 |
17
|
Gorman MJ, Severson DW, Cornel AJ, Collins FH, Paskewitz SM. Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics 1997; 146:965-71. [PMID: 9215900 PMCID: PMC1208064 DOI: 10.1093/genetics/146.3.965] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A Plasmodium-refractory strain of Anopheles gambiae melanotically encapsulates many species of Plasmodium, whereas wild-type mosquitoes are usually susceptible. This encapsulation trait can also be observed by studying the response of refractory and susceptible strains to intrathoracically injected CM-Sephadex beads. We report the results of broad-scale quantitative trait locus (QTL) mapping of the encapsulation trait using the bead model system. Interval mapping using the method of maximum likelihood identified one major QTL, Pen1. The 13.7-cM interval containing Pen1 was defined by marker AGH157 at 8E and AGH46 at 7A on 2R. Pen1 was associated with a maximum LOD score of 9.0 and accounted for 44% of the phenotypic variance in the distribution of phenotypes in the backcross. To test if this QTL is important for encapsulation of Plasmodium berghei, F2 progeny were infected with P. berghei and evaluated for degree of parasite encapsulation. For each of the two markers that define the interval containing Pen1, a significant difference of encapsulation was seen in progeny with at least one refractory allele in contrast with homozygous susceptible progeny. These results suggest that Pen1 is important for melanotic encapsulation of Plasmodium as well as beads.
Collapse
|
research-article |
28 |
57 |
18
|
Ishida Y, Cornel AJ, Leal WS. Identification and cloning of a female antenna-specific odorant-binding protein in the mosquito Culex quinquefasciatus. J Chem Ecol 2002; 28:867-71. [PMID: 12035932 DOI: 10.1023/a:1015253214273] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have identified and cloned a cDNA encoding the first odorant-binding protein isolated from mosquitoes. The protein isolated from female antennae of Culex quinquefasciatus (CquiOBP) was not detected in legs (control tissue) or in antennal extracts from males, and showed mobility in native polyacrylamide gels similar to that of the pheromone-binding protein from Bombyx mori. The open reading frame of the cloned cDNA encoded a hydrophobic signal peptide (24 residues) and an acid mature protein (pI 5.5) of 125 amino acid residues (calculated molecular mass 14,504 Da). The transcript was detected by RT-PCR with antennal, but not with leg tissues. CquiOPB shared the highest amino acid identity with a product deduced from Drosophila melanogaster PBPRP-3 cDNA (58.6%), OBPs from scarab beetles (35%), and moths (28%). In addition, CquiOBP showed the hallmark of insect odorant-binding proteins, the six Cys residues.
Collapse
|
|
23 |
54 |
19
|
Cornel AJ, Benedict MQ, Rafferty CS, Howells AJ, Collins FH. Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:993-997. [PMID: 9569641 DOI: 10.1016/s0965-1748(97)00084-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The lack of eye pigment in the Aedes aegypti WE (white eye) colony was confirmed to be due to a mutation in the kynurenine hydroxylase gene, which catalyzes one of the steps in the metabolic synthesis of ommochrome eye pigments. Partial restoration of eye color (orange to red phenotype) in pupae and adults occurred in both sexes when first or second instar larvae were reared in water containing 3-hydroxykynurenine, the metabolic product of the enzyme kynurenine hydroxylase. No eye color restoration was observed when larvae were reared in water containing kynurenine sulfate, the precursor of 3-hydroxykynurenine in the ommochrome synthesis pathway. In addition, a plasmid clone containing the wild type Drosophila melanogaster gene encoding kynurenine hydroxylase, cinnabar (cn), was also able to complement the kynurenine hydroxylase mutation when it was injected into embryos of the A. aegypti WE strain. The ability to complement this A. aegypti mutant with the transiently expressed D. melanogaster cinnabar gene supports the value of this gene as a transformation reporter for use with A. aegypti WE and possibly other Diptera with null mutations in the kynurenine hydroxylase gene.
Collapse
|
|
28 |
49 |
20
|
Lemos FJ, Cornel AJ, Jacobs-Lorena M. Trypsin and aminopeptidase gene expression is affected by age and food composition in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:651-658. [PMID: 8995788 DOI: 10.1016/s0965-1748(96)00014-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of age and food composition on the expression of trypsin and aminopeptidase genes in the Anopheles gambiae gut were investigated. No trypsin mRNA was detected in the gut of newly eclosed females, but this mRNA accumulated to relatively high levels within the first day of life. In contrast, low, but significant trypsin enzyme activity was observed in newly eclosed females. Subcellular fractionation experiments suggested that abdominal distention induces the secretion of the enzyme into the lumen. Blood, but not a protein-free meal, induced the accumulation of new trypsin mRNA and enzyme. Unlike trypsin, substantial aminopeptidase activity was detected in newly eclosed and in older, sugar fed mosquitoes. Moreover, the subcellular localization of aminopeptidase did not change appreciably with food ingestion, and the early increase of enzyme activity was independent of food composition.
Collapse
|
|
29 |
49 |
21
|
Rasgon JL, Cornel AJ, Scott TW. Evolutionary history of a mosquito endosymbiont revealed through mitochondrial hitchhiking. Proc Biol Sci 2006; 273:1603-11. [PMID: 16769630 PMCID: PMC1634923 DOI: 10.1098/rspb.2006.3493] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to cytoplasmic inheritance, spread of maternally inherited Wolbachia symbionts can result in reduction of mitochondrial variation in populations. We examined sequence diversity of the mitochondrial NADH dehydrogenase subunit 4 (ND4) gene in Wolbachia-infected (South Africa (SA), California and Thailand) and uninfected (SA) Culex pipiens complex populations. In total, we identified 12 haplotypes (A-L). In infected populations, 99% of individuals had haplotype K. In the uninfected SA population, 11 haplotypes were present, including K. Nuclear allozyme diversity was similar between infected and uninfected SA populations. Analysis of nuclear DNA sequences suggested that haplotype K presence in uninfected SA Cx. pipiens was probably due to a shared ancestral polymorphism rather than hybrid introgression. These data indicate that Wolbachia spread has resulted in drastic reduction of mitochondrial variability in widely separated Cx. pipiens complex populations. In contrast, the uninfected SA population is probably a cryptic species where Wolbachia introgression has been prevented by reproductive isolation, maintaining ancestral levels of mitochondrial diversity. Molecular clock analyses suggest that the Wolbachia sweep occurred within the last 47000 years. The effect of Wolbachia on mitochondrial dynamics can provide insight on the potential for Wolbachia to spread transgenes into mosquito populations to control vector-borne diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
45 |
22
|
Shepherd AJ, Swanepoel R, Cornel AJ, Mathee O. Experimental studies on the replication and transmission of Crimean-Congo hemorrhagic fever virus in some African tick species. Am J Trop Med Hyg 1989; 40:326-31. [PMID: 2494900 DOI: 10.4269/ajtmh.1989.40.326] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Seven African tick species were studied as potential vectors of Crimean-Congo hemorrhagic fever (CCHF) virus. Engorged nymphae of 4 ixodid species, Hyalomma marginatum rufipes, H. truncatum, Rhipicephalus evertsi mimeticus, and Amblyomma hebraeum, were inoculated intracoelomically with CCHF virus and assayed for virus content at varying times post-inoculation. The virus replicated in all 4 species, reaching maximum titers of 4.6-5.5(10) fluorescence focus units per ml on days 5-9 post-inoculation. Virus titers declined up to the molt, but increased slightly on emergence of adult ticks. Thereafter, virus titers declined progressively, but infectivity could still be detected in adult ticks for up to 205 days post-inoculation. Groups of H. m. rufipes, H. truncatum, and R.e. mimeticus infected adults were fed on susceptible sheep and successfully transmitted CCHF infection. CCHF virus was not isolated from pools of the larval and nymphal progeny of the female ticks nor did the larvae transmit infection to guinea pigs by bite. CCHF virus failed to replicate in adults and nymphae of 3 argasid tick species, Argas walkerae, Ornithodorus porcinus porcinus, and O. savignyi, after intracoelomic inoculation and could be reisolated from the ticks no later than 1 day post-inoculation. The results suggest that all ixodid ticks are capable of transmitting CCHF virus but argasid ticks do not appear to be capable of serving as vectors.
Collapse
|
|
36 |
42 |
23
|
Ranson H, Cornel AJ, Fournier D, Vaughan A, Collins FH, Hemingway J. Cloning and localization of a glutathione S-transferase class I gene from Anopheles gambiae. J Biol Chem 1997; 272:5464-8. [PMID: 9038148 DOI: 10.1074/jbc.272.9.5464] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) resistance in both adults and larvae of Anopheles gambiae is mediated by stage-specific glutathione S-transferases (GSTs). On the basis of their biochemical characteristics the larval resistance-associated GSTs are likely to be insect class I GSTs. Aggst1-2, a class I GST gene, which is expressed in larvae, has been cloned from the malaria vector A. gambiae. The gene was inserted into a bacterial expression system, and the detection of 1-chloro-2,4-dinitrobenzene (CDNB) conjugating activity in Eschericia coli expressing the recombinant enzyme confirmed that aggst1-2 encodes a catalytically active GST. The gene encodes a 209 amino acid protein with 46% sequence similarity to a Drosophila melanogaster class I GST (GST-D1), 44% similarity with a Musca domestica class I GST (MdGST-1), but only low levels of homology with class II insect GSTs, including the adult specific AgGST2-1 from A. gambiae. Southern analysis of genomic DNA indicated that A. gambiae has multiple class I GSTs. In situ hybridization of class I genomic and cDNA clones to polytene chromosomes identified a single region of complementarity on chromosome 2R division 18B, suggesting that these class I GSTs in A. gambiae are arranged sequentially in the genome. Three positive overlapping recombinant clones were identified from an A. gambiae genomic library. Mapping and partial sequencing of these clones suggests that there are several GSTs and truncated GST pseudogenes within the 30kb of DNA that these clones span.
Collapse
|
|
28 |
41 |
24
|
Main BJ, Lee Y, Collier TC, Norris LC, Brisco K, Fofana A, Cornel AJ, Lanzaro GC. Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali. Mol Ecol 2015; 24:5145-57. [PMID: 26359110 PMCID: PMC4615556 DOI: 10.1111/mec.13382] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 08/07/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023]
Abstract
In certain cases, a species may have access to important genetic variation present in a related species via adaptive introgression. These novel alleles may interact with their new genetic background, resulting in unexpected phenotypes. In this study, we describe a selective sweep on standing variation on the X chromosome in the mosquito Anopheles coluzzii, a principal malaria vector in West Africa. This event may have been influenced by the recent adaptive introgression of the insecticide resistance gene known as kdr from the sister species Anopheles gambiae. Individuals carrying both kdr and a nearly fixed X-linked haplotype, encompassing at least four genes including the P450 gene CYP9K1 and the cuticular protein CPR125, have rapidly increased in relative frequency. In parallel, a reproductively isolated insecticide-susceptible A. gambiae population (Bamako form) has been driven to local extinction, likely due to strong selection from increased insecticide-treated bed net usage.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
39 |
25
|
Cornel AJ, Porter CH, Collins FH. Polymerase chain reaction species diagnostic assay for Anopheles quadrimaculatus cryptic species (Diptera: Culicidae) based on ribosomal DNA ITS2 sequences. JOURNAL OF MEDICAL ENTOMOLOGY 1996; 33:109-116. [PMID: 8906913 DOI: 10.1093/jmedent/33.1.109] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Species-specific differences in the nucleotide sequences of the 2nd internal transcribed spacer (ITS2) of nuclear ribosomal DNA (rDNA) were used to develop a diagnostic assay based on the polymerase chain reaction (PCR) that can distinguish 4 of the 5 cryptic sibling species in the common malaria mosquito, Anopheles quadrimaculatus Say, complex. The assay requires only a small amount of tissue from an individual mosquito and a mixture of 5 PCR primers. The plus strand universal primer is derived from a sequence in the 5.8S coding region that is identical in all members of the complex. The 4 minus strand primers were selected from species-unique sequences within the ITS2 region. PCR amplification produces a different sized fragment for each of the 4 species which can be visualized readily under ultraviolet light after electrophoresis through an ethidium bromide-containing agarose gel. The assay has been developed and tested only with An. quadrimaculatus complex specimens from Florida populations.
Collapse
|
|
29 |
39 |