1
|
|
|
17 |
1165 |
2
|
Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP. Differences in thermal tolerance among sockeye salmon populations. Science 2011; 332:109-12. [PMID: 21454790 DOI: 10.1126/science.1199158] [Citation(s) in RCA: 496] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Climate change-induced increases in summer water temperature have been associated with elevated mortality of adult sockeye salmon (Oncorhynchus nerka) during river migration. We show that cardiorespiratory physiology varies at the population level among Fraser River sockeye salmon and relates to historical environmental conditions encountered while migrating. Fish from populations with more challenging migratory environments have greater aerobic scope, larger hearts, and better coronary supply. Furthermore, thermal optima for aerobic, cardiac, and heart rate scopes are consistent with the historic river temperature ranges for each population. This study suggests that physiological adaptation occurs at a very local scale, with population-specific thermal limits being set by physiological limitations in aerobic performance, possibly due to cardiac collapse at high temperatures.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
496 |
3
|
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 2009; 106:15103-10. [PMID: 19805247 PMCID: PMC2741212 DOI: 10.1073/pnas.0905235106] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Indexed: 01/30/2023] Open
Abstract
Aquaculture's pressure on forage fisheries remains hotly contested. This article reviews trends in fishmeal and fish oil use in industrial aquafeeds, showing reduced inclusion rates but greater total use associated with increased aquaculture production and demand for fish high in long-chain omega-3 oils. The ratio of wild fisheries inputs to farmed fish output has fallen to 0.63 for the aquaculture sector as a whole but remains as high as 5.0 for Atlantic salmon. Various plant- and animal-based alternatives are now used or available for industrial aquafeeds, depending on relative prices and consumer acceptance, and the outlook for single-cell organisms to replace fish oil is promising. With appropriate economic and regulatory incentives, the transition toward alternative feedstuffs could accelerate, paving the way for a consensus that aquaculture is aiding the ocean, not depleting it.
Collapse
|
Review |
16 |
405 |
4
|
Chabot D, Steffensen JF, Farrell AP. The determination of standard metabolic rate in fishes. JOURNAL OF FISH BIOLOGY 2016; 88:81-121. [PMID: 26768973 DOI: 10.1111/jfb.12845] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 10/08/2015] [Indexed: 05/23/2023]
Abstract
This review and data analysis outline how fish biologists should most reliably estimate the minimal amount of oxygen needed by a fish to support its aerobic metabolic rate (termed standard metabolic rate; SMR). By reviewing key literature, it explains the theory, terminology and challenges underlying SMR measurements in fishes, which are almost always made using respirometry (which measures oxygen uptake, ṀO2 ). Then, the practical difficulties of measuring SMR when activity of the fish is not quantitatively evaluated are comprehensively explored using 85 examples of ṀO2 data from different fishes and one crustacean, an analysis that goes well beyond any previous attempt. The main objective was to compare eight methods to estimate SMR. The methods were: average of the lowest 10 values (low10) and average of the 10% lowest ṀO2 values, after removing the five lowest ones as outliers (low10%), mean of the lowest normal distribution (MLND) and quantiles that assign from 10 to 30% of the data below SMR (q0·1 , q0·15 , q0·2 , q0·25 and q0·3 ). The eight methods yielded significantly different SMR estimates, as expected. While the differences were small when the variability was low amongst the ṀO2 values, they were important (>20%) for several cases. The degree of agreement between the methods was related to the c.v. of the observations that were classified into the lowest normal distribution, the c.v. MLND (C.V.MLND ). When this indicator was low (≤5·4), it was advantageous to use the MLND, otherwise, one of the q0·2 or q0·25 should be used. The second objective was to assess if the data recorded during the initial recovery period in the respirometer should be included or excluded, and the recommendation is to exclude them. The final objective was to determine the minimal duration of experiments aiming to estimate SMR. The results show that 12 h is insufficient but 24 h is adequate. A list of basic recommendations for practitioners who use respirometry to measure SMR in fishes is provided.
Collapse
|
Review |
9 |
311 |
5
|
Farrell AP, Hinch SG, Cooke SJ, Patterson DA, Crossin GT, Lapointe M, Mathes MT. Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migrations. Physiol Biochem Zool 2009; 81:697-708. [PMID: 18922081 DOI: 10.1086/592057] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Concern over global climate change is widespread, but quantifying relationships between temperature change and animal fitness has been a challenge for scientists. Our approach to this challenge was to study migratory Pacific salmon (Oncorhynchus spp.), fish whose lifetime fitness hinges on a once-in-a-lifetime river migration to natal spawning grounds. Here, we suggest that their thermal optimum for aerobic scope is adaptive for river migration at the population level. We base this suggestion on several lines of evidence. The theoretical line of evidence comes from a direct association between the temperature optimum for aerobic metabolic scope and the temperatures historically experienced by three Fraser River salmon populations during their river migration. This close association was then used to predict that the occurrence of a period of anomalously high river temperatures in 2004 led to a complete collapse of aerobic scope during river migration for a portion of one of the sockeye salmon (Oncorhynchus nerka) populations. This prediction was corroborated with empirical data from our biotelemetry studies, which tracked the migration of individual sockeye salmon in the Fraser River and revealed that the success of river migration for the same sockeye population was temperature dependent. Therefore, we suggest that collapse of aerobic scope was an important mechanism to explain the high salmon mortality observed during their migration. Consequently, models based on thermal optima for aerobic scope for ectothermic animals should improve predictions of population fitness under future climate scenarios.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
268 |
6
|
Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL. What is conservation physiology? Perspectives on an increasingly integrated and essential science(†). CONSERVATION PHYSIOLOGY 2013; 1:cot001. [PMID: 27293585 PMCID: PMC4732437 DOI: 10.1093/conphys/cot001] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/28/2013] [Indexed: 05/20/2023]
Abstract
Globally, ecosystems and their constituent flora and fauna face the localized and broad-scale influence of human activities. Conservation practitioners and environmental managers struggle to identify and mitigate threats, reverse species declines, restore degraded ecosystems, and manage natural resources sustainably. Scientific research and evidence are increasingly regarded as the foundation for new regulations, conservation actions, and management interventions. Conservation biologists and managers have traditionally focused on the characteristics (e.g. abundance, structure, trends) of populations, species, communities, and ecosystems, and simple indicators of the responses to environmental perturbations and other human activities. However, an understanding of the specific mechanisms underlying conservation problems is becoming increasingly important for decision-making, in part because physiological tools and knowledge are especially useful for developing cause-and-effect relationships, and for identifying the optimal range of habitats and stressor thresholds for different organisms. When physiological knowledge is incorporated into ecological models, it can improve predictions of organism responses to environmental change and provide tools to support management decisions. Without such knowledge, we may be left with simple associations. 'Conservation physiology' has been defined previously with a focus on vertebrates, but here we redefine the concept universally, for application to the diversity of taxa from microbes to plants, to animals, and to natural resources. We also consider 'physiology' in the broadest possible terms; i.e. how an organism functions, and any associated mechanisms, from development to bioenergetics, to environmental interactions, through to fitness. Moreover, we consider conservation physiology to include a wide range of applications beyond assisting imperiled populations, and include, for example, the eradication of invasive species, refinement of resource management strategies to minimize impacts, and evaluation of restoration plans. This concept of conservation physiology emphasizes the basis, importance, and ecological relevance of physiological diversity at a variety of scales. Real advances in conservation and resource management require integration and inter-disciplinarity. Conservation physiology and its suite of tools and concepts is a key part of the evidence base needed to address pressing environmental challenges.
Collapse
|
research-article |
12 |
251 |
7
|
Lee CG, Farrell AP, Lotto A, MacNutt MJ, Hinch SG, Healey MC. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J Exp Biol 2003; 206:3239-51. [PMID: 12909705 DOI: 10.1242/jeb.00547] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our knowledge of the swimming capabilities and metabolic rates of adult salmon, and particularly the influence of temperature on them, is extremely limited, and yet this information is critical to understanding the remarkable upstream migrations that these fish can make. To remedy this situation, we examined the effects of temperature on swimming performance and metabolic rates of 107 adult fish taken from three stocks of sockeye salmon Oncorhynchus nerka and one stock of coho salmon O. kisutch at various field and laboratory locations, using large, portable, swim tunnels. The salmon stocks were selected because of differences in their ambient water temperature (ranging from 5 degrees C to 20 degrees C) and the total distance of their in-river migrations (ranging from approximately 100 km for coastal stocks to approximately 1100 km for interior stocks). As anticipated, differences in routine metabolic rate observed among salmon stocks were largely explained by an exponential dependence on ambient water temperature. However, the relationship between water temperature and maximum oxygen consumption (MO2max), i.e. the MO2 measured at the critical swimming speed (Ucrit), revealed temperature optima for MO2max that were stock-specific. These temperature optima were very similar to the average ambient water temperatures for the natal stream of a given stock. Furthermore, at a comparable water temperature, the salmon stocks that experienced a long and energetically costly in-river migration were characterized by a higher MO2max, a higher scope for activity, a higher Ucrit and, in some cases, a higher cost of transport, relative to the coastal salmon stocks that experience a short in-river migration. We conclude that high-caliber respirometry can be performed in a field setting and that stock-specific differences in swimming performance of adult salmon may be important for understanding upstream migration energetics and abilities.
Collapse
|
Comparative Study |
22 |
227 |
8
|
|
|
34 |
204 |
9
|
Steinhausen MF, Sandblom E, Eliason EJ, Verhille C, Farrell AP. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). ACTA ACUST UNITED AC 2009; 211:3915-26. [PMID: 19043063 DOI: 10.1242/jeb.019281] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism underlying the decrease in aerobic scope in fish at warm temperatures is not fully understood and is the focus of this research. Our study examined oxygen uptake and delivery in resting, swimming and recovering sockeye salmon while water temperature was acutely increased from 15 degrees C to 24 degrees C in 2 degrees C h(-1) increments. Fish swam at a constant speed during the temperature change. By simultaneously measuring oxygen consumption (M(O(2))), cardiac output (Q) and the blood oxygen status of arterial and venous blood, we were able to determine where in the oxygen cascade a limitation appeared when fish stopped sustained swimming as temperature increased. High temperature fatigue of swimming sockeye salmon was not a result of a failure of either oxygen delivery to the gills or oxygen diffusion at the gills because oxygen partial pressure (P(O(2))) and oxygen content (C(O(2))) in arterial blood did not decrease with increasing temperature, as would be predicted for such limitations. Instead, arterial oxygen delivery (Ta(O(2))) was initially hampered due to a failure to adequately increase Q with increasing temperature. Subsequently, lactate appeared in the blood and venous P(O(2)) remained constant.
Collapse
|
Journal Article |
16 |
169 |
10
|
Miller KM, Li S, Kaukinen KH, Ginther N, Hammill E, Curtis JMR, Patterson DA, Sierocinski T, Donnison L, Pavlidis P, Hinch SG, Hruska KA, Cooke SJ, English KK, Farrell AP. Genomic signatures predict migration and spawning failure in wild Canadian salmon. Science 2011; 331:214-7. [PMID: 21233388 DOI: 10.1126/science.1196901] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
150 |
11
|
Gamperl AK, Farrell AP. Cardiac plasticity in fishes: environmental influences and intraspecific differences. ACTA ACUST UNITED AC 2005; 207:2539-50. [PMID: 15201287 DOI: 10.1242/jeb.01057] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fish cardiac physiology and anatomy show a multiplicity of intraspecific modifications when exposed to prolonged changes in environmentally relevant parameters such as temperature, hypoxia and food availability, and when meeting the increased demands associated with training/increased activity and sexual maturation. Further, there is evidence that rearing fish under intensive aquaculture conditions significantly alters some, but not all, aspects of cardiac anatomy and physiology. This review focuses on the responses of cardiac physiology and anatomy to these challenges, highlighting where applicable, the importance of hyperplastic (i.e. the production of new cells) vs hypertrophic (the enlargement of existing cells) growth to the adaptive response of the heart. In addition, we summarize recent studies that have explored the relationship between the myocardial protection afforded by preconditioning and myocardial hypoxia tolerance. This latter research clearly demonstrates the capacity of the fish heart to adjust to short-term perturbations, and shows that it can be difficult to predict how short-term and long-term alterations in cardiac physiology will interact.
Collapse
|
Review |
20 |
150 |
12
|
Clark TD, Jeffries KM, Hinch SG, Farrell AP. Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate. J Exp Biol 2011; 214:3074-81. [DOI: 10.1242/jeb.060517] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Little is known of the physiological mechanisms underlying the effects of climate change on animals, yet it is clear that some species appear more resilient than others. As pink salmon (Oncorhynchus gorbuscha) in British Columbia, Canada, have flourished in the current era of climate warming in contrast to other Pacific salmonids in the same watershed, this study investigated whether the continuing success of pink salmon may be linked with exceptional cardiorespiratory adaptations and thermal tolerance of adult fish during their spawning migration. Sex-specific differences existed in minimum and maximum oxygen consumption rates ( and , respectively) across the temperature range of 8 to 28°C, reflected in a higher aerobic scope () for males. Nevertheless, the aerobic scope of both sexes was optimal at 21°C (Topt) and was elevated across the entire temperature range in comparison with other Pacific salmonids. As Topt for aerobic scope of this pink salmon population is higher than in other Pacific salmonids, and historic river temperature data reveal that this population rarely encounters temperatures exceeding Topt, these findings offer a physiological explanation for the continuing success of this species throughout the current climate-warming period. Despite this, declining cardiac output was evident above 17°C, and maximum attainable swimming speed was impaired above ∼23°C, suggesting negative implications under prolonged thermal exposure. While forecasted summer river temperatures over the next century are likely to negatively impact all Pacific salmonids, we suggest that the cardiorespiratory capacity of pink salmon may confer a selective advantage over other species.
Collapse
|
|
14 |
136 |
13
|
Lee CG, Farrell AP, Lotto A, Hinch SG, Healey MC. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J Exp Biol 2003; 206:3253-60. [PMID: 12909706 DOI: 10.1242/jeb.00548] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success.
Collapse
|
Comparative Study |
22 |
135 |
14
|
|
|
33 |
129 |
15
|
Anttila K, Dhillon RS, Boulding EG, Farrell AP, Glebe BD, Elliott JAK, Wolters WR, Schulte PM. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level. J Exp Biol 2013; 216:1183-90. [DOI: 10.1242/jeb.080556] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SUMMARY
In fishes, performance failure at high temperature is thought to be due to a limitation on oxygen delivery (the theory of oxygen and capacity limited thermal tolerance, OCLTT), which suggests that thermal tolerance and hypoxia tolerance might be functionally associated. Here we examined variation in temperature and hypoxia tolerance among 41 families of Atlantic salmon (Salmo salar), which allowed us to evaluate the association between these two traits. Both temperature and hypoxia tolerance varied significantly among families and there was a significant positive correlation between critical maximum temperature (CTmax) and hypoxia tolerance, supporting the OCLTT concept. At the organ and cellular levels, we also discovered support for the OCLTT concept as relative ventricle mass (RVM) and cardiac myoglobin (Mb) levels both correlated positively with CTmax (R2=0.21, P<0.001 and R2=0.17, P=0.003, respectively). A large RVM has previously been shown to be associated with high cardiac output, which might facilitate tissue oxygen supply during elevated oxygen demand at high temperatures, while Mb facilitates the oxygen transfer from the blood to tissues, especially during hypoxia. The data presented here demonstrate for the first time that RVM and Mb are correlated with increased upper temperature tolerance in fish. High phenotypic variation between families and greater similarity among full- and half-siblings suggests that there is substantial standing genetic variation in thermal and hypoxia tolerance, which could respond to selection either in aquaculture or in response to anthropogenic stressors such as global climate change.
Collapse
|
|
12 |
126 |
16
|
Raby GD, Donaldson MR, Hinch SG, Patterson DA, Lotto AG, Robichaud D, English KK, Willmore WG, Farrell AP, Davis MW, Cooke SJ. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J Appl Ecol 2011. [DOI: 10.1111/j.1365-2664.2011.02073.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
14 |
124 |
17
|
Farrell AP. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls. Philos Trans R Soc Lond B Biol Sci 2008; 362:2017-30. [PMID: 17553773 PMCID: PMC2442863 DOI: 10.1098/rstb.2007.2111] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.
Collapse
|
Review |
17 |
117 |
18
|
Vornanen M, Shiels HA, Farrell AP. Plasticity of excitation-contraction coupling in fish cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:827-46. [PMID: 12095866 DOI: 10.1016/s1095-6433(02)00051-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ultrastructure, molecular composition and electrophysiological properties of cardiac myocytes and functional characteristics of the fish heart suggest that cycling of extracellular Ca(2+) is generally more important than intracellular cycling of Ca(2+) stores of the sarcoplasmic reticulum (SR) in activating contraction of fish cardiac myocytes. This is especially true for the ventricle. However, prominent species-specific differences exist in cardiac excitation-contraction coupling and in the relative roles of extracellular and intracellular Ca(2+) sources among the teleostean fish. In fact, in some fish species (tunas, burbot) the SR of atrial myocytes, under certain circumstances, may act as the major source of systolic Ca(2+). These interspecific differences are obviously an outcome of evolutionary adaptation to different habitats and modes of activity in these habitats. There is also substantial intraspecific variation in the SR Ca(2+)-release-to-SL-Ca(2+) influx ratio depending on acute and chronic temperature changes. Consequently excitation-contraction coupling of the fish cardiac myocytes is not a fixed entity, but rather a highly variable and malleable process that enables fish to have an appropriate cardiac scope to exploit a diverse range of environments.
Collapse
|
Review |
23 |
116 |
19
|
Claireaux G, McKenzie DJ, Genge AG, Chatelier A, Aubin J, Farrell AP. Linking swimming performance, cardiac pumping ability and cardiac anatomy in rainbow trout. J Exp Biol 2005; 208:1775-84. [PMID: 15879059 DOI: 10.1242/jeb.01587] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe exploited the inherent individual diversity in swimming performance of rainbow trout Oncorhynchus mykiss to investigate the hypothesis that maximum cardiac performance is linked to active metabolic rate (AMR) and critical swimming speed (Ucrit). Six hundred juveniles(body mass ∼150 g) were screened using a swimming challenge of 1.2 m s-1 to identify `poor swimmers' and `good swimmers', i.e. the first and last 60 fish to fatigue, respectively. These 120 fish were individually tagged and then reared in common tanks for 9 months, where they grew at similar rates and achieved a similar body mass of approximately 1100 g. Critical swimming speed (Ucrit) was then measured individually in tunnel respirometers, with simultaneous recordings of cardiac output via a ventral aortic flow probe. The group of individuals that were screened as poor swimmers remained so, with a significantly (27%) lower Ucrit than good swimmers [89±10 cm s-1vs 123±5 cm s-1 (mean ± s.e.m.), respectively, N=6], a 19%lower AMR (147±12 μmol min-1 kg-1vs181±11 μmol min-1 kg-1, respectively), and a 30% lower maximum in vivo cardiac output (47.3±4.7 ml min-1 kg-1vs 68.0±5.2 ml min-1 kg-1, respectively). When cardiac performance was compared with an in situ heart preparation, hearts from poor swimmers had a significantly (26%) lower maximum cardiac output (45.9±1.9 ml min-1 kg-1vs 56.4±2.3 ml min-1 kg-1, respectively) and a 32% lower maximum cardiac power output at a high afterload (3.96±0.58 mW g-1vs 5.79±1.97 mW g-1, respectively). Cardiac morphology was visualised in vivo by Doppler echography on anaesthetised individual fish and revealed that poor swimmers had a significantly more rounded ventricle (reduced ventricle length to height ratio) compared with good swimmers, which in turn was correlated with fish condition factor. These results provide clear evidence that maximum cardiac performance is linked to AMR and Ucrit and indicate that a simple screening test can distinguish between rainbow trout with lower active metabolic rate, Ucrit, maximal cardiac pumping capacity and a more rounded ventricular morphology. These distinguishing traits may have been retained for 9 months despite a common growing environment and growth.
Collapse
|
|
20 |
114 |
20
|
Farrell AP. Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishes. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:797-810. [PMID: 12095864 DOI: 10.1016/s1095-6433(02)00049-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies in the laboratory with salmonids and now in the field with wild salmon clearly show that critical swimming performance has an optimum temperature. This temperature optimum is coincident with maximum aerobic scope and maximum cardiac scope. At a temperature that is higher than this optimum, however, whole animal performance declines abruptly. Evidence is presented here to suggest that this is directly associated with a decline in cardiac scope which limits oxygen supply to tissues. It is further suggested that the decline in maximum cardiac performance could reflect problems with the heart's own oxygen supply. The reasoning behind this suggestion is that, at temperatures at or below the optimum and probably because of a limitation on oxygen diffusion in skeletal muscle during exercise, venous oxygen does not fall below a threshold level during exercise, and so the heart receives just enough oxygen for its own muscular activity via the cardiac circulation (i.e. the venous return to the heart). However, because high temperature favours increased oxygen extraction by skeletal muscle, which consequently lowers venous oxygen, cardiac oxygen supply may become insufficient to meet cardiac oxygen demand. The hypoxic myocardium then cannot maintain cardiac scope and internal oxygen delivery to tissue declines.
Collapse
|
Comparative Study |
23 |
112 |
21
|
Farrell AP. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. JOURNAL OF FISH BIOLOGY 2016; 88:322-343. [PMID: 26592201 DOI: 10.1111/jfb.12789] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
A major challenge for fish biologists in the 21st century is to predict the biotic effects of global climate change. With marked changes in biogeographic distribution already in evidence for a variety of aquatic animals, mechanistic explanations for these shifts are being sought, ones that then can be used as a foundation for predictive models of future climatic scenarios. One mechanistic explanation for the thermal performance of fishes that has gained some traction is the oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis, which suggests that an aquatic organism's capacity to supply oxygen to tissues becomes limited when body temperature reaches extremes. Central to this hypothesis is an optimum temperature for absolute aerobic scope (AAS, loosely defined as the capacity to deliver oxygen to tissues beyond a basic need). On either side of this peak for AAS are pejus temperatures that define when AAS falls off and thereby reduces an animal's absolute capacity for activity. This article provides a brief perspective on the potential uses and limitations of some of the key physiological indicators related to aerobic scope in fishes. The intent is that practitioners who attempt predictive ecological applications can better recognize limitations and make better use of the OCLTT hypothesis and its underlying physiology.
Collapse
|
Review |
9 |
110 |
22
|
Farrell AP. Tribute to P. L. Lutz: a message from the heart--why hypoxic bradycardia in fishes? ACTA ACUST UNITED AC 2008; 210:1715-25. [PMID: 17488934 DOI: 10.1242/jeb.02781] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensing and processing of hypoxic signals, the responses to these signals and the modulation of these responses by other physical and physiological factors are an immense topic filled with numerous novel and exciting discoveries. Nestled among these discoveries, and in contrast to mammals, is the unusual cardiac response of many fish to environmental hypoxia - a reflex slowing of heart rate. The afferent and efferent arms of this reflex have been characterised, but the benefits of the hypoxic bradycardia remain enigmatic since equivocal results have emerged from experiments examining the benefit to oxygen transfer across the gills. The main thesis developed here is that hypoxic bradycardia could afford a number of direct benefits to the fish heart, largely because the oxygen supply to the spongy myocardium is precarious (i.e. it is determined primarily by the partial pressure of oxygen in venous blood, Pv(O(2))) and, secondarily, because the fish heart has an unusual ability to produce large increases in cardiac stroke volume (V(SH)) that allow cardiac output to be maintained during hypoxic bradycardia. Among the putative benefits of hypoxic bradycardia is an increase in the diastolic residence time of blood in the lumen of the heart, which offers an advantage of increased time for diffusion, and improved cardiac contractility through the negative force-frequency effect. The increase in V(SH) will stretch the cardiac chambers, potentially reducing the diffusion distance for oxygen. Hypoxic bradycardia could also reduce cardiac oxygen demand by reducing cardiac dP/dt and cardiac power output, something that could be masked at cold temperature because of a reduced myocardial work load. While the presence of a coronary circulation in certain fishes decreases the reliance of the heart on Pv(O(2)), hypoxic bradycardia could still benefit oxygen delivery via an extended diastolic period during which peak coronary blood flow occurs. The notable absence of hypoxic bradycardia among fishes that breathe air during aquatic hypoxia and thereby raise their Pv(O(2)), opens the possibility that that the evolutionary loss of hypoxic bradycardia may have coincided with some forms of air breathing in fishes. Experiments are needed to test some of these possibilities. Ultimately, any potential benefit of hypoxic bradycardia must be placed in the proper context of myocardial oxygen supply and demand, and must consider the ability of the fish heart to support its routine cardiac power output through glycolysis.
Collapse
|
Review |
17 |
106 |
23
|
Peake SJ, Farrell AP. Locomotory behaviour and post-exercise physiology in relation to swimming speed, gait transition and metabolism in free-swimming smallmouth bass (Micropterus dolomieu). ACTA ACUST UNITED AC 2004; 207:1563-75. [PMID: 15037650 DOI: 10.1242/jeb.00927] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined swimming behaviour, gait recruitment and post-exercise muscle glycogen, muscle lactate, plasma lactate and oxygen consumption in smallmouth bass (Micropterus dolomieu; 24-38 cm fork length) that voluntarily ascended a 25 m raceway against water velocities ranging from 40 to 120 cm s(-1). Physiological parameters were referenced to additional measurements made following exhaustive exercise in a static tank and aerobic exercise in a swim tunnel. Maximum speeds maintained exclusively using a steady gait in the raceway ranged from 53.6 to 97.3 cm s(-1) and scaled positively with fish length. Minimum swimming speeds maintained exclusively through recruitment of an unsteady gait were also positively correlated to fish length and ranged from 81.4 to 122.9 cm s(-1). Fish switched between steady and unsteady swimming at intermediate speeds. Smallmouth bass always maintained a positive ground speed in the raceway; however, those that primarily swam using a steady gait to overcome low to moderate water velocities (20-50 cm s(-1)) maintained mean ground speeds of approximately 20 cm s(-1). By contrast, mean ground speeds of fish that primarily recruited an unsteady locomotory gait increased significantly with water velocity, which resulted in an inverse relationship between exercise intensity and duration. We interpret this behaviour as evidence that unsteady swimming was being fuelled by the limited supply of anaerobic substrates in the white muscle. This hypothesis is supported by the fact that unsteady swimming fish showed significantly lower muscle glycogen levels, higher lactate concentrations (muscle and plasma) and higher post-exercise oxygen consumption rates compared with fish that used a steady gait. The reduction in passage time achieved by fish using an unsteady gait allowed them to ascend the raceway with relatively minor post-exercise metabolic imbalances, relative to individuals chased to exhaustion.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
105 |
24
|
Jain KE, Birtwell IK, Farrell AP. Repeat swimming performance of mature sockeye salmon following a brief recovery period: a proposed measure of fish health and water quality. CAN J ZOOL 1998. [DOI: 10.1139/z98-079] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Measurements of swimming ability, such as critical swimming speed (Ucrit), have commonly been used as indicators of the effects of environmental challenges on the general health of fish. In this study, we introduce repeat swimming performance as a particularly sensitive means to assess fish health and the effects of environmental stressors. Adult sockeye salmon (Oncorhynchus nerka) performed two Ucrit tests separated by a 40-min recovery period. When recovery ability was expressed as a ratio of Ucrit values in the first and second swim challenges (Ucrit,2/Ucrit,1), control fish exhibited recovery ratios of unity (0.98 ± 0.01 (mean ± SEM)). In contrast, the recovery of fish pre-exposed to between 0.12 and 0.77 mg·L-1 dehydroabietic acid (DHA) for 8-14 h, and swimming in either hypoxia or normoxia, was impaired. These fish had recovery ratios significantly lower than unity (0.92 ± 0.02) despite swimming to a similar initial Ucrit as control fish. The effect of pre-exposure to DHA was also evident in measurements of oxygen consumption and plasma lactate concentration. Unhealthy fish exhibited significantly lower initial and second Ucrit values than control fish. To account for the low initial swimming performance of these fish, a normalized recovery ratio was introduced ((Ucrit,1/Ucrit,1(control) + Ucrit,2/Ucrit,1)/2). This index of recovery (0.65 ± 0.08) identified the poor physical status of these fish.
Collapse
|
|
27 |
102 |
25
|
Axelsson M, Davison W, Forster ME, Farrell AP. Cardiovascular responses of the red-blooded antarctic fishes Pagothenia bernacchii and P. borchgrevinki. J Exp Biol 1992; 167:179-201. [PMID: 1634863 DOI: 10.1242/jeb.167.1.179] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate cardiac performance and cardiovascular control in two red-blooded nototheniid species of antarctic fishes, Pagothenia bernacchii (a benthic fish) and P. borchgrevinki (a cryopelagic fish), and to make comparisons with existing information on haemoglobin-free antarctic teleosts. In quiescent P. bernacchii at 0 degrees C ventral aortic pressure (PVA) was 3.09 kPa and cardiac output (Q) was 17.6 ml min-1 kg-1, with a heart rate (fH) of 10.5 beats min-1 and stroke volume of 1.56 ml kg-1. Following atropine treatment, Q was maintained but heart rate increased and stroke volume decreased. Resting heart rate resulted from an inhibitory cholinergic tone of 80.4% and an excitatory adrenergic tone of 27.5%. The intrinsic heart rate was 21.7 beats min-1 at 0 degrees C. In quiescent P. borchgrevinki at 0 degrees C, PVA was 3.6 kPa, Q was 29.6 ml min-1 kg-1 and stroke volume was 2.16 ml kg-1. The resting heart rate in P. borchgrevinki of 11.3 beats min-1 resulted from an inhibitory cholinergic tone of 54.5% and an excitatory adrenergic tone of 3.2%. The intrinsic heart rate was 23.3 beats min-1. P. bernacchii maintained Q during a progressive decrease in water oxygen tension from 20 to 6.7 kPa, but fH was increased significantly. Thus, although there is cholinergic control of the heart, no hypoxic bradycardia was observed. Recovery from hypoxia was associated with increases in Q and fH; stroke volume returned to control values. PVA declined in recovery as total vascular resistance decreased. Hypoxic exposure following atropine treatment resulted in progressive increases in PVA, Q and stroke volume; fH decreased during the recovery period. Hypoxic exposure in P. borchgrevinki produced similar cardiovascular responses to those observed in P. bernacchii. During an acute increase in water temperature from 0 to 5 degrees C, P. bernacchii regulated Q and total vascular resistance. Stroke volume decreased as fH increased. The intrinsic heart rate had a Q10 of 1.96 over this temperature range. P. bernacchii maintained chronotropic inhibition up to a temperature of 2.5-3.0 degrees C. However, by 5 degrees C this chronotropic inhibition of the heart rate was lost. Infusion of adrenaline into the ventral aorta of P. bernacchii resulted in significant increases in Q, fH, PVA and total vascular resistance. Infusion of adrenaline after atropine treatment caused similar cardiovascular changes without the change in fH. P. borchgrevinki could sustain swimming in a water tunnel at approximately 1 body length per second for 6–10 min.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
33 |
99 |