1
|
Hindell MA, Reisinger RR, Ropert-Coudert Y, Hückstädt LA, Trathan PN, Bornemann H, Charrassin JB, Chown SL, Costa DP, Danis B, Lea MA, Thompson D, Torres LG, Van de Putte AP, Alderman R, Andrews-Goff V, Arthur B, Ballard G, Bengtson J, Bester MN, Blix AS, Boehme L, Bost CA, Boveng P, Cleeland J, Constantine R, Corney S, Crawford RJM, Dalla Rosa L, de Bruyn PJN, Delord K, Descamps S, Double M, Emmerson L, Fedak M, Friedlaender A, Gales N, Goebel ME, Goetz KT, Guinet C, Goldsworthy SD, Harcourt R, Hinke JT, Jerosch K, Kato A, Kerry KR, Kirkwood R, Kooyman GL, Kovacs KM, Lawton K, Lowther AD, Lydersen C, Lyver PO, Makhado AB, Márquez MEI, McDonald BI, McMahon CR, Muelbert M, Nachtsheim D, Nicholls KW, Nordøy ES, Olmastroni S, Phillips RA, Pistorius P, Plötz J, Pütz K, Ratcliffe N, Ryan PG, Santos M, Southwell C, Staniland I, Takahashi A, Tarroux A, Trivelpiece W, Wakefield E, Weimerskirch H, Wienecke B, Xavier JC, Wotherspoon S, Jonsen ID, Raymond B. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 2020; 580:87-92. [PMID: 32238927 DOI: 10.1038/s41586-020-2126-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2020] [Indexed: 01/06/2023]
Abstract
Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
Collapse
|
Journal Article |
5 |
86 |
2
|
Ropert-Coudert Y, Van de Putte AP, Reisinger RR, Bornemann H, Charrassin JB, Costa DP, Danis B, Hückstädt LA, Jonsen ID, Lea MA, Thompson D, Torres LG, Trathan PN, Wotherspoon S, Ainley DG, Alderman R, Andrews-Goff V, Arthur B, Ballard G, Bengtson J, Bester MN, Blix AS, Boehme L, Bost CA, Boveng P, Cleeland J, Constantine R, Crawford RJM, Dalla Rosa L, Nico de Bruyn PJ, Delord K, Descamps S, Double M, Emmerson L, Fedak M, Friedlaender A, Gales N, Goebel M, Goetz KT, Guinet C, Goldsworthy SD, Harcourt R, Hinke JT, Jerosch K, Kato A, Kerry KR, Kirkwood R, Kooyman GL, Kovacs KM, Lawton K, Lowther AD, Lydersen C, Lyver PO, Makhado AB, Márquez MEI, McDonald BI, McMahon CR, Muelbert M, Nachtsheim D, Nicholls KW, Nordøy ES, Olmastroni S, Phillips RA, Pistorius P, Plötz J, Pütz K, Ratcliffe N, Ryan PG, Santos M, Southwell C, Staniland I, Takahashi A, Tarroux A, Trivelpiece W, Wakefield E, Weimerskirch H, Wienecke B, Xavier JC, Raymond B, Hindell MA. The retrospective analysis of Antarctic tracking data project. Sci Data 2020; 7:94. [PMID: 32188863 PMCID: PMC7080749 DOI: 10.1038/s41597-020-0406-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/12/2018] [Indexed: 11/15/2022] Open
Abstract
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.
Collapse
|
data-paper |
5 |
16 |
3
|
Christiansen H, Dettai A, Heindler FM, Collins MA, Duhamel G, Hautecoeur M, Steinke D, Volckaert FAM, Van de Putte AP. Diversity of Mesopelagic Fishes in the Southern Ocean - A Phylogeographic Perspective Using DNA Barcoding. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
7 |
13 |
4
|
Van de Putte AP, Janko K, Kasparova E, Maes GE, Rock J, Koubbi P, Volckaert FA, Choleva L, Fraser KP, Smykla J, Van Houdt JK, Marshall C. Comparative phylogeography of three trematomid fishes reveals contrasting genetic structure patterns in benthic and pelagic species. Mar Genomics 2012. [DOI: 10.1016/j.margen.2012.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
|
13 |
10 |
5
|
Heindler FM, Christiansen H, Frédérich B, Dettaï A, Lepoint G, Maes GE, Van de Putte AP, Volckaert FAM. Historical DNA Metabarcoding of the Prey and Microbiome of Trematomid Fishes Using Museum Samples. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
|
7 |
7 |
6
|
Kašparová E, Van de Putte AP, Marshall C, Janko K. Lifestyle and Ice: The Relationship between Ecological Specialization and Response to Pleistocene Climate Change. PLoS One 2015; 10:e0138766. [PMID: 26535569 PMCID: PMC4636791 DOI: 10.1371/journal.pone.0138766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
5 |
7
|
Schaafsma FL, David CL, Kohlbach D, Ehrlich J, Castellani G, Lange BA, Vortkamp M, Meijboom A, Fortuna-Wünsch A, Immerz A, Cantzler H, Klasmeier A, Zakharova N, Schmidt K, Van de Putte AP, van Franeker JA, Flores H. Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species. Polar Biol 2022; 45:203-224. [PMID: 35210695 PMCID: PMC8827386 DOI: 10.1007/s00300-021-02984-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022]
Abstract
Allometric relationships between body properties of animals are useful for a wide variety of purposes, such as estimation of biomass, growth, population structure, bioenergetic modelling and carbon flux studies. This study summarizes allometric relationships of zooplankton and nekton species that play major roles in polar marine food webs. Measurements were performed on 639 individuals of 15 species sampled during three expeditions in the Southern Ocean (winter and summer) and 2374 individuals of 14 species sampled during three expeditions in the Arctic Ocean (spring and summer). The information provided by this study fills current knowledge gaps on relationships between length and wet/dry mass of understudied animals, such as various gelatinous zooplankton, and of animals from understudied seasons and maturity stages, for example, for the krill Thysanoessa macrura and larval Euphausia superba caught in winter. Comparisons show that there is intra-specific variation in length–mass relationships of several species depending on season, e.g. for the amphipod Themisto libellula. To investigate the potential use of generalized regression models, comparisons between sexes, maturity stages or age classes were performed and are discussed, such as for the several krill species and T. libellula. Regression model comparisons on age classes of the fish E. antarctica were inconclusive about their general use. Other allometric measurements performed on carapaces, eyes, heads, telsons, tails and otoliths provided models that proved to be useful for estimating length or mass in, e.g. diet studies. In some cases, the suitability of these models may depend on species or developmental stages.
Collapse
|
|
3 |
4 |
8
|
McCormack SA, Melbourne-Thomas J, Trebilco R, Griffith G, Hill SL, Hoover C, Johnston NM, Marina TI, Murphy EJ, Pakhomov EA, Pinkerton M, Plagányi É, Saravia LA, Subramaniam RC, Van de Putte AP, Constable AJ. Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graphical AbstractGraphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems.
Collapse
|
|
4 |
3 |
9
|
Christiansen H, Heindler FM, Hellemans B, Jossart Q, Pasotti F, Robert H, Verheye M, Danis B, Kochzius M, Leliaert F, Moreau C, Patel T, Van de Putte AP, Vanreusel A, Volckaert FAM, Schön I. Facilitating population genomics of non-model organisms through optimized experimental design for reduced representation sequencing. BMC Genomics 2021; 22:625. [PMID: 34418978 PMCID: PMC8380342 DOI: 10.1186/s12864-021-07917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.
Collapse
|
|
4 |
1 |
10
|
Frédérich B, Heindler FM, Christiansen H, Dettai A, Van de Putte AP, Volckaert FA, Lepoint G. Repeated morphological diversification in endemic Antarctic fishes of the genus Trematomus. BELG J ZOOL 2022. [DOI: 10.26496/bjz.2022.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The iterative nature of ecomorphological diversification is observed in various groups of animals. However, studies explicitly testing the consistency of morphological variation across and within species are scarce. Antarctic notothenioids represent a textbook example of adaptive radiation in marine fishes. Within Nototheniidae, the endemic Antarctic genus Trematomus consists of 15 extant species, some with documented large intraspecific variability. Here, we quantify head shape disparity in 11 species of Trematomus by landmark-based geometric morphometrics, and we illustrate repeated events of divergence and convergence of their head morphology. Taking advantage of the polymorphism observed in some species of Trematomus, we also show that two closely related species or clades (e.g., Trematomus bernacchii and T. hansoni) are characterised by the same level of morphological disparity as observed at the level of the entire genus. Interestingly, the same main axes of shape variation are shared between and within species, indicating repeated morphological diversification. Overall, we illustrate a similarity of intra- and interspecific patterns of phenotypic diversity providing new insights into the mechanisms that underlie the diversification of Antarctic fishes.
Collapse
|
|
3 |
|
11
|
Becker SL, Boyd C, Handley JM, Raymond B, Reisinger R, Ropert‐Coudert Y, Apelgren N, Davies TE, Lea M, Santos M, Trathan PN, Van de Putte AP, Huckstadt LA, Charrassin J, Brooks CM. Scaling up ocean conservation through recognition of key biodiversity areas in the Southern Ocean from multispecies tracking data. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14345. [PMID: 39145654 PMCID: PMC11780204 DOI: 10.1111/cobi.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 08/16/2024]
Abstract
Biodiversity is critical for maintaining ecosystem function but is threatened by increasing anthropogenic pressures. In the Southern Ocean, a highly biologically productive region containing many endemic species, proactive management is urgently needed to mitigate increasing pressures from fishing, climate change, and tourism. Site-based conservation is one important tool for managing the negative impacts of human activities on ecosystems. The Key Biodiversity Area (KBA) Standard is a standardized framework used to define sites vital for the persistence of global biodiversity based on criteria and quantitative thresholds. We used tracking data from 14 species of Antarctic and subantarctic seabirds and pinnipeds from the publicly available Retrospective Analysis of Antarctic Tracking Data (RAATD) data set to define KBAs for a diverse suite of marine predators. We used track2kba, an R package that supports identification of KBAs from telemetry data through identification of highly used habitat areas and estimates of local abundance within sites. We compared abundance estimates at each site with thresholds for KBA criteria A1, B1, and D1 (related to globally threatened species, individual geographically restricted species, and demographic aggregations, respectively). We identified 30 potential KBAs for 13 species distributed throughout the Southern Ocean that were vital for each individual species, population, and life-history stage for which they were determined. These areas were identified as highly used by these populations based on observational data and complement the ongoing habitat modeling and bioregionalization work that has been used to prioritize conservation areas in this region. Although further work is needed to identify potential KBAs based on additional current and future data sets, we highlight the benefits of utilizing KBAs as part of a holistic approach to marine conservation, given their significant value as a global conservation tool.
Collapse
|
research-article |
1 |
|
12
|
Christiansen H, Dettai A, Heindler FM, Collins MA, Duhamel G, Hautecoeur M, Steinke D, Volckaert FAM, Van de Putte AP. Corrigendum: Diversity of Mesopelagic Fishes in the Southern Ocean – A Phylogeographic Perspective Using DNA Barcoding. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
7 |
|