1
|
Roggero A, Alù D, Laini A, Rolando A, Palestrini C. Color polymorphism and mating trends in a population of the alpine leaf beetle Oreina gloriosa. PLoS One 2024; 19:e0298330. [PMID: 38530852 DOI: 10.1371/journal.pone.0298330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 03/28/2024] Open
Abstract
The bright colors of Alpine leaf beetles (Coleoptera, Chrysomelidae) are thought to act as aposematic signals against predation. Within the European Alps, at least six species display a basal color of either blue or green, likely configuring a classic case of müllerian mimicry. In this context, intra-population color polymorphism is paradoxical as the existence of numerous color morphs might hamper the establishment of a search image in visual predators. Assortative mating may be one of the main factors contributing to the maintenance of polymorphic populations. Due to the marked iridescence of these leaf beetles, the perceived color may change as the viewing or illumination angle changes. The present study, conducted over three years, involved intensive sampling of a population of Oreina gloriosa from the Italian Alps and applied colorimetry and a decision tree method to identify the color morphs in an objective manner. The tertiary sex ratio of the population was biased in favor of males, suggesting that viviparous females hide to give birth. Seven color morphs were identified, and their frequencies varied significantly over the course of the study. Three different analyses of mating (JMating, QInfomating, and Montecarlo simulations) recognized a general trend for random mating which coexists with some instances of positive and negative assortative mating. This could help explain the pre-eminence of one morph (which would be favored because of positive selection due to positive assortative mating) in parallel with the persistence of six other morphs (maintained due to negative assortative mating).
Collapse
|
2
|
Nervo B, Laini A, Roggero A, Palestrini C, Rolando A. Spatio-temporal modelling suggests that some dung beetle species (Coleoptera: Geotrupidae) may respond to global warming by boosting dung removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168127. [PMID: 37907105 DOI: 10.1016/j.scitotenv.2023.168127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
In the current framework of changes to the global climate, information on the thermal tolerance of dung beetles is crucial to understand how they might cope with increases in land temperature in terms of survival and ecosystem service provision. In this spatio-temporal modelling study, we investigated the thermal tolerance and effect of temperature changes on dung removal by three dung beetle species (Coleoptera: Geotrupidae) living within the 600-1400 m altitudinal belt in the Italian Alps. We chose large tunneler beetles because of their pivotal role in dung removal and nutrient recycling, important ecosystem services for maintaining the viability and profitability of the Alpine pastoral system. Our study used experimental data on dung removal at different temperatures to predict changes to this ecosystem service in the future considering different climatic scenarios and changes in land use for the specific study area. The results show that the temperature increases incurred between 1981 and 2005 may have boosted rates of spring dung removal across the entire study area (expressed as average dung removal per pair per month), partially compensating for the reduction in grassland extent within pasture-based livestock farming systems. Despite the limitations related to modelling future climate change scenarios and uncertainties deriving from several interacting factors (e.g., the sensitivity of large-bodied species to land-use changes), our results suggest that the predicted increases in temperature over the next 80 years would continue to boost dung removal, revealing a resilience of this service. The increase in dung removal rates, for all three species, is mainly related to the most extreme scenario of carbon emissions and for the months spanning from May to October of the interval 2041-2100. Focusing on large tunnelers and adopting a dynamic approach that considers changes in dung removal over space and time can assist ecosystem service conservation planning.
Collapse
|
3
|
Noriega JA, Hortal J, deCastro-Arrazola I, Alves-Martins F, Ortega JCG, Bini LM, Andrew NR, Arellano L, Beynon S, Davis ALV, Favila ME, Floate KD, Horgan FG, Menéndez R, Milotic T, Nervo B, Palestrini C, Rolando A, Scholtz CH, Senyüz Y, Wassmer T, Ádam R, Araújo CDO, Barragan-Ramírez JL, Boros G, Camero-Rubio E, Cruz M, Cuesta E, Damborsky MP, Deschodt CM, Rajan PD, D'hondt B, Díaz Rojas A, Dindar K, Escobar F, Espinoza VR, Ferrer-Paris JR, Gutiérrez Rojas PE, Hemmings Z, Hernández B, Hill SJ, Hoffmann M, Jay-Robert P, Lewis K, Lewis M, Lozano C, Marín-Armijos D, de Farias PM, Murcia-Ordoñez B, Karimbumkara SN, Navarrete-Heredia JL, Ortega-Echeverría C, Pablo-Cea JD, Perrin W, Pessoa MB, Radhakrishnan A, Rahimi I, Raimundo AT, Ramos DC, Rebolledo RE, Roggero A, Sánchez-Mercado A, Somay L, Stadler J, Tahmasebi P, Triana Céspedes JD, Santos AMC. Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat Commun 2023; 14:8070. [PMID: 38057312 PMCID: PMC10700315 DOI: 10.1038/s41467-023-43760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Dung removal by macrofauna such as dung beetles is an important process for nutrient cycling in pasturelands. Intensification of farming practices generally reduces species and functional diversity of terrestrial invertebrates, which may negatively affect ecosystem services. Here, we investigate the effects of cattle-grazing intensification on dung removal by dung beetles in field experiments replicated in 38 pastures around the world. Within each study site, we measured dung removal in pastures managed with low- and high-intensity regimes to assess between-regime differences in dung beetle diversity and dung removal, whilst also considering climate and regional variations. The impacts of intensification were heterogeneous, either diminishing or increasing dung beetle species richness, functional diversity, and dung removal rates. The effects of beetle diversity on dung removal were more variable across sites than within sites. Dung removal increased with species richness across sites, while functional diversity consistently enhanced dung removal within sites, independently of cattle grazing intensity or climate. Our findings indicate that, despite intensified cattle stocking rates, ecosystem services related to decomposition and nutrient cycling can be maintained when a functionally diverse dung beetle community inhabits the human-modified landscape.
Collapse
|
4
|
Rolando A, Basso C, Brunelli N, Bocca M, Laini A. The foraging ecology of yellow-billed and red- billed choughs changed between two climatically different years. Sci Rep 2023; 13:20908. [PMID: 38016972 PMCID: PMC10684611 DOI: 10.1038/s41598-023-46336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023] Open
Abstract
Climate change is affecting the alpine ecosystem at an unprecedented rate, with marked changes in spring phenology and the elevation distribution of birds. Changes in the European Alps are happening rapidly, and it is possible behaviours stand to change from one year to the next. The year 2022 was characterised by climatic extremes: Italy experienced its hottest year ever, and it was the driest since 1800. Here, we assessed whether the foraging ecology of two coexisting upland bird species, the yellow-billed and the red-billed chough, changed from 2021 to 2022. We assessed foraging stay times, flock size, propensity to mixed flocking, foraging home ranges and altitudinal distribution. Stay times of both species when foraging in monospecific flocks significantly shortened in 2022, especially in the case of the red-billed chough. The two corvids are known to influence each other when foraging together. In 2021, as expected, the stay times of the red-billed chough decreased when in the presence of the congener, but this did not occur in 2022. Instead, the yellow-billed chough increased its altitudinal foraging distribution in 2022. The results are in line with the hypothesis that large climate variations may disrupt the foraging ecology of mountain birds. However, as it is not possible to draw solid conclusions from just two years of observations, further field research will have to be planned in the future.
Collapse
|
5
|
Natta G, Laini A, Roggero A, Fabbriciani F, Rolando A, Palestrini C. Behavioural Repeatability and Behavioural Syndrome in the Dung Beetle Copris umbilicatus (Coleoptera, Scarabaeidae). INSECTS 2023; 14:529. [PMID: 37367344 DOI: 10.3390/insects14060529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023]
Abstract
Although personality studies have primarily focused on vertebrates, the evidence showing invertebrates to be capable of displaying personalities has been steadily growing in recent years. In this study, we investigated the behavioural repeatability (repetition of a behaviour over time) and behavioural syndromes (a set of correlated behaviours) in Copris umbilicatus, which is a dung beetle species showing complex sub-social behaviour. We analysed three behaviours (activity, thanatosis and distress call emission) by measuring seven distinct behavioural traits (i.e., three activity-, one thanatosis- and three distress call-related traits). We found moderate to high levels of individual repeatability in all behavioural traits considered. The duration of thanatosis was inversely correlated with two activity traits, hinting a behavioural syndrome for thanatosis and activity, with bolder individuals exhibiting shorter thanatosis and higher locomotor activity in contrast with fearful individuals, which display longer thanatosis and poor locomotor activity. No relationships were found between the behavioural traits and body size or sex. Results of the principal component analysis (PCA) suggested personality differences among individuals. Dung beetles provide an impressive variety of ecosystem services. Since the provision of these services may depend on the personalities represented in local populations and communities, studies on the ecology of personality in dung beetles should be encouraged in future research.
Collapse
|
6
|
Kerman K, Roggero A, Rolando A, Palestrini C. Sexual horn dimorphism predicts the expression of active personality trait: males perform better only in the sexually horn dimorphic Onthophagus dung beetle. J ETHOL 2023. [DOI: 10.1007/s10164-023-00782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Ferrari C, Cerri J, Rolando A, Bassano B, Hardenberg AV, Bertolino S. See you in spring: overwinter survival is higher than post summer in the Alpine marmot. ETHOL ECOL EVOL 2023. [DOI: 10.1080/03949370.2022.2157891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Laini A, Roggero A, Palestrini C, Rolando A. Continuous phenotypic modulation explains male horn allometry in three dung beetle species. Sci Rep 2022; 12:8691. [PMID: 35610305 PMCID: PMC9130230 DOI: 10.1038/s41598-022-12854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Many dung beetle species show male horn polyphenism, the ability of males to develop into distinct phenotypes without intermediate forms as a response to the larval growth environment. While males with long (majors) and rudimentary (minor) horn have been widely reported in literature, little is known about the existence of individuals with intermediate horn length. Here we investigate the occurrence of intermediates in natural populations of three dung beetle species (Onthophagus furcatus, Copris lunaris and C. hispanus). We analysed the body size-horn length relationship using linear, exponential, and sigmoidal models with different error structures. We inferred the number of individuals in the minor, intermediate, and major groups by combining changepoint analysis and simulation from fitted allometric models. The sigmoidal equation was a better descriptor of the body size-horn length relationship than linear or exponential equations in all the three studied species. Our results indicated that the number of intermediates equals or exceeds the number of minor and major males. This work provides evidence that, at least in the studied species, males with intermediate horn length exist in natural populations. For similar cases we therefore suggest that continuous phenotypic modulation rather than discrete polyphenism can explain variation in male horn allometry.
Collapse
|
9
|
Nervo B, Laini A, Roggero A, Fabbriciani F, Palestrini C, Rolando A. Interactions Between Individuals and Sex Rather Than Morphological Traits Drive Intraspecific Dung Removal in Two Dung Beetle Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.863669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dung beetle functional ecology has traditionally focused on studying the relation between traits and ecosystem functions in multispecies assemblages, often ignoring the contribution of behavioral interactions and trait variability within species. Here we focus on the factors that affect dung removal at an intraspecific level in two horned dung beetle species with dimorphic males (Onthophagus taurus and Onthophagus verticicornis). By setting treatments for each species with single individuals (one female, F; one major male, M; one minor male, m) or with pairs of individuals (MF, mF, MM, mm, FF), we examined the effect on dung removal of morphological traits (head, pronotum, leg, horn), sex, and interactions between individuals. Our results showed that dung removal at an intraspecific level depended more on sex and behavioral interactions than on the underlying morphological traits, whose effects on dung removal were negligible. Single females generally removed more dung than single males, which suggests that females are more effective than males. In both species, pairs with at least one female (MF, mF, FF) showed high dung removal efficiency, but did not perform differently from the sum of single treatments (M + F, m + f, F + F). This suggests an additive effect: males and females (or two females) join their efforts when they are together. The pairs with only males (MM and mm) removed less dung than the sum of the single individuals (M + M and m + m), which indicates a mutual inhibition of males. In both species, male morphs performed similarly as they removed the same amount of dung. Despite our results are limited to two Onthophagus species, we suggest that the intraspecific functional ecology of dung beetles might be more influenced by behavioral interactions and sex rather than by morphological traits.
Collapse
|
10
|
Ferrari C, Zanet S, Rolando A, Bertolino S, Bassano B, von Hardenberg A. Marginal habitats provide unexpected survival benefits to the alpine marmot. POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Nervo B, Roggero A, Isaia M, Chamberlain D, Rolando A, Palestrini C. Integrating thermal tolerance, water balance and morphology: An experimental study on dung beetles. J Therm Biol 2021; 101:103093. [PMID: 34879911 DOI: 10.1016/j.jtherbio.2021.103093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The impacts of extreme and rising mean temperatures due to climate change can pose significant physiological challenges for insects. An integrated approach that focuses on mechanisms of body temperature regulation, water balance and morphology may help to unravel the functional traits underpinning thermoregulation strategies and the most relevant trade-offs between temperature and water balance regulation. Here, we focused on four species of tunneler dung beetles as important providers of ecosystem services. In this experimental research, we first quantified two traits related to desiccation resistance and tolerance via experimental tests, and subsequently defined two levels of resistance and tolerance (i.e. low and high) according to significant differences among species. Second, we identified morphological traits correlated with water balance strategies, and we found that desiccation resistance and tolerance increased with small relative size of spiracles and wings. High levels of desiccation tolerance were also correlated with small body mass. Third, by integrating thermal tolerance with functional traits based on desiccation resistance and desiccation tolerance, we found that the species with the highest survival rates under elevated temperatures (Euoniticellus fulvus) was characterized by low desiccation resistance and high desiccation tolerance. Our results suggest shared physiological and morphological responses to temperature and desiccation, with potential conflicts between the need to regulate heat and water balance. They also highlighted the sensitivity of a large species such as Geotrupes stercorarius to warm and arid conditions with potential implications for its geographic distribution and the provisioning of ecosystem services under a climate change scenario.
Collapse
|
12
|
Nervo B, Roggero A, Chamberlain D, Caprio E, Rolando A, Palestrini C. Physiological, morphological and ecological traits drive desiccation resistance in north temperate dung beetles. BMC ZOOL 2021; 6:26. [PMID: 37170349 PMCID: PMC10127359 DOI: 10.1186/s40850-021-00089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing temperatures and changes in precipitation patterns threaten the existence of many organisms. It is therefore informative to identify the functional traits that underlie differences in desiccation resistance to understand the response of different species to changes in water availability resulting from climate change. We used adult dung beetles as model species due to their importance to ecosystem services. We investigated: (i) the effect of physiological (water loss rate, water loss tolerance, body water content), morphological (body mass) and ecological (nesting behaviour) traits on desiccation resistance; (ii) the role of phylogenetic relatedness in the above associations; and, (iii) whether relatively large or small individuals within a species have similar desiccation resistance and whether these responses are consistent across species. RESULTS Desiccation resistance decreased with increasing water loss rate and increased with increasing water loss tolerance (i.e. proportion of initial water content lost at the time of death). A lack of consistent correlation between these traits due to phylogenetic relatedness suggests that the relationship is not determined by a shared evolutionary history. The advantage of a large body size in favouring desiccation resistance depended on the nesting behaviour of the dung beetles. In rollers (one species), large body sizes increased desiccation resistance, while in tunnelers and dwellers, desiccation resistance seemed not to be dependent on body mass. The phylogenetic correlation between desiccation resistance and nesting strategies was significant. Within each species, large individuals showed greater resistance to desiccation, and these responses were consistent across species. CONCLUSIONS Resistance to desiccation was explained mainly by the dung beetles' ability to reduce water loss rate (avoidance) and to tolerate water loss (tolerance). A reduction in water availability may impose a selection pressure on body size that varies based on nesting strategies, even though these responses may be phylogenetically constrained. Changes in water availability are more likely to affect dweller species, and hence the ecosystem services they provide.
Collapse
|
13
|
Kerman K, Roggero A, Piccini I, Rolando A, Palestrini C. Dung beetle distress signals may be correlated with sex and male morph: a case study on Copris lunaris (Coleoptera: Scarabaeidae, Coprini). BIOACOUSTICS 2020. [DOI: 10.1080/09524622.2019.1710255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Piccini I, Palestrini C, Rolando A, Roslin T. Local management actions override farming systems in determining dung beetle species richness, abundance and biomass and associated ecosystem services. Basic Appl Ecol 2019. [DOI: 10.1016/j.baae.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kerman K, Roggero A, Rolando A, Palestrini C. Evidence for Male Horn Dimorphism and Related Pronotal Shape Variation in Copris lunaris (Linnaeus, 1758) (Coleoptera: Scarabaeidae, Coprini). INSECTS 2018; 9:insects9030108. [PMID: 30135396 PMCID: PMC6164466 DOI: 10.3390/insects9030108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 01/15/2023]
Abstract
Male horn dimorphism is a rather common phenomenon in dung beetles, where some adult individuals have well-developed head horns (i.e., major males), while others exhibit diminished horn length (i.e., minor males). We focused on horn dimorphism and associated head and pronotum shape variations in Copris lunaris. We examined the allometric relationship between horn length (i.e., cephalic and pronotal horns) and maximum pronotum width (as index of body size) by fitting linear and sigmoidal models for both sexes. We then asked whether head and pronotum shape variations, quantified using the geometric morphometric approach, contributed to this allometric pattern. We found that female cephalic and pronotal horn growth showed a typical isometric scaling with body size. Horn length in males, however, exhibited sigmoidal allometry, where a certain threshold in body size separated males into two distinct morphs as majors and minors. Interestingly, we highlighted the same allometric patterns (i.e., isometric vs. sigmoidal models) by scaling horn lengths with pronotum shape, making evident that male horn dimorphism is not only a matter of body size. Furthermore, the analysis of shape showed that the three morphs had similar heads, but different pronota, major males showing a more expanded, rounded pronotum than minor males and females. These morphological differences in C. lunaris can ultimately have important functional consequences in the ecology of this species, which should be explored in future work.
Collapse
|
16
|
Piccini I, Nervo B, Forshage M, Celi L, Palestrini C, Rolando A, Roslin T. Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1440-1448. [PMID: 29070445 DOI: 10.1016/j.scitotenv.2017.10.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Rapid biodiversity loss has emphasized the need to understand how biodiversity affects the provisioning of ecological functions. Of particular interest are species and communities with versatile impacts on multiple parts of the environment, linking processes in the biosphere, lithosphere, and atmosphere to human interests in the anthroposphere (in this case, cattle farming). In this study, we examine the role of a specific group of insects - beetles feeding on cattle dung - on multiple ecological functions spanning these spheres (dung removal, soil nutrient content and greenhouse gas emissions). We ask whether the same traits which make species prone to extinction (i.e. response traits) may also affect their functional efficiency (as effect traits). To establish the link between response and effect traits, we first evaluated whether two traits (body mass and nesting strategy, the latter categorized as tunnelers or dwellers) affected the probability of a species being threatened. We then tested for a relationship between these traits and ecosystem functioning. Across Scandinavian dung beetle species, 75% of tunnelers and 30% of dwellers are classified as threatened. Hence, nesting strategy significantly affects the probability of a species being threatened, and constitutes a response trait. Effect traits varied with the ecological function investigated: density-specific dung removal was influenced by both nesting strategy and body mass, whereas methane emissions varied with body mass and nutrient recycling with nesting strategy. Our findings suggest that among Scandinavian dung beetles, nesting strategy is both a response and an effect trait, with tunnelers being more efficient in providing several ecological functions and also being more sensitive to extinction. Consequently, functionally important tunneler species have suffered disproportionate declines, and species not threatened today may be at risk of becoming so in the near future. This linkage between effect and response traits aggravates the consequences of ongoing biodiversity loss.
Collapse
|
17
|
Piccini I, Arnieri F, Caprio E, Nervo B, Pelissetti S, Palestrini C, Roslin T, Rolando A. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS One 2017; 12:e0178077. [PMID: 28700590 PMCID: PMC5507485 DOI: 10.1371/journal.pone.0178077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/04/2017] [Indexed: 11/29/2022] Open
Abstract
Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems.
Collapse
|
18
|
Brambilla M, Caprio E, Assandri G, Scridel D, Bassi E, Bionda R, Celada C, Falco R, Bogliani G, Pedrini P, Rolando A, Chamberlain D. A spatially explicit definition of conservation priorities according to population resistance and resilience, species importance and level of threat in a changing climate. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12572] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
19
|
Nervo B, Caprio E, Celi L, Lonati M, Lombardi G, Falsone G, Iussig G, Palestrini C, Said-Pullicino D, Rolando A. Ecological functions provided by dung beetles are interlinked across space and time: evidence from 15
N isotope tracing. Ecology 2017; 98:433-446. [DOI: 10.1002/ecy.1653] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022]
|
20
|
Chamberlain D, Brambilla M, Caprio E, Pedrini P, Rolando A. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia 2016; 181:1139-50. [PMID: 27139426 DOI: 10.1007/s00442-016-3637-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/19/2016] [Indexed: 11/26/2022]
Abstract
Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.
Collapse
|
21
|
Chamberlain DE, Pedrini P, Brambilla M, Rolando A, Girardello M. Identifying key conservation threats to Alpine birds through expert knowledge. PeerJ 2016; 4:e1723. [PMID: 26966659 PMCID: PMC4782807 DOI: 10.7717/peerj.1723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds). For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community.
Collapse
|
22
|
Liaudat AC, Rodríguez N, Chen S, Romanini MC, Vivas A, Rolando A, Gauna H, Mayer N. Adrenal response of male rats exposed to prenatal stress and early postnatal stimulation. Biotech Histochem 2015; 90:432-8. [PMID: 25867787 DOI: 10.3109/10520295.2015.1019926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress in pregnant rats caused by chronic immobilization alters the pattern of secretion of corticosterone and modifies the hypothalamic-pituitary-adrenal axis (HPA) of the fetus. Early postnatal handling, however, may reverse the effects of increased secretion of corticosterone. We investigated the effects of prenatal stress and postnatal handling on the activity of the HPA axis of male offspring of stressed female rats. Male 90-day-old rats from four groups were investigated: prenatally stressed animals without postnatal handling, prenatally stressed animals with postnatal handling, unstressed control animals with postnatal handling, and unstressed control animals without postnatal handling. After sacrifice, the adrenal glands were weighed to determine the adrenal-somatic index. Apoptosis was evaluated by TUNEL assay and active caspase-3 expression. We found that the adrenal gland cortex:medulla ratio increased in animals with prenatal stress and that eventually the stress caused apoptosis. Handling newborns to simulate maternal activity ameliorated some of the negative effects of prenatal stress.
Collapse
|
23
|
Cots D, Merkis C, Rolando A, Bozzo A, Cristofolini A, Diaz T, Gauna H, Romanini M. Effects of chronic stress on corticosterone plasma levels and the immunolocalization of cyclooxygenase-2. Placenta 2015. [DOI: 10.1016/j.placenta.2015.01.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Romanini M, Rolando A, Bozzo A, Borgui D, Cots D, Diaz T, Alustiza F, Gauna H. Immunolocalization of hypoxia-inducible factor-1α in placental tissue of stressed rats. Placenta 2015. [DOI: 10.1016/j.placenta.2015.01.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Giordana L, Bozzo A, Cots D, Monedero Cobeta I, Rolando A, Borghi D, Diaz T, Gauna H, Romanini M. The effect of chronic stress on prenatal development of the central nervous system. Biotech Histochem 2014; 90:146-51. [DOI: 10.3109/10520295.2014.976269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|