1
|
Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 2001; 98:8780-5. [PMID: 11447267 PMCID: PMC37512 DOI: 10.1073/pnas.151179498] [Citation(s) in RCA: 904] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Indexed: 12/12/2022] Open
Abstract
We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2(-/-) mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2(-/-) mice, we used suppressive subtractive hybridization between livers from Usf2(-/-) and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2(-/-) hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.
Collapse
|
research-article |
24 |
904 |
2
|
de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 1998; 95:8847-51. [PMID: 9671767 PMCID: PMC21165 DOI: 10.1073/pnas.95.15.8847] [Citation(s) in RCA: 834] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the major primary malignant tumor in the human liver, but the molecular changes leading to liver cell transformation remain largely unknown. The Wnt-beta-catenin pathway is activated in colon cancers and some melanoma cell lines, but has not yet been investigated in HCC. We have examined the status of the beta-catenin gene in different transgenic mouse lines of HCC obtained with the oncogenes c-myc or H-ras. Fifty percent of the hepatic tumors in these transgenic mice had activating somatic mutations within the beta-catenin gene similar to those found in colon cancers and melanomas. These alterations in the beta-catenin gene (point mutations or deletions) lead to a disregulation of the signaling function of beta-catenin and thus to carcinogenesis. We then analyzed human HCCs and found similar mutations in eight of 31 (26%) human liver tumors tested and in HepG2 and HuH6 hepatoma cells. The mutations led to the accumulation of beta-catenin in the nucleus. Thus alterations in the beta-catenin gene frequently are selected for during liver tumorigenesis and suggest that disregulation of the Wnt-beta-catenin pathway is a major event in the development of HCC in humans and mice.
Collapse
|
research-article |
27 |
834 |
3
|
Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 1999; 23:247-56. [PMID: 10399932 DOI: 10.1016/s0896-6273(00)80777-1] [Citation(s) in RCA: 794] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading processes of tangentially migrating neurons, and a strong axonal labeling is observed in differentiating neurons. In cultured neurons, Doublecortin expression is highest in the distal parts of developing processes. We demonstrate by sedimentation and microscopy studies that Doublecortin is associated with microtubules (MTs) and postulate that it is a novel MAP. Our data suggest that the cortical dysgeneses associated with the loss of Doublecortin function might result from abnormal cytoskeletal dynamics in neuronal cell development.
Collapse
|
|
26 |
794 |
4
|
Chelly J, Kaplan JC, Maire P, Gautron S, Kahn A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature 1988; 333:858-60. [PMID: 3290682 DOI: 10.1038/333858a0] [Citation(s) in RCA: 584] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The gene that is defective in patients with Duchenne and Becker muscular dystrophy consists of about 60 short exons scattered along a gigantic DNA region that spans some 2 megabase pairs. The encoded protein, dystrophin, was recently characterized as a component of muscle intracellular membranes of low abundance. The dystrophin messenger RNA is difficult to study in both normal and pathological tissue specimens because it is large (14 kilobases) and scarce (0.01-0.001% of total muscle mRNA). We report here that efficient in vitro co-amplifications of the mRNAs of the dystrophin gene and of a reporter gene, aldolase A, by the polymerase chain reaction procedure enables us to obtain a quantitative estimate of the dystrophin gene transcript. A processed, transcribed segment was thus detected in 13 different human tissues. It ranged from 0.02-0.12% of total mRNA in skeletal muscle to 25,000 times less in lymphoblastoid cells.
Collapse
|
Comparative Study |
37 |
584 |
5
|
Hill I, Kahn A, Soos Z, Pascal, Jr R. Charge-separation energy in films of π-conjugated organic molecules. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00882-4] [Citation(s) in RCA: 552] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
25 |
552 |
6
|
des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrié A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998; 92:51-61. [PMID: 9489699 DOI: 10.1016/s0092-8674(00)80898-3] [Citation(s) in RCA: 531] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-SCLH/LIS syndrome is a neuronal migration disorder with disruption of the six-layered neocortex. It consists of subcortical laminar heterotopia (SCLH, band heterotopia, or double cortex) in females and lissencephaly (LIS) in males, leading to epilepsy and cognitive impairment. We report the characterization of a novel CNS gene encoding a 40 kDa predicted protein that we named Doublecortin and the identification of mutations in four unrelated X-SCLH/LIS cases. The predicted protein shares significant homology with the N-terminal segment of a protein containing a protein kinase domain at its C-terminal part. This novel gene is highly expressed during brain development, mainly in fetal neurons including precursors. The complete disorganization observed in lissencephaly and heterotopia thus seems to reflect a failure of early events associated with neuron dispersion.
Collapse
|
|
27 |
531 |
7
|
Chelly J, Concordet JP, Kaplan JC, Kahn A. Illegitimate transcription: transcription of any gene in any cell type. Proc Natl Acad Sci U S A 1989; 86:2617-21. [PMID: 2495532 PMCID: PMC286968 DOI: 10.1073/pnas.86.8.2617] [Citation(s) in RCA: 436] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell.
Collapse
|
research-article |
36 |
436 |
8
|
Akli S, Caillaud C, Vigne E, Stratford-Perricaudet LD, Poenaru L, Perricaudet M, Kahn A, Peschanski MR. Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 1993; 3:224-8. [PMID: 8485577 DOI: 10.1038/ng0393-224] [Citation(s) in RCA: 406] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of a replication-deficient adenovirus vector to transfer a foreign gene into neural cells of adult rats in vivo has been analysed. A large number of neural cells (including neurons, astrocytes and ependymal cells) expressed an E. coli lacZ transgene for at least 45 days after inoculation of various brain areas. Injecting up to 3 x 10(5) pfu in 10 microliters did not result in any detectable cytopathic effects--these were only observed for very high titres of infection (> 10(7) pfu 10 microliters-1). Adenovirus vectors therefore appear to be a promising means for in vivo transfer of therapeutic genes into the central nervous system.
Collapse
|
|
32 |
406 |
9
|
Moselhy HF, Georgiou G, Kahn A. Frontal lobe changes in alcoholism: a review of the literature. Alcohol Alcohol 2001; 36:357-68. [PMID: 11524299 DOI: 10.1093/alcalc/36.5.357] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alcohol can induce a wide spectrum of effects on the central nervous system. These effects can be recognized at the neurophysiological, morphological and neuropsychological levels. Several studies of the effect of alcohol on the frontal lobes were identified for review from MedLine, PsychLIT databases and by manual searching. In this review article, the different changes are examined in detail. Computed tomography studies have reported changes of frontal lobe in alcoholism, while magnetic resonance imaging studies supported these findings. Neurophysiological studies with positron emission tomography and single photon emission computed tomography have reported a decreased frontal lobe glucose utilization and reduced cerebral blood flow. There is also evidence from neuropsychological studies that there are specific deficits in alcoholism that suggest frontal lobe dysfunction. Considered together, these studies lend a strong credence to the concept of frontal lobe pathology in alcoholism. However, frontal lobe is not an isolated part of the brain and should be considered with its heavy connections to different cortical and subcortical areas of the brain.
Collapse
|
Review |
24 |
350 |
10
|
Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC, Zemni R, Roest Crollius H, Carrié A, Fauchereau F, Cherry M, Briault S, Hamel B, Fryns JP, Beldjord C, Kahn A, Moraine C, Chelly J. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 1998; 392:923-6. [PMID: 9582072 DOI: 10.1038/31940] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Primary or nonspecific X-linked mental retardation (MRX) is a heterogeneous condition in which affected patients do not have any distinctive clinical or biochemical features in common apart from cognitive impairment. Although it is present in approximately 0.15-0.3% of males, most of the genetic defects associated with MRX, which may involve more than ten different genes, remain unknown. Here we report the characterization of a new gene on the long arm of the X-chromosome (position Xq12) and the identification in unrelated individuals of different mutations that are predicted to cause a loss of function. This gene is highly expressed in fetal brain and encodes a protein of relative molecular mass 91K, named oligophrenin-1, which contains a domain typical of a Rho-GTPase-activating protein (rhoGAP). By enhancing their GTPase activity, GAP proteins inactivate small Rho and Ras proteins, so inactivation of rhoGAP proteins might cause constitutive activation of their GTPase targets. Such activation is known to affect cell migration and outgrowth of axons and dendrites in vivo. Our results demonstrate an association between cognitive impairment and a defect in a signalling pathway that depends on a Ras-like GTPase.
Collapse
|
|
27 |
334 |
11
|
Lacronique V, Mignon A, Fabre M, Viollet B, Rouquet N, Molina T, Porteu A, Henrion A, Bouscary D, Varlet P, Joulin V, Kahn A. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nat Med 1996; 2:80-6. [PMID: 8564847 DOI: 10.1038/nm0196-80] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fas is an apoptosis-signalling cell surface antigen that has been shown to trigger cell death upon specific ligand or antibody binding. Treatment of mice with an anti-Fas antibody causes fulminant hepatic failure due to massive apoptosis. To test a putative protective effect of the anti-apoptotic Bcl-2 protein, transgenic mice were generated to express the human bcl-2 gene product in hepatocytes. Early onset of massive hepatic apoptosis leading to death was observed in all nontransgenic mice treated with an anti-Fas antibody. By contrast, hepatic apoptosis was delayed and dramatically reduced in transgenic animals, yielding a 93% survival rate. These results demonstrate that Bcl-2 is able to protect from in vivo Fas-mediated cytotoxicity, and could be of significance for preventing fulminant hepatic failure due to viral hepatitis in humans.
Collapse
|
|
29 |
313 |
12
|
Bar-Shavit R, Kahn A, Wilner GD, Fenton JW. Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science 1983; 220:728-31. [PMID: 6836310 DOI: 10.1126/science.6836310] [Citation(s) in RCA: 268] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human alpha-thrombin is a potent chemoattractant for human monocytes, with optimum activity occurring at about 10 nanomoles per liter. A variety of thrombins that were chemically modified to alter procoagulant or esterolytic functions showed a similar optimum activity, but complexes of prothrombin or alpha-thrombin with either antithrombin III or hirudin did not. These findings indicate that the regions in thrombin responsible for monocyte chemotaxis are proximate to those involved in certain protein recognition interactions of alpha-thrombin (for example, hirudin binding) but are distinct from the catalytic site and from certain exosites required for clotting.
Collapse
|
|
42 |
268 |
13
|
Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Perret C. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A 2004; 101:17216-21. [PMID: 15563600 PMCID: PMC535370 DOI: 10.1073/pnas.0404761101] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although inappropriate activation of the Wnt/beta-catenin pathway has been implicated in the development of hepatocellular carcinoma (HCC), the role of this signaling in liver carcinogenesis remains unclear. To investigate this issue, we constructed a mutant mouse strain, Apc(lox/lox), in which exon 14 of the tumor-suppressor gene adenomatous polyposis coli (Apc) is flanked by loxP sequences. i.v. injection of adenovirus encoding Cre recombinase (AdCre) at high multiplicity [10(9) plaque-forming units (pfu) per mouse] inactivated the Apc gene in the liver and resulted in marked hepatomegaly, hepatocyte hyperplasia, and rapid mortality. beta-Catenin signaling activation was demonstrated by nuclear and cytoplasmic accumulation of beta-catenin in the hepatocytes and by the induction of beta-catenin target genes (glutamine synthetase, glutamate transporter 1, ornithine aminotransferase, and leukocyte cell-derived chemotaxin 2) in the liver. To test a long-term oncogenic effect, we inoculated mice with lower doses of AdCre (0.5 x 10(9) pfu per mouse), compatible with both survival and persistence of beta-catenin-activated cells. In these conditions, 67% of mice developed HCC. beta-Catenin signaling was strongly activated in these Apc-inactivated HCCs. The HCCs were well, moderately, or poorly differentiated. Indeed, their histological and molecular features mimicked human HCC. Thus, deletion of Apc in the liver provides a valuable model of human HCC, and, in this model, activation of the Wnt/beta-catenin pathway by invalidation of Apc is required for liver tumorigenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
248 |
14
|
Bens M, Vallet V, Cluzeaud F, Pascual-Letallec L, Kahn A, Rafestin-Oblin ME, Rossier BC, Vandewalle A. Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. J Am Soc Nephrol 1999; 10:923-34. [PMID: 10232677 DOI: 10.1681/asn.v105923] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The final control of sodium balance takes place in the cortical collecting duct (CCD) of the nephron, where corticosteroid hormones regulate sodium reabsorption by acting through mineralocorticoid (MR) and/or glucocorticoid (GR) receptors. A clone of principal CCD cells (mpkCCDc14) has been established that is derived from a transgenic mouse (SV40 large T antigen under the control of the SV40 enhancer/L-type pyruvate kinase promoter). Cells grown on filters form polarized monolayers with high electrical transepithelial resistance (R(T) approximately 4700 ohm x cm2) and potential difference (P(D) approximately -50 mV) and have an amiloride-sensitive electrogenic sodium transport, as assessed by the short-circuit current method (Isc approximately 11 microA/cm2). Reverse transcription-PCR experiments using rat MR primers, [3H]aldosterone, and [3H]dexamethasone binding and competition studies indicated that the mpkCCDc14 cells exhibit specific MR and GR. Aldosterone increased Isc in a dose- (10(-10) to 10(-6) M) and time-dependent (2 to 72 h) manner, whereas corticosterone only transiently increased Isc (2 to 6 h). Consistent with the expression of 11beta-hydroxysteroid dehydrogenase type 2, which metabolizes glucocorticoids to inactive 11-dehydroderivates, carbenoxolone potentiated the corticosterone-stimulated Isc. Aldosterone (5x10(-7) M)-induced Isc (fourfold) was associated with a three- to fivefold increase in alpha-ENaC mRNA (but not in those for beta- or gamma-ENaC) and three- to 10-fold increases in alpha-ENaC protein synthesis. In conclusion, this new immortalized mammalian CCD clonal cell line has retained a high level of epithelial differentiation and sodium transport stimulated by aldosterone and therefore represents a useful mammalian cell system for identifying the genes controlled by aldosterone.
Collapse
|
|
26 |
242 |
15
|
Carrié A, Jun L, Bienvenu T, Vinet MC, McDonell N, Couvert P, Zemni R, Cardona A, Van Buggenhout G, Frints S, Hamel B, Moraine C, Ropers HH, Strom T, Howell GR, Whittaker A, Ross MT, Kahn A, Fryns JP, Beldjord C, Marynen P, Chelly J. A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat Genet 1999; 23:25-31. [PMID: 10471494 DOI: 10.1038/12623] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrate here the importance of interleukin signalling pathways in cognitive function and the normal physiology of the CNS. Thorough investigation of an MRX critical region in Xp22.1-21.3 enabled us to identify a new gene expressed in brain that is responsible for a non-specific form of X-linked mental retardation. This gene encodes a 696 amino acid protein that has homology to IL-1 receptor accessory proteins. Non-overlapping deletions and a nonsense mutation in this gene were identified in patients with cognitive impairment only. Its high level of expression in post-natal brain structures involved in the hippocampal memory system suggests a specialized role for this new gene in the physiological processes underlying memory and learning abilities.
Collapse
|
|
26 |
214 |
16
|
|
Review |
25 |
214 |
17
|
Kahn A, Groswasser J, Rebuffat E, Sottiaux M, Blum D, Foerster M, Franco P, Bochner A, Alexander M, Bachy A. Sleep and cardiorespiratory characteristics of infant victims of sudden death: a prospective case-control study. Sleep 1992; 15:287-92. [PMID: 1519001 DOI: 10.1093/sleep/15.4.287] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We studied the polygraphic sleep recordings of 30 infants who eventually died of sudden infant death syndrome (SIDS) and those of 60 matched control infants. All records were extracted from 20,750 sleep studies collected prospectively in 10 sleep laboratories. Of the 30 future SIDS victims, 5 were siblings of SIDS victims and 9 were studied after an apparent life-threatening event. For each SIDS victim, two normal control infants were matched for sex, gestational age, postnatal age and weight at birth. The future SIDS infants were reported to have more frequent episodes of regurgitations after feeding (p = 0.01) and profuse sweating during sleep (p = 0.01) than the control subjects. Only two polysomnographic variables characterized the future SIDS infants. Compared to control subjects, the SIDS infants moved less during sleep (p = 0.04) and had significantly more frequent obstructed breathing events. Obstructive and mixed apneas were seen in 23 of 30 future SIDS victims, but in only 9 of 60 control subjects (p = 0.01). The obstructed and mixed apneas lasted longer in the SIDS than in the control infants (p = 0.01) but did not exceed 15 seconds. The obstructed breaths occurred mainly in rapid eye movement sleep (78% of the events) and were accompanied by drops in heart rates to 68 beats per minute and in SaO2 levels to 75%. The present report adds further indirect evidence for a possible sleep-related impairment of respiratory control in some infants who eventually died of SIDS.
Collapse
|
|
33 |
213 |
18
|
Saadi-Kheddouci S, Berrebi D, Romagnolo B, Cluzeaud F, Peuchmaur M, Kahn A, Vandewalle A, Perret C. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene 2001; 20:5972-81. [PMID: 11593404 DOI: 10.1038/sj.onc.1204825] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Revised: 06/12/2001] [Accepted: 07/11/2001] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is common and is a major cause of renal failure. Although the genetics of ADPKD are well known and have led to the discovery of polycystins, a new protein family, the pathogenesis of the disease remains largely unknown. Recent studies have indicated that the beta-catenin signaling pathway is one of the targets of the transduction pathway controlled by the polycystins. We have generated transgenic mice that overproduce an oncogenic form of beta-catenin in the epithelial cells of the kidney. These mice developed severe polycystic lesions soon after birth that affected the glomeruli, proximal, distal tubules and collecting ducts. The phenotype of these mice mimicked the human ADPKD phenotype. Cyst formation was associated with an increase in cell proliferation and apoptosis. The cell proliferation and apoptotic indexes was increased 4-5-fold and 3-4-fold, respectively, in cystic tubules of the transgenic mice compared to that of littermate controls. Our findings provide experimental genetic evidence that activation of the Wnt/beta-catenin signaling pathway causes polycystic kidney disease and support the view that dysregulation of the Wnt/beta-catenin signaling is involved in its pathogenesis.
Collapse
|
|
24 |
200 |
19
|
Tsiper E, Soos Z, Gao W, Kahn A. Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)00774-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
23 |
197 |
20
|
Haase G, Kennel P, Pettmann B, Vigne E, Akli S, Revah F, Schmalbruch H, Kahn A. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat Med 1997; 3:429-36. [PMID: 9095177 DOI: 10.1038/nm0497-429] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy cause progressive paralysis, often leading to premature death. Neurotrophic factors have been suggested as therapeutic agents for motor neuron diseases, but their clinical use as injected recombinant protein was limited by toxicity and/or poor bioavailability. We demonstrate here that adenovirus-mediated gene transfer of neurotrophin-3 (NT-3) can produce substantial therapeutic effects in the mouse mutant pmn (progressive motor neuronopathy). After intramuscular injection of the NT-3 adenoviral vector, pmn mice showed a 50% increase in life span, reduced loss of motor axons and improved neuromuscular function as assessed by electromyography. These results were further improved by coinjecting an adenoviral vector coding for ciliary neurotrophic factor. Therefore, adenovirus-mediated gene transfer of neurotrophic factors offers new prospects for the treatment of motor neuron diseases.
Collapse
|
|
28 |
186 |
21
|
Spitz F, Demignon J, Porteu A, Kahn A, Concordet JP, Daegelen D, Maire P. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci U S A 1998; 95:14220-5. [PMID: 9826681 PMCID: PMC24354 DOI: 10.1073/pnas.95.24.14220] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myogenin, one of the MyoD family of proteins, is expressed early during somitogenesis and is required for myoblast fusion in vivo. Previous studies in transgenic mice have shown that a 184-bp myogenin promoter fragment is sufficient to correctly drive expression of a beta-galactosidase transgene during embryogenesis. We show here that mutation of one of the DNA motifs present in this region, the MEF3 motif, abolished correct expression of this beta-galactosidase transgene. We have found that the proteins that bind to the MEF3 site are homeoproteins of the Six/sine oculis family. Antibodies directed specifically against Six1 or Six4 proteins reveal that each of these proteins is present in the embryo when myogenin is activated and constitutes a muscle-specific MEF3-binding activity in adult muscle nuclear extracts. Both of these proteins accumulate in the nucleus of C2C12 myogenic cells, and transient transfection experiments confirm that Six1 and Six4 are able to transactivate a reporter gene containing MEF3 sites. Altogether these results establish Six homeoproteins as a family of transcription factors controlling muscle formation through activation of one of its key regulators, myogenin.
Collapse
|
research-article |
27 |
185 |
22
|
Abstract
Human alpha-thrombin, the procoagulant activation product of prothrombin, elicits chemotaxis in human peripheral blood monocytes and several macrophagelike continuous cell lines, most notably J-774.2, but not in human peripheral blood granulocytes. alpha-Thrombin is effective in stimulating cell movement at concentrations ranging from 10(-10) to 10(-6) M but is optimally active at 10(-8) M. At the latter concentration, the degree of response is equivalent, on a molar basis, to that observed with the peptide formylmethionylleucylphenylalanine, (FMP). In contrast to thrombin, prothrombin produces a minimal chemotactic response in monocytes and J-774.2. Blockade of alpha-thrombin's active center with diisopropylfluorophosphate (DIP-F) or tryptic proteolysis of the procoagulant exosite (i.e., gamma-thrombin) fails to alter chemotactic activity. On the other hand, addition of equimolar amounts of antithrombin III (AT3) to alpha-thrombin reduces thrombin-mediated chemotaxis by 60%, and increased ratios of AT3 to enzyme completely suppress chemotaxis. We conclude that thrombin is a potent monocyte chemotaxin and that the domains in thrombin involved in stimulating cell movement are distinct from the catalytic site and the fibrin recognition exosite. These chemotactic domains appear to be sequestered in prothrombin and in the thrombin-AT3 complex and, as such, are unavailable to the chemotactic receptor on the monocyte cell membrane.
Collapse
|
research-article |
42 |
177 |
23
|
Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrié A, Billuart P, McDonell N, Couvert P, Francis F, Chafey P, Fauchereau F, Friocourt G, des Portes V, Cardona A, Frints S, Meindl A, Brandau O, Ronce N, Moraine C, van Bokhoven H, Ropers HH, Sudbrak R, Kahn A, Fryns JP, Beldjord C, Chelly J. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 2000; 24:167-70. [PMID: 10655063 DOI: 10.1038/72829] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
X-linked forms of mental retardation (MR) affect approximately 1 in 600 males and are likely to be highly heterogeneous. They can be categorized into syndromic (MRXS) and nonspecific (MRX) forms. In MRX forms, affected patients have no distinctive clinical or biochemical features. At least five MRX genes have been identified by positional cloning, but each accounts for only 0.5%-1.0% of MRX cases. Here we show that the gene TM4SF2 at Xp11.4 is inactivated by the X breakpoint of an X;2 balanced translocation in a patient with MR. Further investigation led to identification of TM4SF2 mutations in 2 of 33 other MRX families. RNA in situ hybridization showed that TM4SF2 is highly expressed in the central nervous system, including the cerebral cortex and hippocampus. TM4SF2 encodes a member of the tetraspanin family of proteins, which are known to contribute in molecular complexes including beta-1 integrins. We speculate that through this interaction, TM4SF2 might have a role in the control of neurite outgrowth.
Collapse
|
Case Reports |
25 |
170 |
24
|
da Silva Xavier G, Leclerc I, Salt IP, Doiron B, Hardie DG, Kahn A, Rutter GA. Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci U S A 2000; 97:4023-8. [PMID: 10760274 PMCID: PMC18135 DOI: 10.1073/pnas.97.8.4023] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Indexed: 11/18/2022] Open
Abstract
Elevated glucose concentrations stimulate the transcription of the pre-proinsulin (PPI), L-type pyruvate kinase (L-PK), and other genes in islet beta cells. In liver cells, pharmacological activation by 5-amino-4-imidazolecarboxamide riboside (AICAR) of AMP-activated protein kinase (AMPK), the mammalian homologue of the yeast SNF1 kinase complex, inhibits the effects of glucose, suggesting a key signaling role for this kinase. Here, we demonstrate that AMPK activity is inhibited by elevated glucose concentrations in MIN6 beta cells and that activation of the enzyme with AICAR prevents the activation of the L-PK gene by elevated glucose. Furthermore, microinjection of antibodies to the alpha2- (catalytic) or beta2-subunits of AMPK complex, but not to the alpha1-subunit or extracellular stimulus-regulated kinase, mimics the effects of elevated glucose on the L-PK and PPI promoter activities as assessed by single-cell imaging of promoter luciferase constructs. In each case, injection of antibodies into the nucleus and cytosol, but not the nucleus alone, was necessary, indicating the importance of either a cytosolic phosphorylation event or the subcellular localization of the alpha2-subunits. Incubation with AICAR diminished, but did not abolish, the effect of glucose on PPI transcription. These data suggest that glucose-induced changes in AMPK activity are necessary and sufficient for the regulation of the L-PK gene by the sugar and also play an important role in the regulation of the PPI promoter.
Collapse
|
research-article |
25 |
168 |
25
|
Viollet B, Lefrançois-Martinez AM, Henrion A, Kahn A, Raymondjean M, Martinez A. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J Biol Chem 1996; 271:1405-15. [PMID: 8576131 DOI: 10.1074/jbc.271.3.1405] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ubiquitous upstream stimulatory factor (USF) transcription factors encoded by two distinct genes (USF1 and USF2) exist under the form of various dimers able to bind E-boxes. We report the molecular cloning and functional characterization of USF2 isoforms, corresponding to a 44-kDa subunit, USF2a, and a new 38-kDa subunit, USF2b, generated by differential splicing. Using specific anti-USF antibodies, we define the different binding complexes in various nuclear extracts. In vivo, the USF1/USF2a heterodimer represents over 66% of the USF binding activity whereas the USF1 and USF2a homodimers represent less than 10%, which strongly suggests an in vivo preferential association in heterodimers. In particular, an USF1/USF2b heterodimer accounted for almost 15% of the USF species in some cells. The preferential heterodimerization of USF subunits was reproduced ex vivo, while the in vitro association of cotranslated subunits, or recombinant USF proteins, appeared to be random. In transiently transfected HeLa or hepatoma cells, USF2a and USF1 homodimers transactivated a minimal promoter with similar efficiency, whereas USF2b, which lacks an internal 67-amino acid domain, was a poor transactivator. Additionally, USF2b was an efficient as USF1 and USF2a homodimers in transactivating the liver-specific pyruvate kinase gene promoter.
Collapse
|
|
29 |
164 |