1
|
Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992; 256:225-8. [PMID: 1373522 DOI: 10.1126/science.1373522] [Citation(s) in RCA: 1361] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.
Collapse
|
Comparative Study |
33 |
1361 |
2
|
Tsunawaki S, Sporn M, Ding A, Nathan C. Deactivation of macrophages by transforming growth factor-beta. Nature 1988; 334:260-2. [PMID: 3041283 DOI: 10.1038/334260a0] [Citation(s) in RCA: 624] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Macrophage activation--enhanced capacity to kill, in a cell that otherwise mostly scavenges--is essential for host survival from infection and contributes to containment of tumours. Both microbes and tumour cells, therefore, may be under pressure to inhibit or reverse the activation of macrophages. This reasoning led to the demonstration of macrophage deactivating factors from both microbes and tumour cells. In some circumstances the host itself probably requires the ability to deactivate macrophages. Macrophages are essential to the healing of wounds and repair of tissues damaged by inflammation. Yet the cytotoxic products of the activated macrophages can damage endothelium, fibroblasts, smooth muscle and parenchymal cells (reviewed in ref. 6). Thus, after an inflammatory site has been sterilized, the impact of macrophage activation on the host might shift from benefit to detriment. These concepts led us to search for macrophage deactivating effects among polypeptide growth factors that regulate angiogenesis, fibrogenesis and other aspects of tissue repair. Among 11 such factors, two proteins that are 71% similar proved to be potent macrophage deactivators: these are transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 2.
Collapse
|
|
37 |
624 |
3
|
Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 1991; 5:2652-60. [PMID: 1916089 DOI: 10.1096/fasebj.5.12.1916089] [Citation(s) in RCA: 362] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The lipid A domain of lipopolysaccharide (LPS) is a unique, glucosamine-based phospholipid that makes up the outer monolayer of the outer membrane of most gram-negative bacteria. Because of its profound pharmacological effects on animal cells, especially those of the immune system, lipid A is also known as endotoxin. Despite decades of earlier work, the precise chemistry of endotoxins and the biochemical pathways for their enzymatic synthesis have been elucidated only within the past 5 years. In this review, we summarize the essentials of endotoxin biochemistry and also present recent experiments aimed at identifying surface receptors, signal-transducing elements, transcriptional factors, and key intracellular targets involved in the response of animal cells to endotoxins.
Collapse
|
Review |
34 |
362 |
4
|
Jin FY, Nathan C, Radzioch D, Ding A. Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 1997; 88:417-26. [PMID: 9039268 DOI: 10.1016/s0092-8674(00)81880-2] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To explore regulation of potentially lethal responses to bacterial lipopolysaccharide (LPS), we used differential display under LPS-free conditions to compare macrophage cell lines from two strains of mice congenic for a locus affecting LPS sensitivity. LPS-hyporesponsive cells, primary macrophages, and polymorphonuclear leukocytes transcribed secretory leukocyte protease inhibitor (SLPI), a known epithelial cell-derived inhibitor of leukocyte serine proteases. Transfection of macrophages with SLPI suppressed LPS-induced activation of NF-kappa B and production of nitric oxide and TNF alpha. The ability of interferon-gamma (IFN gamma) to restore LPS responsiveness is a hallmark of the LPS-hyporesponsive phenotype. IFN gamma suppressed expression of SLPI and restored LPS responsiveness to SLPI-producing cells. Thus, SLPI is an LPS-induced IFN gamma-suppressible phagocyte product that serves to inhibit LPS responses.
Collapse
|
|
28 |
300 |
5
|
Abstract
Taxol can mimic bacterial lipopolysaccharide (LPS) by activating mouse macrophages in a cell cycle-independent, LPS antagonist-inhibitable manner. Macrophages from C3H/HeJ mice, which have a spontaneous mutation in Toll-like receptor 4 (TLR4), are hyporesponsive to both LPS and Taxol, suggesting that LPS and Taxol may share a signaling pathway involving TLR4. To determine whether TLR4 and its interacting adaptor molecule MyD88 are necessary for Taxol's LPS mimetic actions, we examined Taxol responses of primary macrophages from genetically defective mice lacking either TLR4 (C57BL/10ScNCr) or MyD88 (MyD88 knockout). When stimulated with Taxol, macrophages from wild-type mice responded robustly by secreting both TNF and NO, while macrophages from either TLR4-deficient C57BL/10ScNCr mice or MyD88 knockout mice produced only minimal amounts of TNF and NO. Taxol-induced NF-kappa B-driven luciferase activity was reduced after transfection of RAW 264.7 macrophages with a dominant negative version of mouse MyD88. Taxol-induced microtubule-associated protein kinase (MAPK) activation and NF-kappa B nuclear translocation were absent from TLR4-null macrophages, but were preserved in MyD88 knockout macrophages with a slight delay in kinetics. Neither Taxol-induced NF-kappa B activation, nor I kappa B degradation was affected by the presence of phosphatidylinositol 3-kinase inhibitors. These results suggest that Taxol and LPS not only share a TLR4/MyD88-dependent pathway in generating inflammatory mediators, but also share a TLR4-dependent/MyD88-independent pathway leading to activation of MAPK and NF-kappa B.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Division/drug effects
- Cells, Cultured
- Drosophila Proteins
- Enzyme Activation/drug effects
- I-kappa B Proteins/metabolism
- JNK Mitogen-Activated Protein Kinases
- Lipopolysaccharides/pharmacology
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/enzymology
- Macrophages/metabolism
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Microtubules/drug effects
- Microtubules/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Mimicry
- Mutation/genetics
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Nitric Oxide/metabolism
- Paclitaxel/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Protein Transport/drug effects
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic
- Signal Transduction/drug effects
- Toll-Like Receptor 4
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/metabolism
Collapse
|
|
24 |
209 |
6
|
Lanier LL, Buck DW, Rhodes L, Ding A, Evans E, Barney C, Phillips JH. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med 1988; 167:1572-85. [PMID: 3259252 PMCID: PMC2188935 DOI: 10.1084/jem.167.5.1572] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
IL-2 potentiates both growth and cytotoxic function of T lymphocytes and NK cells. Resting peripheral blood NK cells can respond directly to rIL-2, without requirement for accessory cells or cofactors, and enhanced cytotoxicity can be measured within a few hours after exposure to this lymphokine. In this study, we describe an activation antigen, Leu-23, that is rapidly induced and phosphorylated after IL-2 stimulation of NK cells and a subset of low buoyant density T lymphocytes. Previously, it has been uncertain whether all NK cells or only a subset are responsive to IL-2. Since within 18 h after exposure to IL-2, essentially all NK cells express Leu-23, these findings indicate that all peripheral blood NK cells are responsive to stimulation by IL-2. The Leu-23 antigen is a disulfide-bonded homodimer, composed of 24-kD protein subunits with two N-linked oligosaccharides. Appearance of this glycoprotein on NK cells is IL-2 dependent and closely parallels IL-2-induced cytotoxicity against NK-resistant solid tumor cell targets.
Collapse
MESH Headings
- Antigens, CD
- Antigens, Differentiation, T-Lymphocyte
- Antigens, Surface/biosynthesis
- Cytotoxicity, Immunologic
- Gene Expression Regulation
- Humans
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Phosphorylation
- Protein Processing, Post-Translational
- Recombinant Proteins/pharmacology
- T-Lymphocytes/classification
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
|
research-article |
37 |
203 |
7
|
Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A. Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 1999; 96:5645-50. [PMID: 10318938 PMCID: PMC21914 DOI: 10.1073/pnas.96.10.5645] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Taxol, a plant-derived antitumor agent, stabilizes microtubules. Taxol also elicits cell signals in a manner indistinguishable from bacterial lipopolysaccharide (LPS). LPS-like actions of Taxol are controlled by the lps gene and are independent of binding to the known Taxol target, beta-tubulin. Using biotin-labeled Taxol, avidin-agarose affinity chromatography, and peptide mass fingerprinting, we identified two Taxol targets from mouse macrophages and brain as heat shock proteins (Hsps) of the 70- and 90-kDa families. Geldanamycin, a specific inhibitor of the Hsp 90 family, blocked the nuclear translocation of NF-kappaB and expression of tumor necrosis factor in macrophages treated with Taxol or with LPS. Geldanamycin did not block microtubule bundling by Taxol or macrophage activation by tumor necrosis factor. Thus, Taxol binds Hsps, and Hsp 90 helps mediate the activation of macrophages by Taxol and by LPS.
Collapse
|
research-article |
26 |
155 |
8
|
Ding A, Hesslich J. The abundance of Ar and Kr microclusters generated by supersonic expansion. Chem Phys Lett 1983. [DOI: 10.1016/0009-2614(83)87209-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
42 |
115 |
9
|
Bogdan C, Ding A. Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. J Leukoc Biol 1992; 52:119-21. [PMID: 1353517 DOI: 10.1002/jlb.52.1.119] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Taxol, a naturally occurring diterpene with antitumor activity, induces tubulin polymerization to generate abnormally stable and nonfunctional microtubules. Previously, we showed that taxol has lipopolysaccharide (LPS)-like effects on macrophages. As LPS is a potent inducer of macrophage cytokine production, we investigated whether a similar effect is exerted by taxol. In a dose-dependent manner, LPS-free taxol induced release of biologically active tumor necrosis factor alpha (TNF) by inflammatory murine macrophages. Taxol-induced production of TNF was inhibitable by interleukin-10. By Northern blot, taxol (10 and 1 microM) induced TNF mRNA expression to an extent similar to LPS. Induction of TNF mRNA by 10 microM taxol was detectable at 45 min of stimulation, maximal at 90 min, and evident for at least 8 h. The same low concentration of taxol also induced interleukin 1 (IL-1) alpha and beta mRNA expression. We conclude that taxol triggers macrophages for TNF and IL-1 production. These LPS-like effects of taxol might contribute to its antitumor activity.
Collapse
|
|
33 |
110 |
10
|
Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 2017; 22:E299. [PMID: 28212342 PMCID: PMC6155574 DOI: 10.3390/molecules22020299] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
Amentoflavone (C30H18O10) is a well-known biflavonoid occurring in many natural plants. This polyphenolic compound has been discovered to have some important bioactivities, including anti-inflammation, anti-oxidation, anti-diabetes, and anti-senescence effects on many important reactions in the cardiovascular and central nervous system, etc. Over 120 plants have been found to contain this bioactive component, such as Selaginellaceae, Cupressaceae, Euphorbiaceae, Podocarpaceae, and Calophyllaceae plant families. This review paper aims to profile amentoflavone on its plant sources, natural derivatives, pharmacology, and pharmacokinetics, and to highlight some existing issues and perspectives in the future.
Collapse
|
Review |
8 |
103 |
11
|
|
News |
24 |
84 |
12
|
Ding A, Ojingwa JC, McDonagh AF, Burlingame AL, Benet LZ. Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc Natl Acad Sci U S A 1993; 90:3797-801. [PMID: 8483897 PMCID: PMC46392 DOI: 10.1073/pnas.90.9.3797] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Acyl glucuronide metabolites of bilirubin and many drugs can react with serum albumin in vivo to form covalent adducts. Such adducts may be responsible for some toxic effects of carboxylic nonsteroidal antiinflammatory agents. The mechanism of formation of the adducts and their chemical structures are unknown. In this paper we describe the use of tandem mass spectrometry to locate binding sites and elucidate the binding mechanism involved in the formation of covalent adducts from tolmetin glucuronide and albumin in vitro. Human serum albumin and excess tolmetin glucuronide were coincubated in the presence of sodium cyanoborohydride to trap imine intermediates. The total protein product was reduced, carboxymethylated, and digested with trypsin. Six tolmetin-containing peptides (indicated by absorbance at 313 nm) were isolated by high-pressure liquid chromatography and analyzed by liquid secondary-ion mass spectrometry and collision-induced dissociation, using a four-sector tandem mass spectrometer. All six peptides contained tolmetin linked covalently via a glucuronic acid to protein lysine groups. Major attachment sites on the protein were Lys-195, -199, and -525; minor sites were identified as Lys-137, -351, and -541. Our results show unambiguously that the glucuronic acid moiety of acyl glucuronides can be retained within the structure when these reactive metabolites bind covalently to proteins, and they suggest that acyl migration followed by Schiff base (imine) formation is a credible mechanism for the generation of covalent adducts in vivo.
Collapse
|
research-article |
32 |
80 |
13
|
Ganteför G, Bröker G, Holub‐Krappe E, Ding A. Photoionization thresholds of rare gas clusters. J Chem Phys 1989. [DOI: 10.1063/1.457215] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
36 |
79 |
14
|
Shan M, Yu S, Yan H, Guo S, Xiao W, Wang Z, Zhang L, Ding A, Wu Q, Li SFY. A Review on the Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Geniposide, a Natural Product. Molecules 2017; 22:E1689. [PMID: 28994736 PMCID: PMC6151614 DOI: 10.3390/molecules22101689] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology, pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as well as to help us develop and utilize this iridoid glycoside more efficiently and safely.
Collapse
|
Review |
8 |
78 |
15
|
Brilot F, Merheb V, Ding A, Murphy T, Dale RC. Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome. Neurology 2011; 76:1508-1513. [PMID: 21411742 PMCID: PMC3087465 DOI: 10.1212/wnl.0b013e3182181090] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To test the hypothesis that Sydenham chorea (SC) immunoglobulin G (IgG) autoantibodies bind to specific neuronal surface proteins, whereas IgG from patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) or Tourette syndrome (TS) do not bind to neuronal surface proteins. METHODS We used live differentiated SH-SY5Y cells, which have neuronal and dopaminergic characteristics. Using flow cytometry, we measured serum IgG cell surface binding in patients with SC (n = 11), PANDAS (n = 12), and TS (n = 11), and compared the findings to healthy controls (n = 11) and other neurologic controls (n = 11). In order to determine the specificity of binding to neuronal antigens, we also used a non-neuronal cell line, HEK 293. RESULTS The mean IgG cell surface binding was significantly higher in the SC group compared to all other groups (p < 0.001). By contrast, there was no difference between the PANDAS or TS groups and the controls. Using the non-neuronal HEK-293 cells, there was no significant difference in IgG cell surface binding between any groups. CONCLUSIONS Serum autoantibodies that bind to neuronal cell surface antigens are present in SC, but not in PANDAS or TS. These findings strengthen the hypothesis that SC is due to a pathogenic autoantibody, but weaken the autoantibody hypothesis in PANDAS and TS.
Collapse
|
research-article |
14 |
78 |
16
|
Jin F, Nathan CF, Radzioch D, Ding A. Lipopolysaccharide-related stimuli induce expression of the secretory leukocyte protease inhibitor, a macrophage-derived lipopolysaccharide inhibitor. Infect Immun 1998; 66:2447-52. [PMID: 9596701 PMCID: PMC108223 DOI: 10.1128/iai.66.6.2447-2452.1998] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mouse secretory leukocyte protease inhibitor (SLPI) was recently characterized as a lipopolysaccharide (LPS)-induced product of macrophages that antagonizes their LPS-induced activation of NF-kappaB and production of NO and tumor necrosis factor (TNF) (F. Y. Jin, C. Nathan, D. Radzioch, and A. Ding, Cell 88:417-426, 1997). To better understand the role of SLPI in innate immune and inflammatory responses, we examined the kinetics of SLPI expression in response to LPS, LPS-induced cytokines, and LPS-mimetic compounds. SLPI mRNA was detectable in macrophages by Northern blot analysis within 30 min of exposure to LPS but levels peaked only at 24 to 36 h and remained elevated at 72 h. Despite the slowly mounting and prolonged response, early expression of SLPI mRNA was cycloheximide resistant. Two LPS-induced proteins-interleukin-10 (IL-10) and IL-6-also induced SLPI, while TNF and IL-1beta did not. The slow attainment of maximal induction of SLPI by LPS in vitro was mimicked by infection with Pseudomonas aeruginosa in vivo, where SLPI expression in the lung peaked at 3 days. Two LPS-mimetic molecules-taxol from yew bark and lipoteichoic acid (LTA) from gram-positive bacterial cell walls-also induced SLPI. Transfection of macrophages with SLPI inhibited their LTA-induced NO production. An anti-inflammatory role for macrophage-derived SLPI seems likely based on SLPI's slowly mounting production in response to constituents of gram-negative and gram-positive bacteria, its induction both as a direct response to LPS and as a response to anti-inflammatory cytokines induced by LPS, and its ability to suppress the production of proinflammatory products by macrophages stimulated with constituents of both gram-positive and gram-negative bacteria.
Collapse
|
research-article |
27 |
78 |
17
|
Fröchtenicht R, Henne U, Toennies JP, Ding A, Fieber‐Erdmann M, Drewello T. The photoionization of large pure and doped helium droplets. J Chem Phys 1996. [DOI: 10.1063/1.471009] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
29 |
77 |
18
|
Ding A, Thieblemont N, Zhu J, Jin F, Zhang J, Wright S. Secretory leukocyte protease inhibitor interferes with uptake of lipopolysaccharide by macrophages. Infect Immun 1999; 67:4485-9. [PMID: 10456890 PMCID: PMC96768 DOI: 10.1128/iai.67.9.4485-4489.1999] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages are among the most sensitive targets of bacterial endotoxin (LPS), responding to minute amounts of LPS by releasing a battery of inflammatory mediators. Transfection of macrophages with secretory leukocyte protease inhibitor (SLPI) renders these cells refractory to LPS stimulation. Here we show that uptake of LPS from soluble CD14 (sCD14)-LPS complexes by SLPI-overexpressing cells was only 50% of that seen in control cells. SLPI transfectants and mock transfectants did not differ in the surface expression of CD14 or CD18. We show, in addition, that recombinant human SLPI can bind to purified endotoxin in vitro. SLPI caused a decrease in the binding of LPS to sCD14 as assessed both by fluorescence quenching of labeled LPS and by nondenaturing polyacrylamide gel electrophoresis. These results suggest that the inhibitory effect of SLPI on macrophage responses to LPS may, in part, be due to its blockade of LPS transfer to soluble CD14 and its interference with uptake of LPS from LPS-sCD14 complexes by macrophages.
Collapse
|
research-article |
26 |
73 |
19
|
Moisan J, Camateros P, Thuraisingam T, Marion D, Koohsari H, Martin P, Boghdady ML, Ding A, Gaestel M, Guiot MC, Martin JG, Radzioch D. TLR7 ligand prevents allergen-induced airway hyperresponsiveness and eosinophilia in allergic asthma by a MYD88-dependent and MK2-independent pathway. Am J Physiol Lung Cell Mol Physiol 2006; 290:L987-95. [PMID: 16361354 DOI: 10.1152/ajplung.00440.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma is one of the leading causes of childhood hospitalization, and its incidence is on the rise throughout the world. Currently, the standard treatment for asthma is the use of corticosteroids to try to suppress the inflammatory reaction taking place in the bronchial tree. Using a murine model of atopic allergic asthma employing a methacholine-hyperresponsive (A/J) as well as a hyporesponsive (C57BL/6) strain of mice sensitized and challenged with ovalbumin, we show that treatment with a synthetic Toll-like receptor 7 (TLR7) ligand (S-28463, a member of the imidazoquinoline family) prevents development of the asthmatic phenotype. Treatment with S-28463 resulted in a reduction of airway resistance and elastance following ovalbumin sensitization and challenge. This was accompanied by a dramatic reduction in infiltration of leukocytes, especially eosinophils, into the lungs of both C57BL/6 and A/J mice following OVA challenge. Treatment with S-28463 also abolished both the elevation in serum IgE level as well as the induction of IL-4, IL-5, and IL-13 by OVA challenge. The protective effects of S-28463 were also observed in MK2 knockout, but not MYD88 knockout, mice. We did not observe a switch in cytokine profile from TH2 to TH1, as both IL-12p70 and IFN-γ levels were reduced following S-28463 treatment. These results clearly demonstrate the anti-inflammatory effect of imidazoquinolines in an allergic asthma model as well as the clinical potential of TLR7 ligands in the treatment of allergic diseases.
Collapse
|
|
19 |
71 |
20
|
Ding A, Hwang S, Lander HM, Xie QW. Macrophages derived from C3H/HeJ (Lpsd) mice respond to bacterial lipopolysaccharide by activating NF-kappa B. J Leukoc Biol 1995; 57:174-9. [PMID: 7829969 DOI: 10.1002/jlb.57.1.174] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The effects of bacterial lipopolysaccharide (LPS) on macrophage gene expression are mediated in part by its ability to induce activation of transcription factor NF-kappa B. We compared the ability of LPS-treated macrophages from Lpsn (LPS-responsive) C3H/HeN and Lpsd (LPS-hyporesponsive) C3H/HeJ mice to mobilize NF-kappa B by electrophoretic mobility shift assays with oligonucleotide probes containing a unique NF-kappa B sequence from the promoter of inducible nitric oxide synthase (iNOS). In response to ng/ml concentrations of LPS, this probe bound proteins that appeared rapidly in the nuclei of thioglycollate-elicited macrophages and bone marrow-derived macrophage cell lines from both Lpsn and Lpsd mice. Only in macrophages from Lpsn mice, however, was LPS able to induce iNOS or tumor necrosis factor alpha. NF-kappa B-containing DNA-protein complexes from Lpsd macrophages were formed in lesser amounts than from Lpsn macrophages but shared the same composition, insofar as they displayed the same electrophoretic mobilities and content of heterodimers of p50/RelA (p65) and p50/c-rel. Two conclusions emerge from these findings: (1) NF-kappa B activity alone is not sufficient for induction of certain LPS-responsive genes and (2) An LPS-response pathway involving activation of NF-kappa B is preserved in Lpsd mice. The inability of cells from Lpsd mice to induce gene expression in response to LPS thus cannot be attributed to inability to activate NF-kappa B.
Collapse
|
|
30 |
56 |
21
|
|
|
41 |
56 |
22
|
Gao Q, Li J, Cheung JKH, Duan J, Ding A, Cheung AWH, Zhao K, Li WZ, Dong TT, Tsim KWK. Verification of the formulation and efficacy of Danggui Buxue Tang (a decoction of Radix Astragali and Radix Angelicae Sinensis): an exemplifying systematic approach to revealing the complexity of Chinese herbal medicine formulae. Chin Med 2007; 2:12. [PMID: 18045504 PMCID: PMC2140262 DOI: 10.1186/1749-8546-2-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 11/29/2007] [Indexed: 11/10/2022] Open
Abstract
This article exemplifies a systematic approach to revealing the complexity of Chinese herbal medicine formulae through three levels of scientific research: standardization of herbs, verification of ancient formulae and mechanism studies. We use Danggui Buxue Tang (DBT) as an example for this approach. Among thousands of traditional Chinese medicine herbal formulae, almost all of which consist of multiple herbs, DBT is one of the simplest. Containing only two herbs, namely Radix Astragali (RA) and Radix Angelicae Sinensis (RAS), DBT is traditionally used to treat ailments in women. The weight ratio of RA to RAS in DBT was prescribed to be 5:1 as early as in 1247 AD. In addition to advanced chemical analysis of herbal constituents, DNA genotyping techniques have been developed for reliable standardization of RA and RAS. Chemical evaluation shows that main active constituents in DBT, including astragaloside IV, calycosin, formononetin and ferulic acid, were most abundant after extraction at the RA to RAS ratio of 5:1, whereas other tested RA to RAS ratios only gave sub-optimal levels of the active constituents. Biological evaluation indicates that bioactivities of DBT, e.g. immuno-modulatory, oesteotropic and estrogenic effects are also best exerted at the RA to RAS ratio of 5:1. Correlation analysis demonstrates statistically significant relationship between the tested chemical constituents and tested bioactivities. Up- and down-regulation of expression of some genes as potential biomarkers has been detected by using gene chip technology. This systematic approach on the basis of herbal standardization, chemical and biological verification and mechanism studies, as exemplified in this article, will be useful to reveal the complexity of not only DBT but also other Chinese medicine herbal formulae.
Collapse
|
review-article |
18 |
54 |
23
|
Sass RL, Fisher FM, Ding A, Huang Y. Exchange of methane from rice fields: National, regional, and global budgets. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999jd900081] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
26 |
54 |
24
|
Grobmyer SR, Barie PS, Nathan CF, Fuortes M, Lin E, Lowry SF, Wright CD, Weyant MJ, Hydo L, Reeves F, Shiloh MU, Ding A. Secretory leukocyte protease inhibitor, an inhibitor of neutrophil activation, is elevated in serum in human sepsis and experimental endotoxemia. Crit Care Med 2000; 28:1276-82. [PMID: 10834665 DOI: 10.1097/00003246-200005000-00003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To document changes in serum secretory leukocyte protease inhibitor (SLPI) in human sepsis and in experimental endotoxemia in vivo. To compare changes in serum SLPI in human sepsis with changes in interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-alpha. To determine whether or not changes in SLPI correlate with the severity of multiple organ dysfunction syndrome as measured by the maximal multiple organ dysfunction score. Finally, because neutrophils have been implicated in tissue injury associated with organ dysfunction, to determine whether recombinant human SLPI blocks activation of isolated human neutrophils. DESIGN Case-control study and ex-vivo cellular assay. SETTING Surgical intensive care unit and clinical research center of university hospitals; laboratory of a medical school. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS There was a significant dose-dependent elevation (50.2+/-4.0 ng/mL, p = .01) in plasma SLPI 12 hrs after administration of lipopolysaccharide to seven healthy adults (36.4+/-2.3 ng/mL). Further, serum concentrations of SLPI (132+/-15 ng/mL) were elevated in septic surgical patients compared with healthy controls (43+/-2 ng/mL, p < .01) and nonseptic surgical controls (69+/-10 ng/mL, p = .01). Serum SLPI concentrations correlated (r2 = .71, p < .01) better with organ dysfunction as measured by maximal multiple organ dysfunction score than did serum IL-6 (r2 = .49, p < .01), IL-10 (r2 = .05, p = .22), or TNF-alpha (r2 = .02, p = .44). We found that recombinant human SLPI in vitro inhibits TNF-alpha-induced hydrogen peroxide production by human neutrophils (ID50 = 1-2 microg/mL). CONCLUSIONS Serum SLPI is elevated in human sepsis and experimental endotoxemia. Maximal concentrations of serum SLPI correlate significantly with maximal multiple organ dysfunction scores in patients with sepsis. Secretory leukocyte protease inhibitor may function to limit ongoing neutrophil-mediated tissue injury associated with organ dysfunction.
Collapse
|
Clinical Trial |
25 |
54 |
25
|
Pischon N, Mäki JM, Weisshaupt P, Heng N, Palamakumbura AH, N'Guessan P, Ding A, Radlanski R, Renz H, Bronckers TALJJ, Myllyharju J, Kielbassa AM, Kleber BM, Bernimoulin JP, Trackman PC. Lysyl oxidase (lox) gene deficiency affects osteoblastic phenotype. Calcif Tissue Int 2009; 85:119-26. [PMID: 19458888 PMCID: PMC2827261 DOI: 10.1007/s00223-009-9252-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 04/16/2009] [Indexed: 01/01/2023]
Abstract
Lysyl oxidase (LOX) catalyzes cross-linking of elastin and collagen, which is essential for the structural integrity and function of bone tissue. The present study examined the role of Lox gene deficiency for the osteoblast phenotype in primary calvarial osteoblasts from E18.5 Lox knockout (Lox ( -/- )) and wild type (wt) (C57BL/6) mice. Next to Lox gene depletion, mRNA expression of Lox isoforms, LOXL1-4, was significantly downregulated in Lox ( -/- ) bone tissue. A significant decrease of DNA synthesis of Lox ( -/- ) osteoblasts compared to wt was found. Early stages of osteoblastic apoptosis studied by annexin-V binding as well as later stages of DNA fragmentation were not affected. However, mineral nodule formation and osteoblastic differentiation were markedly decreased, as revealed by significant downregulation of osteoblastic markers, type I collagen, bone sialoprotein, and Runx2/Cbfa1.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
53 |