1
|
Stiekema LCA, Prange KHM, Hoogeveen RM, Verweij SL, Kroon J, Schnitzler JG, Dzobo KE, Cupido AJ, Tsimikas S, Stroes ESG, de Winther MPJ, Bahjat M. Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a). Eur Heart J 2021; 41:2262-2271. [PMID: 32268367 PMCID: PMC7308540 DOI: 10.1093/eurheartj/ehaa171] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022] Open
Abstract
Aims Elevated lipoprotein(a) [Lp(a)] is strongly associated with an increased cardiovascular disease (CVD) risk. We previously reported that pro-inflammatory activation of circulating monocytes is a potential mechanism by which Lp(a) mediates CVD. Since potent Lp(a)-lowering therapies are emerging, it is of interest whether patients with elevated Lp(a) experience beneficial anti-inflammatory effects following large reductions in Lp(a). Methods and results Using transcriptome analysis, we show that circulating monocytes of healthy individuals with elevated Lp(a), as well as CVD patients with increased Lp(a) levels, both have a pro-inflammatory gene expression profile. The effect of Lp(a)-lowering on gene expression and function of monocytes was addressed in two local sub-studies, including 14 CVD patients with elevated Lp(a) who received apolipoprotein(a) [apo(a)] antisense (AKCEA-APO(a)-LRx) (NCT03070782), as well as 18 patients with elevated Lp(a) who received proprotein convertase subtilisin/kexin type 9 antibody (PCSK9ab) treatment (NCT02729025). AKCEA-APO(a)-LRx lowered Lp(a) by 47% and reduced the pro-inflammatory gene expression in monocytes of CVD patients with elevated Lp(a), which coincided with a functional reduction in transendothelial migration capacity of monocytes ex vivo (−17%, P < 0.001). In contrast, PCSK9ab treatment lowered Lp(a) by 16% and did not alter transcriptome nor functional properties of monocytes, despite an additional reduction of 65% in low-density lipoprotein cholesterol (LDL-C). Conclusion Potent Lp(a)-lowering following AKCEA-APO(a)-LRx, but not modest Lp(a)-lowering combined with LDL-C reduction following PCSK9ab treatment, reduced the pro-inflammatory state of circulating monocytes in patients with elevated Lp(a). These ex vivo data support a beneficial effect of large Lp(a) reductions in patients with elevated Lp(a). ![]()
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
71 |
2
|
Cupido AJ, Asselbergs FW, Natarajan P, Ridker PM, Hovingh GK, Schmidt AF. Dissecting the IL-6 pathway in cardiometabolic disease: a Mendelian randomization study on both IL6 and IL6R. Br J Clin Pharmacol 2021; 88:2875-2884. [PMID: 34931349 PMCID: PMC9303316 DOI: 10.1111/bcp.15191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chronic inflammation is a risk factor for cardiovascular disease. IL-6 signaling perturbation through IL-6 or IL-6R blockade may have potential benefit on cardiovascular risk. It is unknown whether targeting either IL-6 or IL-6 receptor may result in similar effects on CVD and adverse events. We compared the anticipated effects of targeting IL-6 and IL-6 receptor on cardiometabolic risk and potential side effects. METHODS We constructed four instruments: two main instruments with genetic variants in the IL6 and IL6R loci weighted for their association with CRP, and two after firstly filtering variants for their association with IL-6 or IL-6R expression. Analyses were performed for coronary artery disease (CAD), ischemic stroke, atrial fibrillation (AF), heart failure, type 2 diabetes (T2D), rheumatoid arthritis (RA), infection endpoints, and quantitative hematological, metabolic, and anthropometric parameters. RESULTS A 1 mg/L lower CRP by the IL6 instrument was associated with lower CAD (OR 0.86, 95% CI 0.77;0.96), AF, and T2D risk. A 1mg/L lower CRP by the IL6R instrument was associated with lower CAD (OR 0.90, 95% CI 0.86;0.95), any stroke and ischemic stroke, AF, RA risk and higher pneumonia risk. The eQTL filtered results were in concordance with the main results, but with wider confidence intervals. CONCLUSIONS IL-6 signalling perturbation by either IL6 or IL6R genetic instruments is associated with a similar risk reduction for multiple cardiometabolic diseases, suggesting that both IL-6 and IL-6R are potential therapeutic targets to lower CVD. Moreover, IL-6 rather than IL-6R inhibition might have a more favorable pneumonia risk.
Collapse
|
|
4 |
35 |
3
|
Cupido AJ, Kastelein JJP. Inclisiran for the treatment of hypercholesterolaemia: implications and unanswered questions from the ORION trials. Cardiovasc Res 2021; 116:e136-e139. [PMID: 32766688 PMCID: PMC7449556 DOI: 10.1093/cvr/cvaa212] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
Journal Article |
4 |
32 |
4
|
Cupido AJ, Reeskamp LF, Hingorani AD, Finan C, Asselbergs FW, Hovingh GK, Schmidt AF. Joint Genetic Inhibition of PCSK9 and CETP and the Association With Coronary Artery Disease: A Factorial Mendelian Randomization Study. JAMA Cardiol 2022; 7:955-964. [PMID: 35921096 PMCID: PMC9350849 DOI: 10.1001/jamacardio.2022.2333] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/29/2022] [Indexed: 12/30/2022]
Abstract
Importance Cholesteryl ester transfer protein inhibition (CETP) has been shown to increase levels of high-density lipoprotein cholesterol (HDL-C) and reduce levels of low-density lipoprotein cholesterol (LDL-C). Current LDL-C target attainment is low, and novel phase 3 trials are underway to investigate whether CETP inhibitors result in reduction of cardiovascular disease risk in high-risk patients who may be treated with PCSK9-inhibiting agents. Objective To explore the associations of combined reduction of CETP and PCSK9 concentrations with risk of coronary artery disease (CAD) and other clinical and safety outcomes. Design, Setting, and Participants Two-sample 2 × 2 factorial Mendelian randomization study in a general population sample that includes data for UK Biobank participants of European ancestry. Exposures Separate genetic scores were constructed for CETP and PCSK9 plasma protein concentrations, which were combined to determine the associations of combined genetically reduced CETP and PCSK9 concentrations with disease. Main Outcomes and Measures Blood lipid and lipoprotein concentrations, blood pressure, CAD, age-related macular degeneration, type 2 diabetes, any stroke and ischemic stroke, Alzheimer disease, vascular dementia, heart failure, atrial fibrillation, chronic kidney disease, asthma, and multiple sclerosis. Results Data for 425 354 UKB participants were included; the median (IQR) age was 59 years (51-64), and 229 399 (53.9%) were female. The associations of lower CETP and lower PCSK9 concentrations with CAD are similar when scaled per 10-mg/dL reduction in LDL-C concentrations (CETP: odds ratio [OR], 0.74; 95% CI, 0.67 to 0.81; PCSK9: OR, 0.75; 95% CI, 0.71 to 0.79). Combined exposure to lower CETP and PCSK9 concentrations was associated with an additive magnitude with lipids and all outcomes, and we did not observe any nonadditive interactions, most notably for LDL-C (CETP: effect size, -1.11 mg/dL; 95% CI, -1.40 to -0.82; PCSK9: effect size, -2.13 mg/dL; 95% CI, -2.43 to -1.84; combined: effect size, -3.47 mg/dL; 95% CI, -3.76 to -3.18; P = .34 for interaction) and CAD (CETP: OR, 0.96; 95% CI, 0.94 to 1.00; PCSK9: OR, 0.94; 95% CI, 0.91 to 0.97; combined: OR, 0.90; 95% CI, 0.87 to 0.93; P = .83 for interaction). In addition, when corrected for multiple testing, lower CETP concentrations were associated with increased age-related macular degeneration (OR, 1.11; 95% CI, 1.04 to 1.19). Conclusions and Relevance Our results suggest that joint inhibition of CETP and PCSK9 has additive effects on lipid traits and disease risk, including a lower risk of CAD. Further research may explore whether a combination of CETP- and PCSK9-related therapeutics can benefit high-risk patients who are unable to reach treatment targets with existing options.
Collapse
|
Comment |
3 |
25 |
5
|
Abstract
PURPOSE OF REVIEW Statins have long been the cornerstone for the prevention of cardiovascular disease (CVD). However, because of perceived adverse effects and insufficient efficacy in certain groups of patients, considerable interest exists in the search for alternatives to lower LDL-cholesterol (LDL-C), and the recent approvals of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors underlines the success of this quest. Here, we give an updated overview on the most recent developments in the area of LDL-C lowering agents. RECENT FINDINGS The clinical effects of the PCSK9 inhibitors are promising, especially now that the FOURIER and SPIRE programmes are published. Most cholesterylester-transfer protein inhibitors, however, except anacetrapib, have been discontinued because of either toxicity or lack of efficacy in large cardiovascular outcome trials. Other agents - like mipomersen, lomitapide, ETC-1002, and gemcabene - aim to lower LDL-C in different ways than solely through the LDL receptor, opening up possibilities for treating patients not responding to conventional therapies. New discoveries are also being made at the DNA and RNA level, with mipomersen being the first approved therapy based on RNA intervention in the United States for homozygous familial hypercholesterolemia. SUMMARY Recent years have witnessed a new beginning for cholesterol-lowering compounds. With increased knowledge of lipid metabolism a score of new therapeutic targets has been identified. Mechanisms for modulation of those targets are also becoming more diverse while statins remain the backbone of CVD prevention, the new alternatives, such as PCSK9 monoclonals will probably play an important additional role in treatment of patients at risk for CVD.
Collapse
|
Review |
8 |
22 |
6
|
Katzmann JL, Cupido AJ, Laufs U. Gene Therapy Targeting PCSK9. Metabolites 2022; 12:metabo12010070. [PMID: 35050192 PMCID: PMC8781734 DOI: 10.3390/metabo12010070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
The last decades of research in cardiovascular prevention have been characterized by successful bench-to-bedside developments for the treatment of low-density lipoprotein (LDL) hypercholesterolemia. Recent examples include the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) with monoclonal antibodies, small interfering RNA and antisense RNA drugs. The cumulative effects of LDL cholesterol on atherosclerosis make early, potent, and long-term reductions in LDL cholesterol desirable-ideally without the need of regular intake or application of medication and importantly, without side effects. Current reports show durable LDL cholesterol reductions in primates following one single treatment with PCSK9 gene or base editors. Use of the CRISPR/Cas system enables precise genome editing down to single-nucleotide changes. Provided safety and documentation of a reduction in cardiovascular events, this novel technique has the potential to fundamentally change our current concepts of cardiovascular prevention. In this review, the application of the CRISPR/Cas system is explained and the current state of in vivo approaches of PCSK9 editing is presented.
Collapse
|
Review |
3 |
14 |
7
|
Cupido AJ, Asselbergs FW, Schmidt AF, Hovingh GK. Low-Density Lipoprotein Cholesterol Attributable Cardiovascular Disease Risk Is Sex Specific. J Am Heart Assoc 2022; 11:e024248. [PMID: 35699189 PMCID: PMC9238661 DOI: 10.1161/jaha.121.024248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Background Epidemiological studies show that women are generally at lower risk for cardiovascular disease than men. Here, we investigated the sex-specific differential effect of genetically increased low-density lipoprotein cholesterol (LDL-C) on cardiovascular disease (CVD) and other lipid-associated diseases. Methods and Results This is a 2-sample Mendelian randomization study that uses individual participant data from 425 043 participants from the UK Biobank, including 229 279 female participants. An 80-variant LDL-C weighted genetic score was generated. Linear and logistic regression models with interactions were used to identify differences between sex-specific LDL-C effects on lipids, carotid-intima media thickness, and multiple cardiovascular outcomes such as CVD, ischemic heart disease, peripheral artery disease, heart failure, aortic valve disease, type 2 diabetes, atrial fibrillation, and aortic aneurysm and dissection. After correction for multiple testing, we observed that the genetically increased LDL-C effect on CVD events was sex specific: per SD genetically increased LDL-C, female participants had a higher LDL-C increase but an attenuated CVD risk increase compared with male participants (LDL-C: female participants 0.71 mmol/L, 95% CI, 0.70-0.72 and male participants 0.57 mmol/L, 95% CI, 0.56-0.59. P for interaction: 5.03×10-60; CVD: female participants: odds ratio [OR], 1.32; 95% CI 1.24-1.40 and male participants: OR, 1.52; 95% CI, 1.46-1.58. P for interaction: 9.88×10-5). We also observed attenuated risks for ischemic heart disease and (nominally for) heart failure in female participants, and genetically increased LDL-C results in higher risk for aortic valve disease in female participants compared with male participants. Genetically increased LDL-C was also associated with an attenuated carotid-intima media thickness increase in female participants. We did not observe other significant attenuations. Sensitivity analyses with an unweighted genetic score and sex-specific weighted genetic scores showed similar results. Conclusions We found that genetically increased LDL-C has a sex-specific differential effect on the risk for cardiovascular disease, ischemic heart disease, heart failure, and aortic valve stenosis. Our observations provide evidence that LDL-C might be a less important determinant of CVD in women compared with men, suggesting that male patients might benefit more from LDL-C targeted therapies for CVD management than female patients and warranting investigations into the sex-specific relative contribution of risk factors for CVD.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
14 |
8
|
Cupido AJ, Tromp TR, Hovingh GK. The clinical applicability of polygenic risk scores for LDL-cholesterol: considerations, current evidence and future perspectives. Curr Opin Lipidol 2021; 32:112-116. [PMID: 33560669 PMCID: PMC7984749 DOI: 10.1097/mol.0000000000000741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The current review describes the development, clinical relevance and potential caveats of polygenic risk scores (PRS) for LDL cholesterol (LDL-C). RECENT FINDINGS In recent years, a large number of common variants have been shown to have a small effect on LDL-C levels. The aggregate effect of all of these variants on LDL-C levels can be captured in a PRS and an elevated number of LDL-C increasing common variants is considered to be a cause of high LDL-C levels in patients with familial hypercholesterolemia (FH) without a large effect, rare mutation. PRS do not only serve as a tool in diagnostics, but are also helpful in cardiovascular disease (CVD) risk prediction. Moreover, PRS modulate CVD risk even in patients without a monogenic FH. However, future larger scale PRS directly aimed at CVD risk may serve as more sensitive tools to identify individuals with severely increased CVD risk. SUMMARY LDL-C PRS help explain part of hypercholesterolemia in a proportion of dyslipidemic patients that do not have monogenic FH. Nevertheless, the CVD risk conferred by current PRS does not appear to match that of monogenic FH. LDL-C PRS are currently not widely used in clinical care.
Collapse
|
Review |
4 |
14 |
9
|
Tromp TR, Cupido AJ, Reeskamp LF, Stroes ESG, Hovingh GK, Defesche JC, Schmidt AF, Zuurbier L. Assessment of practical applicability and clinical relevance of a commonly used LDL-C polygenic score in patients with severe hypercholesterolemia. Atherosclerosis 2021; 340:61-67. [PMID: 34774301 DOI: 10.1016/j.atherosclerosis.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Low-density lipoprotein cholesterol (LDL-C) levels vary in patients with familial hypercholesterolemia (FH) and can be explained by a single deleterious genetic variant or by the aggregate effect of multiple, common small-effect variants that can be captured in a polygenic score (PS). We set out to investigate the contribution of a previously published PS to the inter-individual LDL-C variation and coronary artery disease (CAD) risk in patients with a clinical FH phenotype. METHODS First, in a cohort of 628 patients referred for genetic FH testing, we evaluated the distribution of a PS for LDL-C comprising 12 genetic variants. Next, we determined its association with coronary artery disease (CAD) risk using UK Biobank data. RESULTS The mean PS was higher in 533 FH-variant-negative patients (FH/M-) compared with 95 FH-variant carriers (1.02 vs 0.94, p < 0.001). 39% of all patients had a PS equal to the top 20% from a population-based reference cohort and these patients were less likely to carry an FH variant (OR 0.22, 95% CI 0.10-0.48) compared with patients in the lowest 20%. In UK Biobank data, the PS explained 7.4% of variance in LDL-C levels and was associated with incident CAD. Addition of PS to a prediction model using age and sex and LDL-C did not increase the c-statistic for predicting CAD risk. CONCLUSIONS This 12-variant PS was higher in FH/M- patients and associated with incident CAD in UK Biobank data. However, the PS did not improve predictive accuracy when added to the readily available characteristics age, sex and LDL-C, suggesting limited discriminative value for CAD.
Collapse
|
|
4 |
10 |
10
|
Cupido AJ, Kraaijenhof JM, Burgess S, Asselbergs FW, Hovingh GK, Gill D. Genetically Predicted Neutrophil-to-Lymphocyte Ratio and Coronary Artery Disease: Evidence From Mendelian Randomization. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003553. [PMID: 35103484 PMCID: PMC7612391 DOI: 10.1161/circgen.121.003553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
Letter |
3 |
5 |
11
|
Ali L, Cupido AJ, Rijkers M, Hovingh GK, Holleboom AG, Dallinga-Thie GM, Stroes ES, van den Boogert MA. Common gene variants in ASGR1 gene locus associate with reduced cardiovascular risk in absence of pleiotropic effects. Atherosclerosis 2020; 306:15-21. [DOI: 10.1016/j.atherosclerosis.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023]
|
|
5 |
3 |
12
|
Cupido AJ, Hof MH, de Boer LM, Huijgen R, Stroes ESG, Kastelein JJP, Hovingh GK, Hutten BA. Adherence to statin treatment in patients with familial hypercholesterolemia: A dynamic prediction model. J Clin Lipidol 2023; 17:236-243. [PMID: 36697324 DOI: 10.1016/j.jacl.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/12/2022] [Accepted: 12/11/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Statins are the primary therapy in patient with heterozygous familial hypercholesterolemia (HeFH). Non-adherence to statin therapy is associated with increased cardiovascular risk. OBJECTIVE We constructed a dynamic prediction model to predict statin adherence for an individual HeFH patient for each upcoming statin prescription. METHODS All patients with HeFH, identified by the Dutch Familial Hypercholesterolemia screening program between 1994 and 2014, were eligible. National pharmacy records dated between 1995 and 2015 were linked. We developed a dynamic prediction model that estimates the probability of statin adherence (defined as proportion of days covered >80%) for an upcoming prescription using a mixed effect logistic regression model. Static and dynamic patient-specific predictors, as well as data on a patient's adherence to past prescriptions were included. The model with the lowest AIC (Akaike Information Criterion) value was selected. RESULTS We included 1094 patients for whom 21,171 times a statin was prescribed. Based on the model with the lowest AIC, age at HeFH diagnosis, history of cardiovascular event, time since HeFH diagnosis and duration of the next statin prescription contributed to an increased adherence, while adherence decreased with higher untreated LDL-C levels and higher intensity of statin therapy. The dynamic prediction model showed an area under the curve of 0.63 at HeFH diagnosis, which increased to 0.85 after six years of treatment. CONCLUSION This dynamic prediction model enables clinicians to identify HeFH patients at risk for non-adherence during statin treatment. These patients can be offered timely interventions to improve adherence and further reduce cardiovascular risk.
Collapse
|
|
2 |
|
13
|
Cupido AJ, Petersen RS, Schmidt AF, Levi M, Cohn DM, Fijen LM. C1-inhibitor levels and venous thromboembolism: results from a Mendelian randomization study. J Thromb Haemost 2023; 21:2623-2625. [PMID: 37230417 DOI: 10.1016/j.jtha.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
|
Letter |
2 |
|
14
|
Mirzaei S, DeVon HA, Cantor RM, Cupido AJ, Pan C, Ha SM, Silva LF, Hilser JR, Hartiala J, Allayee H, Rey FE, Laakso M, Lusis AJ. Relationships and Mendelian Randomization of Gut Microbe-Derived Metabolites with Metabolic Syndrome Traits in the METSIM Cohort. Metabolites 2024; 14:174. [PMID: 38535334 PMCID: PMC10972019 DOI: 10.3390/metabo14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass index (BMI) (β = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (β = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (β = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23, p = 4.4 × 10-33), and BMI (β = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (β = -0.19, p = 3.8 × 10-51) and triglycerides (β = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
Collapse
|
research-article |
1 |
|
15
|
Cupido AJ, Zhou M, Lusis AJ, Seldin M. Specific approaches and limitations in (multi)-omic Mendelian randomization. J Lipid Res 2024; 65:100619. [PMID: 39147365 PMCID: PMC11467659 DOI: 10.1016/j.jlr.2024.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
|
Editorial |
1 |
|
16
|
Cupido AJ, Petersen RS, Schmidt AF, Levi M, Cohn DM, Fijen LM. "C1-inhibitor levels and venous thromboembolism: results from a Mendelian randomization study": reply. J Thromb Haemost 2023; 21:2988-2990. [PMID: 37739596 DOI: 10.1016/j.jtha.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 09/24/2023]
|
Letter |
2 |
|
17
|
Dzobo KE, Cupido AJ, Mol BM, Stiekema LC, Versloot M, Winkelmeijer M, Peter J, Pennekamp AM, Havik SR, Vaz FM, van Weeghel M, Prange KH, Levels JH, de Winther MP, Tsimikas S, Groen AK, Stroes ES, de Kleijn DP, Kroon J. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler Thromb Vasc Biol 2024; 44:720-740. [PMID: 38269588 PMCID: PMC10880937 DOI: 10.1161/atvbaha.123.319937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1β after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|