1
|
Menchaca-Rocha A, Martínez-Dávalos A, Núñez R, Popinet S, Zaleski S. Coalescence of liquid drops by surface tension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 63:046309. [PMID: 11308947 DOI: 10.1103/physreve.63.046309] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Indexed: 05/23/2023]
Abstract
The merging of two mercury drops at very low kinetic energy is observed using fast, digital, and analog imaging techniques. Sequences showing the time evolution of the overall-surface shape as well as an amplified view of the contact region are shown. Qualitative and quantitative comparisons with computations of the Navier-Stokes equation with a free surface are made. In the model, the surface is tracked by a marker-chain method.
Collapse
|
|
24 |
44 |
2
|
García-Garduño OA, Celis MÁ, Lárraga-Gutiérrez JM, Moreno-Jiménez S, Martínez-Dávalos A, Rodríguez-Villafuerte M. Radiation transmission, leakage and beam penumbra measurements of a micro-multileaf collimator using GafChromic EBT film. J Appl Clin Med Phys 2008; 9:90-98. [PMID: 18716595 PMCID: PMC5722293 DOI: 10.1120/jacmp.v9i3.2802] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/31/2008] [Accepted: 02/11/2008] [Indexed: 12/21/2022] Open
Abstract
Micro‐multileaf collimator systems coupled to linear accelerators for radioneurosurgery treatments require a rigorous dosimetric characterization in order to be used in 3D conformal and intensity modulated stereotactic radiosurgery and radiotherapy applications. This characterization involves high precision measurements of leaf transmission, leakage and beam penumbra through the collimation system and requires the use of detectors with high spatial resolution, high sensitivity and practically no energy dependence. In this work the use of GafChromic EBT radiochromic film to measure the basic dosimetric properties of the m3‐mMLC (BrainLAB, Germany) micro‐multileaf collimator system integrated to a 6 MV linear accelerator, is reported. Results show that average values of transmission and leakage radiation are 0.93±0.05% and 1.08±0.08%, respectively. The 80–20% beam penumbra were found to be 2.26±0.11 mm along the leaf side (perpendicular to leaf motion) and 2.31±0.11 mm along the leaf end (parallel to leaf motion) using square field sizes ranging from 9.1 to 1.8 cm. These measurements are in agreement with values reported in the literature for the same type of mMLC using different radiation detectors. PACS number: 87.56.N‐
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
39 |
3
|
García-Garduño OA, Lárraga-Gutiérrez JM, Rodríguez-Villafuerte M, Martínez-Dávalos A, Celis MA. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom. Radiother Oncol 2010; 96:250-3. [PMID: 20378193 DOI: 10.1016/j.radonc.2010.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 11/29/2022]
|
|
15 |
37 |
4
|
Alva-Sánchez H, Zepeda-Barrios A, Díaz-Martínez VD, Murrieta-Rodríguez T, Martínez-Dávalos A, Rodríguez-Villafuerte M. Understanding the intrinsic radioactivity energy spectrum from 176Lu in LYSO/LSO scintillation crystals. Sci Rep 2018; 8:17310. [PMID: 30470826 PMCID: PMC6251911 DOI: 10.1038/s41598-018-35684-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
Lutetium oxyorthosilicate (LSO) or lutetium yttrium oxyorthosilicate (LYSO) are the scintillator materials most widely used today in PET detectors due to their convenient physical properties for the detection of 511 keV annihilation photons. Natural lutetium contains 2.6% of 176Lu which decays beta to excited states of 176Hf producing a constant background signal. Although previous works have studied the background activity from LSO/LYSO, the shape of the spectrum, resulting from β-particle and γ radiation self-detection, has not been fully explained. The present work examines the contribution of the different β-particle and γ-ray interactions to provide a fuller comprehension of this background spectrum and to explain the differences observed when using crystals of different sizes. To this purpose we have shifted the continuous β-particle energy spectrum of 176Lu from zero to the corresponding energy value for all combinations of the isomeric transitions of 176Hf (γ-rays/internal conversion). The area of each shifted β-spectrum was normalized to reflect the probability of occurrence. To account for the probability of the γ-rays escaping from the crystal, Monte Carlo simulations using PENELOPE were performed in which point-like sources of monoenergetic photons were generated, inside LYSO square base prisms (all 1 cm thick) of different sizes: 1.0 cm to 5.74 cm. The analytic distributions were convolved using a varying Gaussian function to account for the measured energy resolution. The calculated spectra were compared to those obtained experimentally using monolithic crystals of the same dimensions coupled to SiPM arrays. Our results are in very good agreement with the experiment, and even explain the differences observed due to crystal size. This work may prove useful to calibrate and assess detector performance, and to measure energy resolution at different energy values.
Collapse
|
Journal Article |
7 |
16 |
5
|
Alva-Sánchez H, Quintana-Bautista C, Martínez-Dávalos A, Ávila-Rodríguez MA, Rodríguez-Villafuerte M. Positron range in tissue-equivalent materials: experimental microPET studies. Phys Med Biol 2016; 61:6307-21. [PMID: 27494279 DOI: 10.1088/0031-9155/61/17/6307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with (18)F, (13)N or (68)Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.
Collapse
|
Journal Article |
9 |
16 |
6
|
Cifuentes-Mendiola SE, Solis-Suarez DL, Martínez-Dávalos A, Godínez-Victoria M, García-Hernández AL. CD4 + T-cell activation of bone marrow causes bone fragility and insulin resistance in type 2 diabetes. Bone 2022; 155:116292. [PMID: 34896656 DOI: 10.1016/j.bone.2021.116292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) causes an increased risk of bone fractures. However, the pathophysiology of diabetic bone fragility is not completely understood. It has been proposed that an inflammatory microenvironment in bone could be a major mechanism by inducing uncontrolled bone resorption, inadequate bone formation and consequently more porous bones. We propose that activated T-cells in the bone marrow cause a pro-inflammatory microenvironment in bone, and cause bone fragility in T2DM. We induced T2DM in C57BL/6 male mice through a hypercaloric diet rich in carbohydrates and low doses of streptozocin. In T2DM mice we inhibited systemic activation of T-cells with a fusion protein between the extracellular domain of Cytotoxic T-Lymphocyte Antigen 4 and the Fc domain of human immunoglobulin G (CTLA4-Ig). We analysed the effects of T2DM or CTLA4-Ig in lymphocyte cell subsets and antigen-presenting cells in peripheral blood and femoral bone marrow; and their effect on the metabolic phenotype, blood and bone cytokine concentration, femoral bone microarchitecture and biomechanical properties, and the number of osteoblast-like cells in the femoral endosteum. We performed a Pearson multiple correlation analysis between all variables in order to understand the global mechanism. Results demonstrated that CTLA4-Ig decreased the number of activated CD4+ T-cells in the femoral bone marrow and consequently decreased TNF-α and RANK-L concentration in bone, notably improved femoral bone microarchitecture and biomechanical properties, increased the number of osteoblast-like cells, and reduces osteoclastic activity compared to T2DM mice that did not receive the inhibitor. Interestingly, we observed that blood glucose levels and insulin resistance may be related to the increase in activated CD4+ T-cells in the bone marrow. We conclude that bone marrow activated CD4+ T-cells cause poor bone quality and insulin resistance in T2DM.
Collapse
|
|
3 |
13 |
7
|
García-Garduño OA, Lárraga-Gutiérrez JM, Rodríguez-Villafuerte M, Martínez-Dávalos A, Rivera-Montalvo T. Effect of correction methods of radiochromic EBT2 films on the accuracy of IMRT QA. Appl Radiat Isot 2016; 107:121-126. [PMID: 26492322 DOI: 10.1016/j.apradiso.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 12/01/2022]
|
|
9 |
12 |
8
|
Riquelme F, Hernández-Patricio M, Martínez-Dávalos A, Rodríguez-Villafuerte M, Montejo-Cruz M, Alvarado-Ortega J, Ruvalcaba-Sil JL, Zúñiga-Mijangos L. Two flat-backed polydesmidan millipedes from the Miocene Chiapas-amber Lagerstätte, Mexico. PLoS One 2014; 9:e105877. [PMID: 25162220 PMCID: PMC4146559 DOI: 10.1371/journal.pone.0105877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022] Open
Abstract
Two species of fossil polydesmidan millipedes (Diplopoda: Polydesmida) embedded in amber are described from Miocene strata near Simojovel, in the Chiapas Highlands, Mexico. Maatidesmus paachtungen. et sp. nov., placed into Chelodesmidae Cook, 1895, and Anbarrhacus adamantisgen. et sp. nov., assigned in the family Platyrhacidae Pocock, 1895. Morphological data from fossil specimens have been recovered using 3D X-ray micro-computed tomography and regular to infrared-reflected microscopy. Both fossil species are recognizable as new primarily but not exclusively, by collum margin modification and remarkable paranotal and metatergite dorsal sculpture.
Collapse
|
|
11 |
11 |
9
|
Li C, Martínez-Dávalos A, Cherry SR. Numerical simulation of x-ray luminescence optical tomography for small-animal imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:046002. [PMID: 24695846 PMCID: PMC3973658 DOI: 10.1117/1.jbo.19.4.046002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 05/20/2023]
Abstract
X-ray luminescence optical tomography (XLOT) is an emerging hybrid imaging modality in which x-ray excitable particles (phosphor particles) emit optical photons when stimulated with a collimated x-ray beam. XLOT can potentially combine the high sensitivity of optical imaging with the high spatial resolution of x-ray imaging. For reconstruction of XLOT data, we compared two reconstruction algorithms, conventional filtered backprojection (FBP) and a new algorithm, x-ray luminescence optical tomography with excitation priors (XLOT-EP), in which photon propagation is modeled with the diffusion equation and the x-ray beam positions are used as reconstruction priors. Numerical simulations based on dose calculations were used to validate the proposed XLOT imaging system and the reconstruction algorithms. Simulation results showed nanoparticle concentrations reconstructed with XLOT-EP are much less dependent on scan depth than those obtained with FBP. Measurements at just two orthogonal projections are sufficient for XLOT-EP to reconstruct an XLOT image for simple source distributions. The heterogeneity of x-ray energy deposition is included in the XLOT-EP reconstruction and improves the reconstruction accuracy, suggesting that there is a need to calculate the x-ray energy distribution for experimental XLOT imaging.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
9 |
10
|
Enríquez-Mier-Y-Terán FE, Ortega-Galindo AS, Murrieta-Rodríguez T, Rodríguez-Villafuerte M, Martínez-Dávalos A, Alva-Sánchez H. Coincidence energy spectra due to the intrinsic radioactivity of LYSO scintillation crystals. EJNMMI Phys 2020; 7:21. [PMID: 32297045 PMCID: PMC7160222 DOI: 10.1186/s40658-020-00291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Lutetium oxyorthosilicate or lutetium yttrium oxyorthosilicate (LYSO) scintillation crystals used in most current PET scanner detectors contain 176Lu, which decays by beta emission to excited states of 176Hf accompanied by the emission of prompt gamma rays or internal conversion electrons. This intrinsic radioactivity can be self-detected in singles mode as a constant background signal that has an energy spectrum whose structure has been explained previously. In this work, we studied the energy spectrum due to the intrinsic radioactivity of LYSO scintillation crystals of two opposing detectors working in coincidence mode. The investigation included experimental data, Monte Carlo simulations and an analytical model. Results The structure of the energy spectrum was completely understood and is the result of the self-detection of beta particles from 176Lu in one crystal and the detection of one or more prompt gamma rays detected in coincidence by the opposing crystal. The most probable coincidence detection involves the gamma rays of 202 and 307 keV, which result in two narrow photopeaks, superimposed on a continuous energy distribution due to the beta particle energy deposition. The relative intensities of the gamma ray peaks depend on crystal size and detector separation distance, as is explained by the analytical model and verified through the Monte Carlo simulations and experiments. Conclusions The analytical model used in this work accurately explains the general features of the coincidence energy spectrum due to the presence of 176Lu in the scintillation crystals, as observed experimentally and with Monte Carlo simulations. This work will be useful to those research studies aimed at using the intrinsic radioactivity of LYSO crystals for transmission scans and detector calibration in coincidence mode.
Collapse
|
Journal Article |
5 |
7 |
11
|
Calva-Coraza E, Alva-Sánchez H, Murrieta-Rodríguez T, Martínez-Dávalos A, Rodríguez-Villafuerte M. Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays. Phys Med 2017; 42:19-27. [PMID: 29173915 DOI: 10.1016/j.ejmp.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022] Open
Abstract
We present the performance evaluation of a large-area detector module based on the ArrayC-60035-64P, an 8×8 array of tileable, 7.2mm pitch, silicon photomultipliers (SiPM) by SensL, covering a total area of 57.4mm×57.4mm. We characterized the ArrayC-60035-64P, operating at room temperature, using LYSO pixelated crystal arrays of different pitch sizes (1.075, 1.430, 1.683, 2.080 and 2.280mm) to determine the resolvable crystal size. After an optimization process, a 7mm thick coupling light guide was used for all crystal pitches. To identify the interaction position a 16-channel (8 columns, 8 rows) symmetric charge division (SCD) readout board together with a center-of-gravity algorithm was used. Based on this, we assembled the detector modules using a 40×40 LYSO, 1.43mm pitch array, covering the total detector area. Calibration was performed using a 137Cs source resulting in excellent crystal maps with minor geometric distortion, a mean 4.1 peak-to-valley ratio and 9.6% mean energy resolution for 662keV photons in the central region. The resolvability index was calculated in the x and y directions with values under 0.42 in all cases. We show that these large area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, without processing a big number of signals, attaining excellent energy resolution and detector uniformity.
Collapse
|
Evaluation Study |
8 |
5 |
12
|
Martínez-Dávalos A, Rodríguez-Villafuerte M, Díaz-Perches R, Arzamendi-Pérez S. Radiochromic dye film studies for brachytherapy applications. RADIATION PROTECTION DOSIMETRY 2002; 101:489-492. [PMID: 12382798 DOI: 10.1093/oxfordjournals.rpd.a006034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate 137Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200 with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study.
Collapse
|
|
23 |
3 |
13
|
Rodríguez-Villafuerte M, Hernández EM, Alva-Sánchez H, Martínez-Dávalos A, Ávila-Rodríguez MA. Positron range effects of 66Ga in small-animal PET imaging. Phys Med 2019; 67:50-57. [PMID: 31669670 DOI: 10.1016/j.ejmp.2019.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Gallium-66 is a non-conventional positron emitter that stands out not only for its high potential to label peptides, proteins and antibodies, but also because it can provide spatio-temporal information of relatively slow physiological processes in the body due to its conveniently long half-life of 9.5 h. However, 66Ga emits the most energetic positrons for PET imaging. The lack of information of the positron range effect on spatial resolution for this positron emitter is an issue, particularly in preclinical imaging. METHODS The line spread function (LSF) in tissue-equivalent materials with densities between 0.2 and 1.93 g/cm3 was obtained with 66Ga and 18F. A complementary study with the NEMA NU 4-2008 image quality phantom is also included. RESULTS High-energy positrons moving in lower density materials produce far-reaching activity distributions. The LSFs were characterized with Lorentzian-Gaussian fits, with spatial resolution (FWHM) in the 2.14-3.2 mm range, and long tails extending a few tens of mm depending on the material type and density. A narrowing of the LSF was observed for lung-equivalent materials, indicating the lack of enough material for the positron annihilation to take place. The NEMA NU 4-2008 image quality phantom produced blurred images, notoriously observed in the hot and cold cylinders used for evaluation of recovery coefficients (RC) and spill-over ratios (SOR), producing very low RC and very large SOR. CONCLUSIONS Quantitative PET imaging with the non-conventional 66Ga is hampered due to the large range of its high-energy positrons affecting both spatial resolution and activity concentration quantification.
Collapse
|
Journal Article |
6 |
3 |
14
|
Abstract
Rapid, quantative assessment of x-radiation source intensity distributions would be useful in several areas of radiation physics. A simple x-ray sensitive CCD based camera for the measurement of focal spot and radiation beam intensity profiles has been constructed. Focal spot images recorded with the CCD camera and radiographic emulsion are compared and the advantage of the CCD camera in rapidly recording true radiation intensity distributions is demonstrated.
Collapse
|
Comparative Study |
30 |
2 |
15
|
Lara-Camacho VM, Hernández-Acevedo EM, Alva-Sánchez H, Murrieta-Rodríguez T, Martínez-Dávalos A, Moranchel M, Rodríguez-Villafuerte M. Experimental validation of the ANTS2 code for modelling optical photon transport in monolithic LYSO crystals. Phys Med 2021; 81:215-226. [PMID: 33482439 DOI: 10.1016/j.ejmp.2020.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
In this work the scintillation energy spectra originating from the background radioactivity from polished monolithic lutetium yttrium oxyorthosilicate coupled to position-sensitive silicon photomultipliers (SiPM) was studied using the open source Monte Carlo simulation package ANTS2. Two crystal sizes, fully and partially covering the photosensor area, three surface crystal wrappings (black, specular or diffuse) and the full signal formation process in the photosensor were considered. The simulation results were validated with experimental data acquired under the same geometric and detector operating conditions. In all cases ANTS2 simulated spectra have very good agreement with experimental results, reproducing the expected shape, with correct onset and end at 88 and 1190 keV, respectively, as well as sharp edges at the reference energies of 88, 88 + 202, 88 + 307 and 88 + 202 + 307 keV. The normalized root-mean square error between simulated and measured spectra varied between 4.3% and 10.4%.
Collapse
|
|
4 |
2 |
16
|
Torres-Urzúa LF, Alva-Sánchez H, Martínez-Dávalos A, García-Pérez FO, Peruyero-Rivas RM, Rodríguez-Villafuerte M. A dedicated phantom design for positron emission mammography performance evaluation. Phys Med Biol 2020; 65:245003. [PMID: 32693400 DOI: 10.1088/1361-6560/aba7d1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A standard protocol for performance evaluation of positron emission mammography (PEM) systems has not yet been established. In this work we propose a methodology based on the design of specific phantoms for this imaging modality with component dimensions in accordance with typical breast lesion sizes together with the adaptation of current international protocols designed for clinical and preclinical positron emission tomographs (PET) systems. This methodology was used to evaluate the performance of the Flex Solo II PEM scanner in terms of spatial resolution, uniformity and contrast lesion detectability, recovery coefficients and spill-over ratios. Positron range effects were studied with 18F and 68Ga, which have very different energy spectra. Our results indicate that in-plane spatial resolution of the system is around 3.0 mm and 4.4 mm for 18F and 68Ga, respectively. Lesion detectability tests with sphere diameters between 4 and 10 mm confirmed that the PEM system can resolve all the spheres (hot or cold). Percent contrast values for 18F lie between 6%-38% and 34%-51% for hot- and cold- spheres, respectively; the corresponding intervals for 68Ga are lower, 4%-25% and 32%-44%. Regarding uniformity quantification, the system shows percentage standard deviations within 4.9%-5.7%, while the percent background variability measurements ranged between 6.7% and 10.9% for both radionuclides. Recovery coefficients measured with hot rod diameters between 1.5 and 9 mm, have values between 0.2-1.05 and 0.17-0.69 for 18F and 68Ga, respectively. Spill-over ratios have large values (0.22 in average) for both radionuclides. Our results indicate that the phantoms and the methodology developed in this work can serve as the basis for establishing an image quality protocol for the systematic evaluation of PEM systems, with a potential extension for performance evaluation of dedicated breastPET scanners.
Collapse
|
|
5 |
1 |
17
|
Cruz-Bastida JP, Moncada F, Martínez-Dávalos A, Rodríguez-Villafuerte M. Task-based transferable deep-learning scatter correction in cone beam computed tomography: a simulation study. J Med Imaging (Bellingham) 2024; 11:024006. [PMID: 38525293 PMCID: PMC10960584 DOI: 10.1117/1.jmi.11.2.024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose X-ray scatter significantly affects the image quality of cone beam computed tomography (CBCT). Although convolutional neural networks (CNNs) have shown promise in correcting x-ray scatter, their effectiveness is hindered by two main challenges: the necessity for extensive datasets and the uncertainty regarding model generalizability. This study introduces a task-based paradigm to overcome these obstacles, enhancing the application of CNNs in scatter correction. Approach Using a CNN with U-net architecture, the proposed methodology employs a two-stage training process for scatter correction in CBCT scans. Initially, the CNN is pre-trained on approximately 4000 image pairs from geometric phantom projections, then fine-tuned using transfer learning (TL) on 250 image pairs of anthropomorphic projections, enabling task-specific adaptations with minimal data. 2D scatter ratio (SR) maps from projection data were considered as CNN targets, and such maps were used to perform the scatter prediction. The fine-tuning process for specific imaging tasks, like head and neck imaging, involved simulating scans of an anthropomorphic phantom and pre-processing the data for CNN retraining. Results For the pre-training stage, it was observed that SR predictions were quite accurate (SSIM ≥ 0.9 ). The accuracy of SR predictions was further improved after TL, with a relatively short retraining time (≈ 70 times faster than pre-training) and using considerably fewer samples compared to the pre-training dataset (≈ 12 times smaller). Conclusions A fast and low-cost methodology to generate task-specific CNN for scatter correction in CBCT was developed. CNN models trained with the proposed methodology were successful to correct x-ray scatter in anthropomorphic structures, unknown to the network, for simulated data.
Collapse
|
research-article |
1 |
|
18
|
Cifuentes-Mendiola SE, Solís-Suárez DL, Martínez-Dávalos A, Perrusquía-Hernández E, García-Hernández AL. Aerobic training improves bone fragility by reducing the inflammatory microenvironment in bone tissue in type 2 diabetes. J Biomech 2022; 145:111354. [PMID: 36335825 DOI: 10.1016/j.jbiomech.2022.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Aerobic training (AT) is indicated in type 2 diabetes mellitus (T2DM) to control hyperglycaemia and inflammation. AT improves bone microarchitecture and resistance to fracture. The intensity of AT and the mechanisms that lead to the improvement in bone quality are still unknown. Using a mouse model of T2DM, we evaluated the effects of two intensities of forced AT. We divided mice into: sedentary (SED), T2DM-SED, low runners (LOW), T2DM-LOW, high runners (HIGH) and T2DM-HIGH. The AT for low was 8 m/minute (m/min); 5° slope or high 18 m/min; 15° slope for 2 months. We measured metabolic parameters, the serum cytokines concentration, lipocalin-2 (LCN-2) and adiponectin; and the tibial concentrations of LCN-2, tumour necrosis factor alpha (TNF-α) and protein carbonylation (CO). We evaluated femur morphometry and biomechanical properties. We performed multiple correlation analysis. The T2DM-LOW versus T2DM-SED group, shown an increase of interleukin (IL)-10 (417 ± 90 vs 102 ± 25 pg/mL) and improved trabecular bone (BV/TV: 31.8 ± 2.3 vs 19.25 ± 1.4%; Tb.Sp.: 1.62 ± 0.02 vs 2.0 ± 0.07 mm), by a decrease bone CO (3.4 ± 0.1 vs 6.0 ± 0.5 nmol/mg), bone TNF-α (84 ± 4 vs 239 ± 13 pg/mL) and LCN-2 (2887 ± 23 vs 3418 ± 105 pg/mL). The T2DM-HIGH versus T2DM-SED group showed a greater hypoglycaemic effect (228 ± 10 vs 408 ± 5 mg/dL), with improved cortical bone density (0.26 ± 0.012 vs 0.21 ± 0.007 mm) and fracture resistance (102 ± 8 vs 78 ± 5 MPa), by a reduction of bone TNF-α (77 ± 34 vs 239 ± 13 pg/mL); LCN-2 (2768 ± 20 vs 3418 ± 105 pg/mL) and CO (4.8 ± 0.5 vs 6.0 ± 0.5 nmol/mg). In conclusion, AT improves bone morphometry and biomechanical properties by reducing the bone inflammatory microenvironment.
Collapse
|
|
3 |
|
19
|
Saaidi R, Rodríguez-Villafuerte M, Alva-Sánchez H, Martínez-Dávalos A. Crystal scatter effects in a large-area dual-panel Positron Emission Mammography system. PLoS One 2024; 19:e0297829. [PMID: 38427663 PMCID: PMC10906883 DOI: 10.1371/journal.pone.0297829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
Positron Emission Mammography (PEM) is a valuable molecular imaging technique for breast studies using pharmaceuticals labeled with positron emitters and dual-panel detectors. PEM scanners normally use large scintillation crystals coupled to sensitive photodetectors. Multiple interactions of the 511 keV annihilation photons in the crystals can result in event mispositioning leading to a negative impact in radiopharmaceutical uptake quantification. In this work, we report the study of crystal scatter effects of a large-area dual-panel PEM system designed with either monolithic or pixelated lutetium yttrium orthosilicate (LYSO) crystals using the Monte Carlo simulation platform GATE. The results show that only a relatively small fraction of coincidences (~20%) arise from events where both coincidence photons undergo single interactions (mostly through photoelectric absorption) in the crystals. Most of the coincidences are events where at least one of the annihilation photons undergoes a chain of Compton scatterings: approximately 79% end up in photoelectric absorption while the rest (<1%) escape the detector. Mean positioning errors, calculated as the distance between first hit and energy weighted (assigned) positions of interaction, were 1.70 mm and 1.92 mm for the monolithic and pixelated crystals, respectively. Reconstructed spatial resolution quantification with a miniDerenzo phantom and a list mode iterative reconstruction algorithm shows that, for both crystal types, 2 mm diameter hot rods were resolved, indicating a relatively small effect in spatial resolution. A drastic reduction in peak-to-valley ratios for the same hot-rod diameters was observed, up to a factor of 14 for the monolithic crystals and 7.5 for the pixelated ones.
Collapse
|
research-article |
1 |
|
20
|
Hernández-Bojórquez M, Trejo-Solis C, Lárraga-Gutiérrez JM, Martínez-Dávalos A. Monte Carlo dosimetry of a cell culture irradiation model using a 6 MV X-ray beam. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
4 |
|
21
|
Alfredo Sierra-Ramírez J, Saucedo-Bueno L, Lilia García-Hernández A, Martínez-Dávalos A, Rodríguez-López C, Elisa Drago-Serrano M, Godínez-Victoria M. Moderate aerobic exercise on bone quality changes associated with aging and oxidative stress in balb/c mice. J Biomech 2022; 135:111035. [DOI: 10.1016/j.jbiomech.2022.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
|
|
3 |
|
22
|
Cruz-Bañares A, Rojas-Carmona A, Aguilera-Mijares S, Martínez-Dávalos A, Bautista-Arredondo S, Vermandere H. Pre-exposure prophylaxis and telemedicine during coronavirus (COVID-19): a qualitative study of the experiences of health care professionals in Mexico. Sex Health 2024; 21:SH23206. [PMID: 38648372 DOI: 10.1071/sh23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Background Telemedicine, which involves utilising technologies for remote health care delivery, proved useful to continue offering certain health services during the coronavirus disease 2019 (COVID-19) lockdown. However, the extent of its effectiveness in delivering pre-exposure prophylaxis services for HIV prevention remains underexplored from the viewpoint of health care providers. Therefore, this study aimed to assess the experiences of health care professionals in Mexico who utilised telemedicine for delivering pre-exposure prophylaxis services during the COVID-19 contingency. Methods A qualitative study was performed: 15 virtual interviews with health care professionals were conducted, transcribed and coded in ATLAS.ti. Results The results indicate that telemedicine effectively mitigated COVID-19 exposure, facilitated users' access to pre-exposure prophylaxis counselling, minimised waiting times and enhanced health care professionals' perceived control during sessions. While implementing remote services, certain organisational challenges, which were somewhat latent before the pandemic, became more apparent: colleagues recognised the necessity for more formal communication channels to disseminate information effectively. Additionally, there was a recognised need for electronic patient files to streamline data-sharing processes. An optimal approach would involve a blend of face-to-face and virtual services, contingent upon the availability of essential infrastructure, well-defined implementation protocols and comprehensive training programs. Conclusions Telemedicine streamlined certain processes, garnered positive acceptance from healthcare professionals and holds promise as a valuable post-pandemic tool for improving retention among pre-exposure prophylaxis users.
Collapse
|
|
1 |
|
23
|
Ballesteros-Zebadúa P, Lárraga-Gutiérrez JM, García-Garduño OA, Martínez-Dávalos A, Rodríguez-Villafuerte M, Jiménez S, Celis MA. SU-GG-T-188: Comparative Analysis of Leakage and Transmission Radiation Measurements with Different Film Detectors. Med Phys 2008. [DOI: 10.1118/1.2961940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
|
17 |
|
24
|
Sólis-Suarez DL, Cifuentes-Mendiola SE, González-Alva P, Rodríguez-Hernández AP, Martínez-Dávalos A, Llamosas-Hernandez FE, Godínez-Victoria M, García-Hernández AL. Lipocalin-2 as a fundamental protein in type 2 diabetes and periodontitis in mice. J Periodontol 2024. [PMID: 39189666 DOI: 10.1002/jper.24-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lipocalin-2 (LCN-2) is an osteokine that suppresses appetite, stimulates insulin secretion, regulates bone remodeling, and is induced by proinflammatory cytokines. The aim of this work was to investigate the participation of LCN-2 in periodontitis associated with type 2 diabetes (T2D) by evaluating alveolar bone loss, glycemic control, inflammation, and femur fragility. METHODS A murine model of periodontitis with T2D and elevated LCN-2 concentration was used. Functional LCN-2 inhibition was achieved using an anti-LCN-2 polyclonal antibody, and isotype immunoglobulin G was used as a control. The alveolar bone and femur were evaluated by micro-CT. Glucose metabolism was determined. Tumor necrosis factor (TNF-α) and receptor activator of nuclear factor kappa-B ligand (RANKL) levels in alveolar bone lysates were quantified using ELISA, and serum cytokines were quantified using flow cytometry. A three-point bending test was performed in the femur, and RANKL levels were measured in femur lysates using ELISA. RESULTS Functional inhibition of LCN-2 in T2D-periodontitis mice decreased alveolar bone loss in buccal and palatal surfaces and preserved the microarchitecture of the remaining bone, decreased TNF-α and RANKL in alveolar bone, reduced hyperglycemia, glucose intolerance, and insulin resistance, and increased insulin production through improving the functionality of pancreatic β cells. Furthermore, this inhibition increased serum free-glycerol levels, decreased serum interleukin (IL)-6, increased serum IL-4, and reduced femur fragility and RANKL expression in the femur. CONCLUSIONS LCN-2 participates in periodontitis associated with T2D. Inhibiting its function in mice with T2D and periodontitis improves pancreatic β-cell function, and glucose metabolism and decreases inflammatory cytokines and bone-RANKL levels, which results in the preservation of femoral and alveolar bone microarchitecture. PLAIN LANGUAGE SUMMARY In this study, we explored the role of a bone protein known as lipocalin-2 (LCN-2) in the connection between periodontitis and type 2 diabetes (T2D). Periodontitis is a destructive gum and alveolar bone disease. LCN-2 levels are increased in both T2D and periodontitis. Using a mouse model of T2D with periodontitis, we examined how blocking LCN-2 function affected various aspects of these two diseases. We found that this inhibition led to significant improvements. First, it reduced alveolar bone loss and preserved bone structure by decreasing local inflammation and bone resorption. Second, it improved glucose and lipid metabolism, leading to better blood-sugar control and decreased insulin resistance. Blocking the functions of LCN-2 also decreased systemic inflammation throughout the body and strengthened bone integrity. Overall, our results suggest that LCN-2 plays a crucial role in the periodontitis associated with T2D. By inhibiting LCN-2 function, we were able to improve pancreatic function, improve glucose metabolism, reduce inflammation, and enhance bone health. Targeting LCN-2 could be a promising strategy for the harmful effects of T2D and periodontitis.
Collapse
|
|
1 |
|